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Abstract

As the most widespread viral infection transmitted by the Aedes mosquitoes, dengue has

been estimated to cause 51 million febrile disease cases globally each year. Although sus-

tained vector control remains key to reducing the burden of dengue, current understanding

of the key factors that explain the observed variation in the short- and long-term vector con-

trol effectiveness across different transmission settings remains limited. We used a detailed

individual-based model to simulate dengue transmission with and without sustained vector

control over a 30-year time frame, under different transmission scenarios. Vector control

effectiveness was derived for different time windows within the 30-year intervention period.

We then used the extreme gradient boosting algorithm to predict the effectiveness of vector

control given the simulation parameters, and the resulting machine learning model was

interpreted using Shapley Additive Explanations. According to our simulation outputs, den-

gue transmission would be nearly eliminated during the early stage of sustained and inten-

sive vector control, but over time incidence would gradually bounce back to the pre-

intervention level unless the intervention is implemented at a very high level of intensity. The

time point at which intervention ceases to be effective is strongly influenced not only by the

intensity of vector control, but also by the pre-intervention transmission intensity and the

individual-level heterogeneity in biting risk. Moreover, the impact of many transmission

model parameters on the intervention effectiveness is shown to be modified by the intensity

of vector control, as well as to vary over time. Our study has identified some of the critical

drivers for the difference in the time-varying effectiveness of sustained vector control across

different dengue endemic settings, and the insights obtained will be useful to inform future

model-based studies that seek to predict the impact of dengue vector control in their local

contexts.

Author summary

Sustained vector control remains key to reducing the global burden of dengue. However,

current understanding of the main drivers for the differences in the time-varying
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epidemiological impact of dengue vector control across different transmission settings

remains limited. We developed an agent-based model and showed that in the absence of a

highly effective intervention technology that is able to eliminate dengue transmission

even in an entirely susceptible population, a fixed level of reduction in the Aedes abun-

dance would only cause temporary reduction in dengue incidence. Furthermore, the time

point at which intervention ceases to be effective is strongly influenced not only by the

intensity of vector control and the pre-intervention transmission intensity, but also by the

individual-level heterogeneity in biting risk. Besides, the intensity of vector control inter-

acts with the other two factors mentioned earlier, and the interaction magnitude also

changes over time. These insights will be useful to inform future modelling studies that

seek to predict the impact of Aedes control on dengue transmission in their local contexts,

and have important implications for the design of intervention strategies to achieve sus-

tained reduction in the global burden of dengue.

1. Introduction

As the most widespread viral infection transmitted by the Aedes mosquitoes, dengue has been

estimated to cause 51 million febrile disease cases globally each year, of whom 3.6 million may

require hospitalization [1]. Unfortunately, the only licensed dengue vaccine to date,

CYD-TDV, has been found to enhance the future risk of severe dengue infections for seroneg-

ative recipients and hence cannot be used to provide protection for all individuals [2]. Even

under the very optimistic assumption that 100% of the CYD-TDV vaccine recipients are sero-

positive, sustained vector control remains key to reducing the burden of dengue [3]. Recently,

there has been a growing interest in applying novel vector control technologies to reduce den-

gue transmission. For instance, combining incompatible and sterile insect techniques has been

demonstrated to dramatically reduce the Aedes population size by over 90% under field condi-

tions [4–6], and the application of attractive toxic sugar baits has also shown impressive results

in both laboratory and small-scale field experiments [7, 8]. Other examples include introduc-

ing the wMel Wolbachia strain to the Aedes population with the aim of reducing vector com-

petence instead of suppressing the mosquito population [9].

Although the novel technologies described above have the potential to achieve dengue elim-

ination even in high-transmission settings, large-scale implementation of these interventions

remains challenging. Thus, while more work is still required to evaluate the effectiveness of the

novel Aedes control methods mentioned earlier, it is also important to assess the short- and

long-term impacts of the current vector control measures before more powerful vector control

tools become available to be rolled out on a large scale. At present, evidence supporting the epi-

demiological impact of the existing dengue vector control measures remains limited, due to

the lack of surveillance data and the challenge in deploying rigorous study designs to assess

intervention effectiveness, as well as insufficient investment in sustained mosquito suppression

[10]. In particular, assessing the long-term effectiveness of dengue vector control can be

extremely challenging, as this would require substantial investment in monitoring and evalua-

tion. Moreover, long-term dengue vector control trials may violate the principle of equipoise

once an intervention under evaluation has been shown to reduce disease incidence in the

short to medium term, even though there may be genuine uncertainty regarding its epidemio-

logical impact in the long run.

Although not a replacement for surveillance data, mathematical modelling can serve as a

useful tool to compare the predicted dengue incidence with and without interventions, and
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thus to minimize the confounding bias commonly encountered in studies where high cost and

research ethics prohibit the inclusion of a control group for long-term evaluation. So far, very

few studies have been carried out to model the impact of dengue vector control in both the

short and long terms [10, 11], and to the best of our knowledge, none has examined how the

time-varying impact of dengue vector control changes across different transmission settings.

Narrowing this knowledge gap will yield useful insights into the important details of a trans-

mission context that must be accounted for to predict the short- and long-term epidemiologi-

cal impacts of a sustained dengue vector control intervention.

To generate important insights to guide the implementation of both the existing and novel

dengue vector control measures, in this study we aim to use mathematical modelling to (i)

simulate the change in dengue incidence within a 30-year time period following a sustained

reduction in the Aedes population size by 10%—90%, and (ii) identify key factors that explain

the variation in the short- and long-term vector control effectiveness across different dengue

endemic settings.

2. Methods

2.1 Individual-based model

2.1.1 Overview. We first simulated the introduction and autochthonous transmission of

dengue virus in the absence of vector control for 100 years (“warm-up period”) to establish the

baseline immunity in the population (S1 and S2 Figs show the change in dengue incidence and

seroprevalence during the 100-year warm-up period under different levels of dengue transmis-

sion intensity). Thereafter, we continued the simulation for another 30 years (“intervention

period”) with vector control being implemented to maintain the vector density at a reduced

level. The discrete time step used to simulate dengue transmission was equal to the length of

the mosquito feeding cycle (lf), during which a mosquito took a blood meal, looked for breed-

ing sites, laid eggs, and then searched for the next blood meal [12]. We created different sce-

narios in our simulations by varying the overall level of vector control intensity, pre-

intervention mosquito density, dengue importation rate, rate of change in the population age

structure, host mobility rate, and the degree of individual-level heterogeneity in the risk of

being bitten by the Aedes mosquitoes. In addition, we also varied the assumptions regarding

the immunological interactions between dengue serotypes, as well as the degree of spatial het-

erogeneity in vector control intensity across different simulation runs to assess their influence

on the model output (Fig 1).

2.1.2 Dengue infections in humans. Each human was allowed to have at most four

sequential infections, with life-long protection against homotypic reinfection and temporary

cross-protection against heterotypic infections. Upon receiving an infectious bite, each human

had a probability t
ðkÞ
M!H of becoming infected in the absence of immunity. Here, the vector-to-

host transmission probability depended on the number of historical dengue infections an indi-

vidual had previously experienced (k = 0,1,2,3), where we set t
ðkÞ
M!H to be 0.5 for k6¼1 (i.e.,

assumed to be equal for primary, tertiary, and quaternary infections for simplicity, due to the

challenges of distinguishing between these values using epidemiological data), and 0.5�(1

+ϕADE) for k = 1 to account for the enhanced susceptibility to secondary infections. On aver-

age, each infected human took lLP days to become infectious and another lR days to achieve

viral clearance, followed by a cross-protection period lasting an average of lC days (or lifelong

immunity against all serotypes after recovery from a quaternary infection); we assumed the

length of each of these time intervals to be exponentially distributed.

Similar to the model implemented by Hladish et al. to simulate dengue introductions [13],

each human had a time-invariant probability π of being exposed to dengue virus from an
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external source in each feeding cycle, and the exposure may be resisted by immunity. To simu-

late the serotype of the imported dengue virus for each exposed individual, we obtained a ran-

dom draw from a categorical distribution with the probability parameters equal to the relative

frequencies of the four dengue serotypes in Southeast Asia estimated by Bell et al. [14]. Here,

we assumed the parameters of this categorical distribution to be fixed for the warm-up period,

but time-varying for the intervention period. Specifically, we first averaged Bell et al.’s esti-

mates across the 45-year study period to be used for the simulation of dengue introductions

throughout the 100-year warm-up period [14], since the length of the warm-up period far

exceeded the length of the time period for which data were available. Next, we used linear

interpolation to transform Bell et al.’s quarterly estimates for the period of 1970–2000 into

daily estimates [14]. These estimates were then used to simulate the introduced dengue sero-

types at each feeding cycle during the 30 years of the intervention period.

2.1.3 Dengue infections in mosquitoes. Each susceptible mosquito had a probability

t
ðkÞ
H!M of becoming infected after biting an infectious human who had historically been infected

k times prior to the current infection. We set t
ðkÞ
H!M to be 0.5 for k6¼1, and 0.5�(1+ϕADE) for

k = 1 to account for the enhanced transmissibility from humans undergoing secondary infec-

tions due to increased viral load [15, 16]; we assumed equal degrees of enhancement in trans-

missibility and susceptibility. Note that in actuality the transmission probabilities between

humans and mosquitoes in the absence of enhancement could differ from 0.5, which we used

for our individual-based model following previous studies [17, 18]. However, the uncertainty

in these values can be absorbed by adjusting the vector-to-host ratio to achieve a certain level

of transmission intensity. We assumed the extrinsic incubation period to follow an exponential

distribution with mean lEIP(T), which was calculated as a deterministic function of tempera-

ture (T) based on the posterior mean of the parameters estimated for a thermal response

model by Mordecai et al. [19]. Here, we accounted for the seasonal variation in dengue trans-

mission intensity by allowing the temperature to fluctuate between 25˚C and 31˚C (i.e., similar

to the range of the monthly mean temperature in Bangkok or Phnom Penh) within each year

using a sine function. We did not explore alternative temperature ranges in this study, since

temperature amplitudes were presumed to be reasonably small in most settings with endemic

dengue transmission, and any changes in the transmission intensity due to changes in the

Fig 1. Schematic overview of the individual-based model.

https://doi.org/10.1371/journal.pcbi.1009979.g001
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mean temperature can be reproduced by adjusting the average vector-to-host ratio. Finally,

once a mosquito had survived beyond the extrinsic incubation period of the virus, she was

assumed to remain infectious until death.

2.1.4 Spatial structure and heterogeneous biting. We created a set of communities form-

ing on a squared lattice of size 20×20, following the spatial structure specified by Lourenço &

Recker [17]. At the start of the simulation, a total of NH fully susceptible humans and NBS mos-

quito breeding sites were uniformly distributed over space (We also conducted a sensitivity

analysis to examine the impact of non-uniform distribution of mosquito breeding sites prior

to the roll-out of the vector control intervention on the model output; S1 Text has full details).

Within each feeding cycle t, each adult female mosquito m randomly bit a human h with prob-

ability pt
Biteðm; hÞ, which was calculated as follows:

ptBiteðm; hÞ ¼
ð1 � oÞ �

uthP
h0u

t
h0 � dðC½m�;C½h0�Þ

; if dðC½m�;C½h�Þ ¼ 1;

o �
uthP

h0u
t
h0 � ð1 � dðC½m�;C½h0�ÞÞ

; if dðC½m�;C½h�Þ ¼ 0:

8
>>><

>>>:

In the equation above, we used C[h] to denote the community where human h lived (simi-

larly for C[m]). The value of the indicator function δ(C[m], C[h]) was defined to be one if the

two communities C[m] and C[h] were identical or neighbors to each other, and zero otherwise.

Given the limited flight range of Aedes aegypti, we followed Lourenço & Recker and assumed

each mosquito m was only able to bite humans present in her own community C[m] or the

neighboring communities [17]. Long-distance transmission occurred due to human move-

ment, and we allowed each mosquito to randomly bite a human living in a distant community

with probability ω [17]. The numerator uth denoted the “biting risk score” of individual h at

time t, which was normalized according to the equation above to obtain pt
Biteðm; hÞ. We com-

puted the biting risk score as the product of the following two variables:

uth ¼ u
t
hð1Þ � uhð2Þ:

The first variable uthð1Þ denoted the relative attractiveness to mosquitoes, which was esti-

mated as a function of an individual’s body surface area according to results from Liebman

et al.’s field study [20], with the growth in body surface area from birth to adulthood simulated

based on the age and sex of that individual following Perkins et al. [21]. The second variable υh
(2) accounted for the residual variation in the biting risk score due to other factors, such as dif-

ferential duration each person spent near biting mosquitoes, wearing of protective clothing,

and the individual-level variation in sweat composition and production [22]. For simplicity,

we assumed υh(2) to be independent of age and generated its value from a gamma distribution

with mean one and standard deviation suhð2Þ , and we varied the value of suhð2Þ across different

transmission settings to study its impact on the short- and long-term effectiveness of vector

control (refer to section 2.1.7 for more details).

2.1.5 Human age structure. We simulated the birth, ageing, and death of humans at a

time step of 28 days. The maximum human lifespan was set to be 100 years, and each human’s

age was treated as an integer variable measured in the unit of 28 days, so that every time step

we simulated the demographic changes in the population, each human either had their age

increased by one or was removed from the population due to death.

We used the United Nations model life table (General Pattern with life expectancy at birth

being 75 years) [23] and assumed a constant mortality rate within each 5-year age interval in

the life table. This allowed us to convert the age interval length of the life table to 28 days. Prior
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to the start of the warm-up period, we initialized the age of each human such that the propor-

tion of individuals falling within each 28-day age interval tallied with the stationary age distri-

bution informed by the life table. Throughout the warm-up period, the number of incident

deaths occurring at each age every 28 days was fixed at the corresponding expected value

according to the life table, so that the stationary age structure can be maintained. Each death

was replaced by a newborn whose sex was randomly generated assuming equal probabilities of

male and female births.

For the 30 years of the intervention period, we modelled different rates of changes in the

population age structure to examine the associated impact on the vector control effectiveness.

Let the annual mortality rate at age a in year y be λa,y, with y = 0 referring to the first year of

the intervention period. We assumed λa,y to decline over time according to the following equa-

tion:

logðla;yÞ ¼ logðla;0Þ þ r � ba � y ðr � 0; ba < 0Þ:

In the equation above, the constant βa was defined such that ð1 � ebaÞ was equal to the aver-

age annual percentage reduction in mortality rate at age a in Singapore across the period of

1990–2020 [24]. Hence, the rate of mortality decline can be varied by changing the value of the

relative rate of ageing ρ, with ρ = 1 indicating that the mortality rate declined at the same speed

as observed in Singapore. Once we calculated λa,y based on the values of a, y and ρ, the age-spe-

cific probability of death within a 28-day time interval can be derived to simulate mortality

events using a binomial distribution.

The same method was applied to create different rates of fertility decline, where we used the

same relative rate of ageing ρ described earlier. Note that previously we did not specify the age-

specific fertility rates since each death was instantaneously replaced by a newborn during the

warm-up period. Here, we derived the baseline age-specific fertility rates (i.e., when y was

equal to zero) such that both of the following conditions were satisfied: (1) the ratios of the

baseline fertility rates between different ages tallied with the corresponding ratios observed in

Singapore in 1990 [24]; (2) the expected total number of newborns in each 28-day time inter-

val, calculated under the baseline age-specific fertility rates and the stationary age distribution

mentioned earlier, tallied with the total number of newborns every 28 days during the warm-

up period.

2.1.6 Development of Ae. aegypti mosquitoes. We modelled the development of Ae.
aegypti mosquitoes using a Markov process with four states: eggs, larvae, pupae, and adults.

Within each feeding cycle, each adult female mosquito m randomly chose a breeding site

located in either her own community C[m] (i.e., the community where she was born) or one

of the neighboring communities to lay eggs. The number of eggs laid in one oviposition fol-

lowed a Poisson distribution with mean θE. Male and female adult emergence was assumed to

be equally likely, and male mosquitoes were not explicitly modelled upon adult emergence.

The relationship between the mosquito developmental rates and temperature was specified

using Schoolfield et al.’s model [25]. Following Otero et al., the mortality rates of eggs and

adult female mosquitoes were both treated as constant, and the larval mortality rate was

decomposed into the sum of the natural mortality rate under optimal conditions and the den-

sity-dependent mortality rate [26]. We modelled the natural larval mortality rate using an

exponential decay function of temperature [26] and assumed the density-dependent larval

mortality rate to be proportional to the number of larvae present in a breeding habitat; we

denoted the proportionality coefficient by α. The pupal mortality rate was also assumed to

vary with temperature according to an exponential decay function, with an additional “emer-

gence factor” to account for unsuccessful emergence of adult mosquitoes [26]. The discrete
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time step used to simulate the development of mosquitoes during the aquatic stage was taken

to be one tenth of the mosquito feeding cycle length, to keep the probabilities of multiple tran-

sitions (i.e., from eggs to pupae, from eggs to adults, or from larvae to adults) low (<0.05).

At the start of the simulation, the number of eggs in each breeding site was randomly

drawn from a Poisson distribution with mean nE, with no larvae, pupae, or adults present. To

vary the pre-intervention vector-to-host ratio across different simulation runs, we varied the

parameter α which was used to calculate the density-dependent larval mortality rate as

described earlier. Here, we chose to vary the productivity instead of the total number of breed-

ing sites for the sake of computational efficiency, since the simulation run-time increased with

the number of breeding sites. Finally, at the end of the 100-year warm-up period, we randomly

selected a proportion (ξC) of the breeding sites in each community C to be permanently

removed; the level of vector control intensity ξC for each community C was independently

drawn from a beta distribution with mean pRM (“overall level of vector control intensity”) and

standard deviation σRM. Although here we implemented vector control via source reduction,

the same effect can be achieved using other strategies such as the incompatible insect tech-

nique or the sterile insect technique used in real-world settings.

It should be noted that throughout this study, we treated Ae. aegypti as the sole vector for

dengue transmission. In reality, however, Ae. albopictus may also play an important role in

spreading the disease in some endemic areas. While dengue transmission by Ae. albopictus
peaks at a relatively lower temperature compared with Ae. aegypti [19] and the flight distance

of Ae. albopictus is also relatively longer [27], we chose to focus exclusively on Ae. aegypti since

it is the primary vector for dengue transmission in most endemic settings, and the general con-

clusions of our study are also unlikely to be substantially affected by the aforementioned differ-

ences between the two mosquito species.

2.1.7 Simulation model parameters. We used Latin hypercube sampling [28] to create

1,000 combinations of the following parameters: π, ω, ρ, suhð2Þ , α, ϕADE, lC, and σRM to (1) study

the impact of dengue importation, human mobility, population ageing, individual-level het-

erogeneity in the risk of being bitten, and pre-intervention mosquito abundance on vector

control effectiveness, and (2) test the sensitivity of our model output with respect to changes in

the degree of antibody-dependent enhancement, average duration of cross-protection, and the

degree of spatial variability in vector control intensity assumed in the simulation model. For

each combination of the eight parameters mentioned earlier, dengue transmission during the

warm-up period was simulated only once. Thereafter, we simulated dengue transmission dur-

ing the intervention period ten times, each time with a different overall level of vector control

intensity quantified by pRM. The set of values taken by pRM contained zero, which represented

the counterfactual scenario to be used for the calculation of vector control effectiveness as

described in the next section (Refer to Table 1 for the list of parameter values). The simulation

model was implemented using Python 3.9 (S1 Code), and the average time for a simulation

run during the warm-up period and the intervention period was 14,667s (4h 4mins) and

4,400s (1h 13mins) respectively. Simulations were carried out in parallel across 16 compute

nodes on a High-Performance Computing cluster, with each node consisting of 24 Intel(R)

Xeon(R) CPU E5-2680 v3 @ 2.50Ghz single-thread processors.

2.2 Analyses of the simulation output

To measure the overall dengue transmission intensity prior to the implementation of vector

control in each simulation run, we computed the proportion of nine-year olds who had prior

dengue exposure at the end of the warm-up period (“baseline PE9”). We also calculated the

increase in the median age of the entire population during the 30-year intervention period
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(Δage). The baseline PE9, Δage, and the simulation model parameters pRM, π, ω, suhð2Þ , ϕADE, lC,

and σRM (hereafter referred to as the “predictor variables”) were assessed in their contribution

to explaining the variability in the vector control effectiveness, as explained later in this

section.

We extracted the monthly number of dengue infections from each simulation run and

defined the vector control effectiveness (provided pRM>0) within a time window (ty, ty+Δt] as

follows:

eff pRM ty; ty þ Dt

� i
¼ 1 �

# of infections withinðty; ty þ Dt� with vector control
# of infections withinðty; ty þ Dt� without vector control

:

Table 1. List of parameter values for the simulation model.

Constant parameters

Notation Description Value Remark

NH Total number of humans at initialization 100,000 —

NBS Total number of breeding sites at initialization 100,000 —

nE Average number of eggs per breeding site at

initialization

500 Approximately equal to the number of eggs per breeding site at the peak breeding season

in Otero et al.’s simulation model [26]

lf Length of the mosquito feeding cycle (days) 4 [12] Assumed constant within (25˚C, 31˚C)

lLP Average duration of the human latent period (days) 6 Approximated using the intrinsic incubation period [31]

lR Average duration of human infectiousness (days) 5 [32]

θE Average number of eggs laid by an Aedes mosquito

in one oviposition

63 [26]

μE Mortality rate of mosquito eggs (per day) 0.011 [26]

ef Emergence factor (Proportion of pupae reaching

maturation that emerged as adults)

0.83 [26]

μF Mortality rate of adult female mosquitoes (per day) 0.091 [26]

Parameters whose values were varied across simulations

Notation Description Range Remark

π Probability of being exposed to dengue virus from

an external source per human per cycle

(20,24) ×
10−5

Drawn from a uniform distribution on a log2 scale

ω Probability of biting a human living in a distant

community per mosquito per bite

(10−4,

10−1)

Drawn from a uniform distribution on a log10 scale

ρ Relative rate of ageing Unif (0,4) Given the same age structure at the beginning of the intervention period, the median age

of the human population after 30 years ranged from 38 to 51 years old across the 10,000

simulations

suhð2Þ Standard deviation of the biting risk score

controlling for body surface area

Unif (0,1) The range was restricted to (0,1) to avoid a high degree of collinearity between the

baseline PE9 and suhð2Þ

α Proportionality coefficient used to compute the

density-dependent larval mortality rate

Unif (0.1,

0.4)

—

ϕADE Susceptibility enhancement and transmissibility

enhancement (assumed equal)

Unif (0,1) Sensitivity analysis

lC Average duration of cross-protection (days) Unif (1,

365)

Sensitivity analysis

σRM Standard deviation of the community-level vector

control intensity

Unif (0,

0.2)

Sensitivity analysis

pRM Overall level of vector control intensity (proportion

of breeding sites removed)

(�) —

(�) For each combination of the eight parameters above, we simulated dengue transmission during the intervention period 10 times, each time with a different value of

pRM from the set {0, 0.1, 0.2, . . ., 0.8, 0.9}.

https://doi.org/10.1371/journal.pcbi.1009979.t001
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In the equation above, we used ty 2 0; 1

12
; 2

12
; . . . ; 358

12
; 359

12

� �
to denote the number of years

between the start of the intervention period and the left endpoint of the time window, and

Dt 2
1

12
; 2

12
; . . . 360

12

� �
to denote the time window length in years, subject to the constraint

ty+Δt�30. For each simulation where pRM>0, we calculated the vector control effectiveness

within each of the following time windows: (0, 5], (5, 10], (10, 15], (15, 20], (20, 25], (25, 30],

and (0, 30]. In addition, we obtained the “critical time point” t�y defined as the minimum value

of ty such that the intervention effectiveness within the time window (ty, ty+5] was negative, to

represent the time point at which the intervention stopped having an impact:

t�y ¼ min ty : ty 2 0;
1

12
;

2

12
; . . . ;

299

12
;
300

12

� �

^ eff pRMðty; ty þ 5� < 0

� �

:

Due to the multi-annual incidence patterns of dengue, we set the length of the time

window to be five years in the equation above to reduce noise in the estimated underlying trend

in the vector control effectiveness. In the rare event that right censoring occurred (i.e.,

effpRM(ty, ty+5]�0, 8ty), we set the value of the critical time point to be 25. Hereafter, the interven-

tion effectiveness calculated for each of the seven time windows mentioned earlier, as well as the

critical time point, will be referred to as the “outcome variables”, and we used yj = (y1j,. . .,y9000 j)
T

to denote the vector containing all the values of an outcome variable j (j = 1,. . .,8) obtained from

the 9,000 simulation runs where vector control was implemented (i.e., pRM>0). Similarly, the

predictor variable matrix was denoted by X = (xsi) (s = 1,. . .,9000, i = 1,. . .,9).

For each overall level of vector control intensity (pRM), we summarized the distribution of

each outcome variable using a boxplot. In addition, we also used the extreme gradient boosting

(XGBoost) algorithm to capture the nonlinear and interaction effects of the predictor variables

on each of the eight outcome variables [29]. As a tree ensemble model, XGBoost is able to cap-

ture the complex data dependencies while minimizing over-fitting via regularization [29]. To

train the XGBoost model for each outcome variable j, we first split our data (X, yj) into training

and test sets using a 9:1 ratio and tuned the following hyper-parameters via 5-fold cross valida-

tion performed on the training set, where we used the mean absolute error as the evaluation

metric: the maximum tree depth, the minimum number of observations in each node, the frac-

tions of rows and columns to be randomly sampled to grow each tree, and the learning rate.

Given the optimal hyper-parameters, the number of boosting rounds for the final model was

determined by monitoring the out-of-sample prediction accuracy evaluated on the test set.

Finally, to interpret the predictions of the XGBoost model, we calculated the “Shapley addi-

tive explanations” (SHAP) value Sijs for each combination of predictor variable i, outcome vari-

able j, and simulation run s [30]. Unlike partial dependence plot, SHAP value accounted for

interaction effects by measuring the impact of each predictor variable on the model prediction

for each single sample (in our case, each simulation run) [30]. Specifically, the SHAP value Sijs
quantified the change in the predicted value of ysj due to xsi, where the comparator was set to

be the predicted value of ysj had the predictor variable i been excluded from the XGBoost

model. For each pair of predictor variable i (that was not pRM) and outcome variable j, we plot-

ted the SHAP values (Sijs) against the values of the predictor variable i (xsi). Thereafter, to

investigate potential interaction between the overall level of vector control intensity (pRM) and

each of the other predictor variables, for each value taken by pRM we fitted a smoothing spline

to the corresponding subset of data points in each scatterplot, to visually examine whether the

fitted splines under different values of pRM differed from one another. All the analyses of the

simulation output were performed using Python 3.9.
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3. Results

Following a sustained reduction in the mosquito population size, the monthly number of den-

gue infections immediately dropped to near zero and continued to hover just above zero for a

number of years, accompanied by a gradual decline in dengue seroprevalence in the popula-

tion (Fig 2). In most simulation runs where the overall level of vector control intensity was 0.8

Fig 2. Simulated monthly number of dengue infections and dengue seroprevalence following a permanent

reduction in the mosquito population size by 70% in different dengue endemic settings. Unless otherwise stated,

model parameters were fixed at the following values: π = 4×10−5, ω = 0.005, ρ = 0, suhð2Þ ¼ 0:5; α = 0.25, ϕADE = 0.5, lC =

180, pRM = 0.7, σRM = 0 (Here we used σRM = 0 to denote spatially uniform vector control intensity).

https://doi.org/10.1371/journal.pcbi.1009979.g002
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or higher, dengue transmission remained to be suppressed throughout the entire 30-year inter-

vention period (Table 2). By contrast, under a permanent reduction in the mosquito popula-

tion size by 70% or less (i.e., pRM�0.7), there was a high probability that dengue incidence

bounced back to the pre-intervention level within 30 years (Table 2), with a marked difference

in the time point at which vector control ceased to be effective (i.e., critical time point) across

different transmission settings (Fig 3 shows the general model behavior).

We found the overall level of vector control intensity and the baseline PE9 to be the

most important predictors for the critical time point, followed by the degree of individual-

level heterogeneity in the biting risk score (Fig 4). It should be noted that in Fig 4, we

excluded simulation runs where the overall level of vector control intensity was 0.8 or higher,

due to the high probability that vector control remained effective throughout the 30-year inter-

vention period. We also observed that the higher the overall level of vector control intensity

(provided pRM�0.7), the more pronounced the negative impacts of baseline PE9 and heteroge-

neous biting on the critical time point (Fig 4). The above findings also held true for the case

of vector control effectiveness across the entire 30 years of the intervention period (“overall

intervention effectiveness”), provided the overall level of vector control intensity was below 0.8

(Fig 5).

During the first five years of the intervention period, vector control was substantially more

effective when implemented at a higher intensity (Fig 6). However, the median value of inter-

vention effectiveness diminished towards zero over time and eventually became almost indis-

tinguishable between different overall levels of vector control intensity (except for pRM�0.8) in

(25y, 30y] (Fig 6). Interestingly, the median value of intervention effectiveness was found to be

negative within the time window (10y, 15y] when the overall level of vector control intensity

was equal to 0.3 or 0.4 (Fig 6), which may be due to the low herd immunity in the population

that caused dengue incidence to drastically increase, thereby temporarily exceeding the inci-

dence in the counterfactual scenario.

Within each of the 5-year time windows in Fig 7, we observed an overall inverse relation-

ship between the baseline PE9 and intervention effectiveness, with the impact of baseline PE9

being more pronounced at a low level of vector control intensity (pRM = 0.2) during (0y, 5y],

moderate vector control intensity (pRM = 0.5) during (5y, 10y], moderately high intensity (pRM
= 0.6 or 0.7) during (10y, 20y], and high intensity (pRM = 0.8) during (20y, 30y] (Fig 7). Similar

conclusions also held true for the relationship between heterogeneous biting and vector con-

trol effectiveness (Fig 8). In addition, neither dengue importation risk, nor population ageing,

nor host mobility was found to have a substantial impact on vector control effectiveness within

any of the 5-year time windows considered in this study (S3–S5 Figs), although a 12-year

increase in the median age of the population during the 30-year intervention period was esti-

mated to increase the overall intervention effectiveness by ~8 percentage points on average at a

moderately high level of intervention intensity (pRM = 0.7) (Fig 5).

When we increased the degree of antibody-dependent enhancement in our simulations,

there was a modest decrease in both the short-term and the overall intervention effectiveness,

as well as the value of the critical time point (S6 and S7 Figs). Furthermore, the average

Table 2. Number of simulations where the 5-year intervention effectiveness remained positive throughout the entire 30-year intervention period. For each overall

level of vector control intensity, a total of 1000 simulations were performed.

Overall level of vector control intensity (pRM) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Number of simulations where the 5-year intervention effectiveness remained positive throughout the 30-year

intervention period

0 0 0 0 1 30 261 704 994

https://doi.org/10.1371/journal.pcbi.1009979.t002
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duration of cross-protection was found to have a negligible impact on both the intervention

effectiveness and the critical time point (S7 and S8 Figs). Overall, varying the strengths of

immune interactions did not result in a substantial change in our model results. Similarly, our

intervention effectiveness and critical time point estimates were reasonably robust with respect

to changes in the degree of spatial variability in vector control intensity (S7 and S9 Figs) as well

as the spatial distribution of mosquito breeding sites (and thus vector-to-host ratios) prior to

the roll-out of the vector control intervention (Table A in S1 Text).

Fig 3. Simulated monthly number of dengue infections during the 30-year intervention period in different dengue

endemic settings. Each figure panel showed model outputs obtained from two simulation runs with the same starting

condition, where one simulation was performed without vector control and the other with the vector population size

permanently reduced by 70% at the start of the intervention period (identical to the corresponding model output

shown in Fig 2).

https://doi.org/10.1371/journal.pcbi.1009979.g003
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4. Discussion

Our study highlights the contrast between the short- and long-term impacts of sustained den-

gue vector control in endemic settings, in congruence with the findings from previous studies:

Fig 4. Impact of different predictor variables on the critical time point. For (A), the original values of the critical

time point obtained from the simulations were summarized. Each box was drawn from the first quartile (Q1) to the

third quartile (Q3) of the data, with the horizontal line in the middle showing the median. The upper whisker

boundary was the largest observation that was within Q3 + 1.5 � (Q3—Q1), and the lower whisker boundary was the

smallest observation above Q1–1.5 � (Q3—Q1). Data points beyond the whisker boundaries were omitted from the

graph for clarity. For (B)—(F), we used SHAP values to quantify the change in the predicted critical time point due to

the value of each predictor variable, where each point represents a single simulation run and each curve was obtained

by fitting a smoothing spline to the set of data points corresponding to a given overall level of vector control intensity.

We excluded simulations where the overall level of vector control intensity was 0.8 or higher, due to the high

probability that vector control remained effective throughout the 30-year intervention period.

https://doi.org/10.1371/journal.pcbi.1009979.g004

Fig 5. Impact of different predictor variables on the vector control effectiveness across the entire 30-year

intervention period. For (A), the original values of the intervention effectiveness obtained from the simulation runs

were summarized. Each box was drawn from the first quartile (Q1) to the third quartile (Q3) of the data, with the

horizontal line in the middle showing the median. The upper whisker boundary was the largest observation that was

within Q3 + 1.5 � (Q3—Q1), and the lower whisker boundary was the smallest observation above Q1–1.5 � (Q3—Q1).

Data points beyond the whisker boundaries were omitted from the graph for clarity. For (B)—(F), we used SHAP

values to quantify the change in the predicted overall intervention effectiveness due to the value of each predictor

variable, where each point represents a single simulation run and each curve was obtained by fitting a smoothing spline

to the set of data points corresponding to a given overall level of vector control intensity.

https://doi.org/10.1371/journal.pcbi.1009979.g005
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Following the suppression of the Aedes mosquito population, the equilibrium between the

basic reproduction number and the level of herd-immunity was disrupted, causing dengue

incidence to drastically decline [10, 11]. This in turn reduced population immunity over time

Fig 6. Distribution of the simulated intervention effectiveness under different overall levels of vector control

intensity within each of the following time windows: (A) (0y, 5y], (B) (5y, 10y], (C) (10y, 15y], (D) (15y, 20y], (E)

(20y, 25y], (F) (25y, 30y]. Each box was drawn from the first quartile (Q1) to the third quartile (Q3) of the data, with

the horizontal line in the middle showing the median. The upper whisker boundary was the largest observation that

was within Q3 + 1.5 � (Q3—Q1), and the lower whisker boundary was the smallest observation above Q1–1.5 � (Q3—

Q1). Data points beyond the whisker boundaries were omitted from the graph for clarity.

https://doi.org/10.1371/journal.pcbi.1009979.g006

Fig 7. Impact of baseline PE9 on the predicted vector control effectiveness within each of the following time

windows: (A) (0y, 5y], (B) (5y, 10y], (C) (10y, 15y], (D) (15y, 20y], (E) (20y, 25y], (F) (25y, 30y]. The baseline PE9

referred to the proportion of nine-year olds who had prior dengue exposure at the end of the warm-up period. Each

point represents a single simulation run, and the SHAP value quantified the change in the predicted vector control

effectiveness due to the value of baseline PE9. Each curve was obtained by fitting a smoothing spline to the set of data

points corresponding to a given overall level of vector control intensity.

https://doi.org/10.1371/journal.pcbi.1009979.g007
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as new births were added to the susceptible pool and immune individuals were gradually

removed from the population due to death [10, 11]. Consequently, in the vast majority of the

simulation runs where the mosquito population size was reduced by less than 70%, dengue

incidence gradually bounced back and the existing intervention was no longer effective in the

end, requiring the intensity of vector control to be further enhanced to reduce dengue trans-

mission [10]. We have additionally demonstrated that the time point at which vector control

stopped having an impact depended mainly on the degree of mosquito suppression, pre-inter-

vention transmission intensity, and the degree of individual-level heterogeneity in the risk of

being bitten by the Aedes mosquitoes. It is thus important for future studies to account for the

effects of these variables, as well as their interactions, to forecast the time-varying impact of an

Aedes control program for planning purposes.

We have shown that a higher pre-intervention transmission intensity was generally associ-

ated with a lower proportion of dengue infections averted within each of the 5-year time win-

dows considered in this study. A likely explanation is that an increase in the pre-intervention

transmission intensity will generally reduce the average number of years before sustained

transmission resumes, thereby causing intervention effectiveness to decrease: Suppose the

basic and effective reproduction numbers prior to the intervention are R0 and 1 respectively

(R0>1), and hence the fraction of the population being susceptible to dengue at baseline is

approximately 1/R0. If vector control reduces the basic reproduction number to R0/k
(R0>k>1) and if the susceptible fraction of the population increases by c each year during the

early phase of the intervention period, the number of years before the effective reproduction

number bounces back to one will be k� 1

R0�c
, which is inversely proportional to R0. While the above

conclusion may rely on some simplifying assumptions, our individual-based model has pro-

duced similar results, which showed that the baseline PE9 had a negative relationship with the

critical time point especially at a moderately high level of vector control intensity. It should be

noted that the relationship between baseline PE9 and the vector control effectiveness was

found to be very weak under an extremely high level of vector control intensity (i.e., pRM =

0.9), which was likely due to the high probability that the intervention was able to reduce the

Fig 8. Impact of individual-level heterogeneity in the biting risk score on the predicted vector control

effectiveness within each of the following time windows: (A) (0y, 5y], (B) (5y, 10y], (C) (10y, 15y], (D) (15y, 20y], (E)

(20y, 25y], (F) (25y, 30y]. The parameter suhð2Þ referred to the standard deviation of the biting risk score controlling for

body surface area. Each point represents a single simulation run, and the SHAP value quantified the change in the

predicted vector control effectiveness due to the value of suhð2Þ . Each curve was obtained by fitting a smoothing spline to

the set of data points corresponding to a given overall level of vector control intensity.

https://doi.org/10.1371/journal.pcbi.1009979.g008
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basic reproduction number to below one thereby achieving long-term elimination of dengue,

regardless of the baseline PE9 value.

In addition to the important role of pre-intervention transmission intensity in modifying

the effectiveness of dengue vector control, our results suggest that the degree of individual-

level heterogeneity in the biting risk also needs to be accounted for to accurately forecast the

epidemiological impact of a vector control program (unless the intervention is implemented at

a very high level of intensity). Earlier studies have produced strong evidence for the heteroge-

neous blood feeding patterns of the Aedes mosquitoes using DNA profiling of bloodmeals [20,

33], and have identified characteristics of individual hosts that may help to improve the accu-

racy of biting risk predictions (e.g., body surface area, time spent near biting mosquitoes, and

the composition of skin microbiota) [20, 22]. Other studies have demonstrated the important

implications of heterogeneous biting for vector control: For example, maximum impact will

not be achieved if a uniform strategy is implemented in settings where a small number of indi-

viduals have a disproportionately large contribution to transmission [34]. Besides, heteroge-

neous biting may increase the success rate of pathogen invasion, thus making disease

eradication more difficult [35]. The results obtained in our study highlight another challenge

posed by heterogeneous biting: When the biting risk is more heterogeneous at the individual

level, there will be a higher chance for multiple infectious mosquito bites to land on the same

susceptible individual, and the resulting infection cannot be averted unless most, if not all, of

the aforementioned mosquito bites are prevented. Hence, given a fixed level of reduction in

vector density, the percentage decrease in the number of incident dengue infections will be

lower in the presence of heterogeneous biting compared with the case where each infectious

mosquito chooses to bite a unique individual. Note that to avoid a high degree of collinearity

between the baseline PE9 and the variability in biting risk, we set the maximum standard devi-

ation of the biting risk score conditional on the body surface area to be 1, which corresponds

to a setting where 55% of the human population receive 90% of all the mosquito bites. In real-

ity, the distribution of mosquito bites may be more skewed in some transmission settings,

where the negative impact of heterogeneous biting on the vector control effectiveness can be

even larger than what we estimated in this study. More research that quantifies and explains

the individual-level heterogeneity in biting risk would be helpful to inform the development of

more effective dengue vector control policies that can be implemented to achieve the desired

epidemiological impact.

We have observed a weak positive impact of population ageing on the effectiveness of vec-

tor control over the 30-year intervention period. However, this should not be interpreted as a

minor effect of demographic transition on dengue epidemiology, as previous work has shown

that the decline in birth and death rates can cause a substantial decrease in the force of infec-

tion, as well as a change in both the age distribution of dengue cases and the periodicity of den-

gue outbreaks [36]. Instead, our results suggest that population ageing may play a relatively

limited role in modifying the effect of a vector control program on dengue incidence. Simi-

larly, we did not find host mobility to have an appreciable impact on vector control effective-

ness despite its important influence on the epidemic variability and the risk of serotype

extinction [17]. In other words, although both population ageing and host mobility play an

important role in influencing dengue transmission, it is likely that the resulting magnitude of

change in the level and pattern of dengue incidence does not strongly depend on whether vec-

tor control is implemented. Hence, neither of the aforementioned factors was found to sub-

stantially modify the intervention impact in our simulations. Furthermore, our study has

shown that the average duration of cross-immunity has a minimal impact on vector control

effectiveness, while the impact of antibody-dependent enhancement was found to be some-

what stronger. Sensitivity analysis should remain an important component of future modelling
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studies to assess the uncertainty in the predicted effectiveness of dengue vector control with

respect to the uncertainty in the strengths of immune interactions.

In the absence of highly effective vector control tools that are currently available to be rolled

out on a large scale to achieve dengue elimination, the results obtained in this study highlight

the need to adopt an integrated approach to achieve a sustained reduction in dengue transmis-

sion. Special considerations are needed to maximize the cost-effectiveness of combined inter-

ventions in each particular context, given that there may be interactions between different

intervention strategies. For example, the effectiveness of the CYD-TDV vaccine was predicted

to become lower when combined with targeted indoor residual spraying due to the reduced

rate of natural infection [37]. Nonetheless, the combination was shown to outperform either

alone in high-transmission settings [37], where it may be still beneficial to consider introduc-

ing a combined intervention program in view of the relatively low vector control effectiveness

based on our model estimates.

Our results need to be interpreted in the light of the following limitations. While we have

selected our predictor variables based on the factors that were previously shown to have a

potentially important influence on dengue transmission [17, 18, 20, 36, 38], we have also made

several simplifying assumptions in our simulations to reduce computational complexity. For

example, we modelled the host population structure using a squared lattice of size 20×20, and

following Lourenço & Recker, each mosquito was only allowed to bite humans present in her

own community or the neighboring communities [17]. Given that the average maximum flight

distance of Ae. aegypti was estimated to be ~333m [27], our lattice was only 2km—3km wide.

Although such a spatially constrained area may not have a substantial impact on our model

results considering the very weak relationship between host mobility and vector control effec-

tiveness estimated by our model, more work will be needed to ascertain the extent to which

enlarging the lattice would change the results. Besides, we assumed temperature to fluctuate

between 25˚C and 31˚C yearly according to a sine function. While the effect of changes in the

annual mean temperature alone can be reproduced by adjusting the average vector-to-host

ratio, which we varied across simulation runs, changing the intra-annual variation in tempera-

ture and accounting for more realistic temperature patterns may cause a modest change in the

critical time point estimate provided the baseline PE9 is held fixed. In addition, we also did not

consider alternative age structures in the warm-up period of the simulations, and hence the

estimated magnitude of interaction between demographic transition and vector control may

not generalize to other settings.

Other simplifying assumptions made in our simulations include treating the overall level of

vector control intensity as a constant throughout the 30-year intervention period in each simu-

lation run. Scenario planning would need to be incorporated in future work, to predict the

change in the incidence of dengue infections due to unforeseen circumstances such as failure

to achieve sustained mosquito suppression. We have also used the relative frequencies of the

four dengue serotypes in Southeast Asia to simulate dengue importation, and the serotype

composition of the imported dengue viruses in other geographical areas can be significantly

different from what we assumed in the model. Nonetheless, we believe the main findings

obtained in this study have important implications for vector control policy planning in most

dengue endemic areas in the world, since the mechanisms underlying (1) the difference

between the short-term and long-term impacts of sustained dengue vector control and (2) the

influence of baseline transmission intensity and heterogeneous biting on intervention effec-

tiveness, as we had discussed earlier, are unlikely to be dependent on the simplifying assump-

tions made in our model. Finally, we may have overestimated the variability in the distribution

of vector control effectiveness due to the highly stochastic outputs from the simulation model.

Hence, our study has mainly focused on the average effect of each predictor variable on the
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predicted intervention effectiveness, which we derived separately under different levels of vec-

tor control intensity.

In conclusion, we used a detailed individual-based model to demonstrate the contrast

between the short-term and long-term impacts of sustained vector control in dengue endemic

settings. The finding that short-term gains from vector control (unless implemented at a very

high level of intensity) are mostly reversed as population immunity wanes may lie behind the

resurgence of dengue in settings such as Singapore where previously successful vector control

created a generation with very little immunity to dengue. Our model has also identified some

of the critical factors that influence the effectiveness of vector control, and how the magnitudes

of their impacts may vary over time under different levels of vector control intensity. These

insights will be useful to inform future model-based studies that seek to predict the impact of

dengue vector control in their local contexts, and have important implications for the design

of intervention strategies to achieve sustained reduction in the global burden of dengue.

Supporting information

S1 Fig. Change in dengue incidence during the 100-year warm-up period under different

levels of dengue transmission intensity. In all the figure panels, the yearly dengue incidence

was found to converge within 20 years.

(TIFF)

S2 Fig. Change in dengue seroprevalence during the 100-year warm-up period under dif-

ferent levels of dengue transmission intensity. The four simulation runs were identical to

those that generated the dengue incidence shown in S1 Fig, and in all the figure panels, dengue

seroprevalence converged within 20 years.

(TIFF)

S3 Fig. Impact of dengue importation on the predicted vector control effectiveness within

each of the following time windows: (A) (0y, 5y], (B) (5y, 10y], (C) (10y, 15y], (D) (15y, 20y],

(E) (20y, 25y], (F) (25y, 30y]. The parameter π referred to the probability of being exposed to

dengue virus from an external source per human per feeding cycle. Each point represents a

single simulation run, and the SHAP value quantified the change in the predicted vector con-

trol effectiveness due to the value of π. Each curve was obtained by fitting a smoothing spline

to the set of data points corresponding to a given overall level of vector control intensity.

(TIFF)

S4 Fig. Impact of population ageing on the predicted vector control effectiveness within

each of the following time windows: (A) (0y, 5y], (B) (5y, 10y], (C) (10y, 15y], (D) (15y, 20y],

(E) (20y, 25y], (F) (25y, 30y]. The parameter Δage referred to the increase in the median age of

the population during the 30-year intervention period. Each point represents a single simula-

tion run, and the SHAP value quantified the change in the predicted vector control effective-

ness due to the value of Δage. Each curve was obtained by fitting a smoothing spline to the set

of data points corresponding to a given overall level of vector control intensity.

(TIFF)

S5 Fig. Impact of host mobility on the predicted vector control effectiveness within each

of the following time windows: (A) (0y, 5y], (B) (5y, 10y], (C) (10y, 15y], (D) (15y, 20y], (E)

(20y, 25y], (F) (25y, 30y]. The parameter ω referred to the probability of biting a human living

in a distant community per mosquito per bite. Each point represents a single simulation run,

and the SHAP value quantified the change in the predicted vector control effectiveness due to

the value of ω. Each curve was obtained by fitting a smoothing spline to the set of data points
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corresponding to a given overall level of vector control intensity.

(TIFF)

S6 Fig. Impact of antibody-dependent enhancement on the predicted vector control effec-

tiveness within each of the following time windows: (A) (0y, 5y], (B) (5y, 10y], (C) (10y,

15y], (D) (15y, 20y], (E) (20y, 25y], (F) (25y, 30y]. The parameter ϕADE quantified both the sus-

ceptibility enhancement and transmissibility enhancement. Each point represents a single sim-

ulation run, and the SHAP value quantified the change in the predicted vector control

effectiveness due to the value of ϕADE. Each curve was obtained by fitting a smoothing spline to

the set of data points corresponding to a given overall level of vector control intensity.

(TIFF)

S7 Fig. Impact of the degree of antibody-dependent enhancement, average duration of

cross-protection, and the degree of spatial variability in vector control intensity on the (A

—C) critical time point, and (D—F) vector control effectiveness across the entire 30-year

intervention period. Each point represents a single simulation run, and the SHAP value quan-

tified the change in the predicted value of the outcome variable due to the value taken by the

predictor variable. Each curve was obtained by fitting a smoothing spline to the set of data

points corresponding to a given overall level of vector control intensity. For (A—C), we

excluded simulations where the overall level of vector control intensity was 0.8 or higher, due

to the high probability that vector control remained effective throughout the 30-year interven-

tion period.

(TIFF)

S8 Fig. Impact of cross-protection on the predicted vector control effectiveness within

each of the following time windows: (A) (0y, 5y], (B) (5y, 10y], (C) (10y, 15y], (D) (15y, 20y],

(E) (20y, 25y], (F) (25y, 30y]. The parameter lC referred to the average duration of cross-pro-

tection (measured in days). Each point represents a single simulation run, and the SHAP value

quantified the change in the predicted vector control effectiveness due to the value of lC. Each

curve was obtained by fitting a smoothing spline to the set of data points corresponding to a

given overall level of vector control intensity.

(TIFF)

S9 Fig. Impact of spatial variability in vector control intensity on the predicted vector con-

trol effectiveness within each of the following time windows: (A) (0y, 5y], (B) (5y, 10y], (C)

(10y, 15y], (D) (15y, 20y], (E) (20y, 25y], (F) (25y, 30y]. The parameter σRM referred to the

standard deviation of the community-level vector control intensity. Each point represents a

single simulation run, and the SHAP value quantified the change in the predicted vector con-

trol effectiveness due to the value of σRM. Each curve was obtained by fitting a smoothing

spline to the set of data points corresponding to a given overall level of vector control intensity.

(TIFF)

S1 Text. Supporting information. Table A: Summary of simulation output under different

spatial distributions of breeding sites prior to the roll-out of the vector control intervention.

(PDF)

S1 Code. Simulation code.
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