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Chimeric antigen receptors (CARs) or bispecific antibodies (bsAbs) redirected T cell
against tumors is one of the most promising immunotherapy approaches. However,
insufficient clinical outcomes are still observed in treatments of both solid and non-solid
tumors. Limited efficacy and poor persistence are two major challenges in redirected T cell
therapies. The immunological synapse (IS) is a vital component during the T cell response,
which largely determines the clinical outcomes of T cell-based therapies. Here, we review
the structural and signaling characteristics of IS formed by natural T cells and redirected T
cells. Furthermore, inspired by the elaborate natural T cell receptor-mediated IS, we
provide potential strategies for higher efficacy and longer persistence of redirected T cells.

Keywords: chimeric antigen receptor, bispecific antibody, immunological synapse, metabolism, T cell-
based immunotherapy
INTRODUCTION

Redirecting T cell toward tumors under the assistance of chimeric antigen receptors (CARs) or
bispecific antibodies (bsAbs) has exhibited unprecedented antitumor capacity in cancer treatments
(1–3). However, the redirected T cells are faced with challenges of limited efficacy and poor
persistence, which lead to a high rate of relapse after treatments for both solid and non-solid tumors,
and severely inhibit the broader application of redirected T cell-based therapy (3–6).

The immunological synapse (IS) acts as a core mechanism of the T cell response, by delivering
activations signals and releasing lytic granules (7–10). The metabolic state of T cell will quickly
adjust to favor the subsequent immune response after its activation (11). Not only T cell receptor
(TCR), but also several structural and signaling molecules are involved in IS formation and stability,
which has been thoroughly explored (7, 12–16), but few investigations focus on IS generated by
CAR and bsAb. The absence of some structural and signaling molecules in CAR/bsAb design might
result in the unstable characteristics of CAR-/bsAb-mediated IS, and further hinder redirected T cell
activation and function. Therefore, generation of a high-quality IS with stable structure and
sustainable signaling could be an ideal way to enhance the efficacy and prolong the persistence of
redirected T cells. Here, we review the structural and signaling characteristics of IS formed by
natural T cells and redirected T cells. Inspired by the advantages exhibited in natural TCR-mediated
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activation, we provide potential strategies for higher efficacy and
longer persistence of redirected T cells by emulating the structure
and signaling of natural TCR-IS.
STRUCTURAL FEATURES IN NATURAL IS

The IS is a stable interface between antigen-presenting cell (APC)
and T cell organized by orchestrated rearrangement of diverse
signaling and structural molecules (8). There are multiple types
of IS. For example, CD4+ T cells connect with APCs and generate
the classical IS, which can stimulate T cell activation (17); CD8+

T cells form the cytolytic IS, which triggers lytic granules
releasing and the destruction of tumor cells (17, 18).

TCR-IS known as a bull’s eye structure, is a three-layered
concentric dynamic structure (Figure 1). It is composed of the
central supramolecular activation cluster (cSMAC), the
peripheral SMAC (pSMAC), and the distal SMAC (dSMAC)
(8). The formation of IS is a complicated and elaborate process.
Taking cytolytic IS as an example, T-cell activation signaling
followed by antigen recognition is amplified by transiently
engaged TCR-CD3 complex, called TCR microclusters (TCR-
MCs) (19). These TCR-MCs contain a diverse range of signaling
proteins, including costimulatory receptors (such as CD28),
downstream signaling proteins, and adhesion molecules (8, 20,
21). Under the assistance of cytoskeleton proteins, TCR-MCs
then translocate toward the center of the cell-cell interface,
forming the cSMAC (8, 22). During TCR-MCs centripetal
movement, the adhesion integrin leukocyte function-associated
antigen 1 (LFA-1) dissociates from TCR-MCs and surrounds the
cSMAC in the form of a peripheral ring, defined as pSMAC (23,
24). The outmost ring of TCR-IS, known as dSMAC, contains
various large and bulky molecules, such as CD43 and CD45 (25,
26). The abundant filamentous actin (F-actin) in pSMAC and
dSMAC is essential for a stable IS and sustained activation
signaling (27, 28). Additionally, the microtubule-organizing
center (MTOC) is reoriented toward the IS, which allows the
relocation of T-cell secretory domain and a polarized
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degranulation of lytic granules (29). Given that the IS
simultaneously undertakes the responsibility for T-cell
activation and cytolytic functionality, the outcome of T cell
response is greatly influenced by the quality of the IS.
STRUCTURAL FEATURES IN CAR-/BSAB-
MEDIATED IS

CARs and bsAbs assist T cells in bypassing the MHC restriction
and simultaneously build bridges (forming immunological
synapses) between T cells and tumor cells. CARs are synthetic
transmembrane receptors that combine an antigen recognition
single-chain fragment variable (scFv) with one or two signal
transduction intracellular domains (Figure 2). Their designs are
exactly based on the principle of conventional TCR signaling.
Sequences from CD3z signaling domain and costimulatory
molecules (such as CD28 or 4-1BB) respectively provide Signal
1 and Signal 2 for T cell activation (30). T-cell redirecting bsAbs
are soluble artificial molecules that can simultaneously target the
CD3ϵ chain of the TCR/CD3 complex and the tumor-associated
antigen (31) (Figure 2). Thus, bsAb-mediated T cell activation is
merely triggered by Signal 1. Several types of bsAbs with various
sizes and formats have been created, including bsAbs with active
Fc domain (32) and bsAbs without Fc domain but have different
connecting modes, such as diabodies (33, 34), bispecific T cell
engagers (BiTEs) (35, 36). The structural diversity of bsAbs can
directly influence their linking efficacy and in vivo half-life, which
will further determine the therapeutic effect of bsAbs (37, 38).
Therefore, CAR- and bsAb-mediated ISs have obvious
distinctions with natural TCR-IS in structural and signaling
features. These characteristics are closely related to the limited
clinical efficacy of redirected T cells.

CAR-Mediated IS
There is a clear structural distinction between CAR-mediated IS
(CAR-IS) and TCR-IS. Although similar to TCR clustering, the
initiation of activation signaling is triggered by engaged CARs
FIGURE 1 | Natural IS formation in cytotoxicity T lymphocyte. After recognition of tumor cell, TCR-CD3 complexes aggregate and form TCR microclusters (TCR-
MCs). TCR-MCs contain various TCR downstream signaling molecules and adhesion molecules. These TCR-MCs move toward the center of the interface between
T cell and its target and form the central supramolecular activation cluster (cSMAC). In this process, adhesion molecule LFA-1 dissociates from TCR-MCs and
remains in the peripheral region of the IS, forming the peripheral SMAC (pSMAC). The outmost ring of immune synapse is distal SMAC (dSMAC).
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(Figure 3A), much fewer molecules are involved in CAR clusters,
which could lead to a spatiotemporal disorder in CAR-IS
formation. For example, due to the lack of LFA-1 participation,
there is no obvious boundary of pSMAC in CAR-IS (15, 39). CAR
clusters are dispersed via a multipolar manner in the center of IS.
Since the LFA-1 directed F-actin remodeling can strengthen the IS
(40), it can be speculated that the stability of CAR-IS without LFA-
1 is very limited. For instance, CAR-IS has a smaller size and faster
formation than TCR-IS. Also, CAR-T cells have a faster
detachment rate from the target cell than natural T cells (15).
The phenomenon above should be a result of the absence of
adhesion molecules in CAR-IS, which might lead to a weak cell-cell
connection and aberrant signal transduction to induce T cell
exhaustion. Additionally, CAR-IS mediated lytic granule secretion
happens before MTOC polarization (41), indicating CAR-T-cell
inadequate cytoskeleton remodeling. In conclusion, the rapid target
cytolysis and poor persistence features of CAR-T cells may result
from the instability of CAR-IS.

BsAb-Mediated IS
As bsAb-mediated T-cell activation through crosslinking TCR-
CD3 complexes, bsAb-mediated IS (bsAb-IS) is quite similar to
TCR-IS. BsAb-IS has a conventional mature IS structure, with an
organized cSMAC and a clear boundary of pSMAC (42) (Figure
3B). It has been reported that an anti-FcRH5/CD3 bispecific
antibody stimulated T cell activation by inducing clustering and
excluding CD45 phosphatase from the synapse displays a similar
mechanism of the TCR/pMHC interaction mediated by TCR
(16). In a phase 3 trail, patients with heavily pretreated B-cell
precursor acute lymphoblastic leukemia received blinatumomab
(an anti-CD19 BiTE) or chemotherapy (43). The median overall
survival of blinatumomab group (7.7 months) was significantly
longer than chemotherapy group (4.0 months), which exhibited the
superior antitumor activity of bsAbs (43). However, the remission
Frontiers in Immunology | www.frontiersin.org 3
rates of blinatumomab within 12 weeks was only 44% (43). After 6-
month treatment with blinatumomab, only 31% patients were event-
free, which might be result from the poor persistence of
blinatumomab-induced T cell response. (43). Considering bsAbs
trigger CD3-induced T cell activation, the absence of Signal 2
during bsAb-mediated T-cell activation might lead to the poor
persistence of bsAb-T cell function.
STRATEGIES FOR OPTIMIZATION OF
REDIRECTED T-CELL THERAPIES

Imitation of Natural IS Morphological
Features
Involvement of Structural Molecules
Structural molecules, such as adhesion molecule LFA-1 and
cytoskeleton proteins are essential for IS stability. The
engagement of LFA-1 facilitates TCR-pMHC interaction and
consolidates the formation of pSMAC. In an LFA-1 engagement
absent situation, T cell sensitivity to antigen had a 100-fold decrease
(44). LFA-1 also intimately interacts with cytoskeleton proteins in
natural TCR-IS (14, 45). F-actin flow drives LFA-1 conformation
change and leads to the formation of the LFA-1 ring (45). Meanwhile,
LFA-1 favors T cell activation via participating in various T-cell
signaling pathways, such as Notch pathway (46) and Erk1/2 signal
pathways (47). The blockade of LFA-1 restrained the killing function
of cytotoxic T cells (48, 49). Therefore, the absence of LFA-1 ring in
CAR-IS could impact IS stability through the prevention of
cytoskeleton protein participation and further hinder CAR-T cell
MTOC polarization (47).

The actin cytoskeletal network helps orchestrate CAR
clustering and plays a vital role in signal transduction. It has
been reported that the utility of actin-polymerization inhibitors
A B C

FIGURE 2 | Structures of signaling transduction triggered by TCR, CAR, and bsAb. (A) In natural T cell, tumor antigen peptide is presented by APC and recognized by
TCR. The associated CD3 molecule in TCR-CD3 complex will provide Signal 1 to T cell. The costimulatory signal (Signal 2) is provided by costimulatory molecules, such
as CD28, 4-1 BB, etc. (B) In CAR-T cell, target antigens are directly recognized by CAR molecule’s scFv. Signal 1 and Signal 2 are provided by CD3z and costimulatory
domain relatively in CAR’s intracellular domain. (C) In bsAb-T cell, bsAbs simultaneously recognize tumor antigen and CD3ϵ chain, and form a bridge between tumor cell
and T cell. Similar to natural T cell, Signal 1 is still provided by TCR-CD3 complex. However, Signal 2 is lack in bsAb-mediated activation.
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prevented CAR clustering (50). Mutated signaling-deficient CARs
with inactivated intracellular domain still could form clusters in
an actin-dependent manner (50). The quantitation of F-actin is
an important factor to evaluate the quality of CAR-IS, which can
be used to predict the effectiveness of CAR-modified immune
cells (51, 52). It has been reported that 4-1BBz CAR-T cells
exhibit a better F-actin accumulation than CD28z CAR-T cells,
which could explain the superior tumor control from 4-1BBz
CAR immunotherapy (52). Therefore, further improvement of
CAR-IS’ structure, such as enhancing the stability of CAR-IS by
involving adhesion molecules or cytoskeleton proteins, maybe a
powerful strategy to strengthen CAR-T cell cytolytic function.

Increase of CARs/bsAbs Clustering
Natural TCR-MCs are crucial in amplifying initial T cell
activation signals. CAR clusters and bsAb-mediated TCR-MCs
Frontiers in Immunology | www.frontiersin.org 4
also influence CAR-/bsAb-T cell activation and antitumor
activity. A study found that green fluorescent protein (GFP)-
binding CAR-T cells only responded to soluble GFP ligands with
the ability of dimerizing CARs, which proved the importance of
CARs dimerization in activation signaling (50). A tandem CAR-T
cell targeting HER2 and IL13Ra2 forms an enhanced bivalent
immune synapse by heterodimerizing its targets, which has a
higher F-actin accumulation at the IS and increased MTOC
polarization, making TanCAR-mediated IS with superior
cytolytic potential (53). CAR’s bivalent interactions are
especially meaningful to low-affinity CARs, which only
triggered specific lysis with dimerization-promoting CD8a
hinge (54). Hence, the hinge domain is an inescapable part of
CAR design to increase CAR clustering. The hinge domain,
usually derived from IgG (55–57), CD28 (58, 59), and CD8a
(58–60), connects the scFv and the transmembrane (TM) domain
A B

FIGURE 3 | The formation of IS mediated by CAR and bsAb. (A) The structure of CAR-IS. The microclusters of CAR are dispersed in a multipolar manner
surrounded by disorganized LFA-1 without a clear boundary of pSMAC. (B) The structure of bsAb-IS. Similar to TCR-IS, BsAb-IS has a conventional mature IS
structure, with organized cSMAC, and a LAF-1 ring and actin accumulation at the periphery.
A B C

FIGURE 4 | A summary of current strategies for obtaining enhanced efficacy and prolonged persistence from redirected T cells. (A) The improvement of IS stability.
(B) The adjustment of IS-mediated signaling. (C) The switch of T-cell metabolism toward memory phenotype.
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in a CAR molecule. One case compared conventionally-used
hinge and TM domains in CAR-T cells, suggesting that CAR’s
clustering and signaling intensity were affected by the hinge
domain (59). And CAR-T cells with CD3z, CD28 or CD8a hinge
but not CD4 hinge would have enhanced signal transduction and
superior in vitro response (59). Mechanically, CD3z, CD28 and
CD8a hinges are cysteine-rich and originally generate dimers on T
cells, while CD4 hinge has amonomer form in physiological state (59,
61–63). Thus, a potential improved approach is to design CARwith a
cysteine-rich hinge such as 4-1BB and OX40 derived domains, which
belong to the tumor necrosis factor receptor superfamily, and are
naturally trimerized and abundant in cysteine (59, 64, 65).

It has been found that antagonistic anti-CD40 antibodies are
able to be converted into potent FcgR-independent agonists by
isotope switching to cystine-rich hIgG2 (66). The unique disulfide
bonding properties in hIgG2 hinge enable CD40 clustering and
activate the NF-kB signaling pathway, suggesting that hinge domain
rich in cystine could also be used to optimize the signaling function
of antibodies (66). Consistent with CAR molecules clustering to
enlarge CAR-T cell functionality, increase of bsAbs-mediated TCR-
MCs by using cystine-rich linker may offer a new direction for
optimizing clinically-used bsAbs.

Emulation of Natural IS Signaling Features
Complement of Full T-Cell Activation Signaling
Natural TCR-IS delivers full activation signaling, while bsAb-T
cells undergo insufficient stimulation in the absence of
costimulatory signaling. Several studies have demonstrated that
adding Signal 2 to bsAb-mediated T cell activation can augment
T-cell antitumor efficacy. One recent study suggested a
TSAxCD28 bispecific antibody could enhance the artificial IS
and significantly improve T-cell antitumor activity when
combined with TSAxCD3 bispecific antibodies (67). Apart
from tumor antigens (TAs), immune checkpoint is another
feasible target for Signal 2 stimulating bsAbs. For example, a
PD-L1/CD28 BiTE can co-activate T cells with a TA/CD3 BiTE
and convert an immunosuppressive signal into a costimulatory
one (68). Besides CD28, 4-1BB has also been utilized to provide
Signal 2 to bsAb-T cells. It has been reported that the TA-4-1BB
ligand fusion protein (TA-4-1BBL) effectively activated T cells
and eradicated the tumor in mouse models under the
combination with CD3-directed bsAbs (69). A second strategy
to complement bsAb-T cells Signal 2 is to lead them to self-
express costimulatory ligands on the T-cell surface. CD19
engager (ENG)-T cells expressing CD80 and 4-1BBL have been
proven superior antitumor activity against leukemia compared
with unmodified CD19 ENG-T cells (70). Lastly, Signal 2
supplied by CAR molecules is also a potential strategy. Both
BiTEs and CARs were introduced into T cells to generate BiTE-
CAR-T cells, which could express CARs and also secrete BiTEs.
BiTE-CAR-T cells received Signal 2 from CAR and probably had
a more TCR-mediated like IS as BiTEs participation, which
simultaneously enhanced BiTE-CAR-T cell function and
effectively eliminated tumors without systemic toxicity (71).

Besides TCR and costimulatory signaling, cytokine signaling is
thought to supply Signal 3 for the full activation of T cells, which
Frontiers in Immunology | www.frontiersin.org 5
has been proved in clinical trials (72, 73). Hence, the introduction
of Signal 3 into CAR design might contribute to optimal CAR-T
cell function. For example, CAR-T cells expressing interleukin-7
and CCL19, which are essential for maintaining T-cell zones in
lymphoid organs, displayed superior antitumor activity and
prolonged survival in mouse model (74). The addition of Janus
kinase/signal transducer and activator of tran-ions (JAK-STAT)
signaling domain into CAR constructs has also demonstrated
superior CAR-T cell in vivo persistence and antitumor effect in
both solid and non-solid models (75). Therefore, complement of T
cell activation signaling should be a feasible strategy to stimulate
optimal T cell activation and enhance redirected T cell
therapeutic efficacy.

Adjustment of T Cell Signaling Strength
Signaling cascades caused by T-cell activation signals
significantly influence T-cell immune response by mobilizing
various downstream molecules and second messengers. These
molecules further drive T-cell differentiation into distinct phenotypes
and regulate T-cell metabolism. Investigations have generally
reported naïve CD4+ T-cell differentiation is determined by the
strength of TCR signaling (76). Strong TCR signaling favors the
generation of Th1 over Th2 cells while weak TCR signaling promotes
Th2 cell differentiation (77–79). Single CD28 stimulation has been
found to promote stable and polyclonal expansion of Treg cells when
TCR signaling is absent (80). Additionally, the strength of TCR
signaling and costimulatory signaling is essential to T-cell activation.
Over strong TCR signaling is inclined to induce T cell anergy or
apoptosis, while weak but continuous TCR signaling plus strong co-
stimulation can support a sustained T cell activation (8). Therefore,
appropriate intensity of T-cell activation signaling is crucial.

Exhaustion is one of the main obstacles for in vivo CAR-T cell
persistence. Hyperactivation is a potential explanation for CAR-
T cell exhaustion. To find optimal signal strength, the intracellular
signal domain of CAR has been widely modified. A CAR design
incorporating CD3ϵ cytoplasmic domain, which recruits the
inhibitory Csk kinase to attenuate TCR signaling, showed
prolonged persistence and enhanced antitumor activity (81). In
costimulatory domain, a study prolonged CAR-T cell persistence
viamutating aGrb2-interacting residue in CD28 intracellular domain
(82). The transcriptional profile of CD28-mutated CAR-T cells
resemble ICOS signaling, exhibiting reduced T-cell exhaustion (82).
CAR’s affinity is also essential to signal strength. CAT CAR-T cells
with a lower affinity than FMC63 CAR-T cells showed enhanced in
vivo antitumor activity and prolonged persistence in clinical trials
(83). Lowering the binding affinity of CD123 CAR-T cells also
exhibited higher specificity in treatment of acute myeloid leukemia,
suggesting further application in avoiding potential on-target, off-
tumor effect (84). Therefore, an optimized strength of TCR signaling
and costimulatory signaling could be an alternative strategy for
enhanced efficacy and prolonged persistence of redirected T
cell therapies.

Reprogramming of T-Cell Metabolism
After activation signaling delivery from IS, T cells rapidly shift
their metabolism to adapt to the massive energy demands for
proliferation and immune functionality (85, 86). Each T cell
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subset has its unique metabolic characteristics (86, 87).
For example, the metabolism of activated effector T cells is
similar to cancer cells, which mainly depends on aerobic
glycolysis to fuel their vigorous bioenergetic needs (11).
However, long-lived memory cells have a relatively low
metabolic need and generate ATP mainly through oxidative
phosphorylation (OXPHOS) and fatty acid oxidation (88, 89).
In addition, memory T cells have more mitochondrial mass
and mitochondrial spare respiratory capacity, which allows
them to swiftly switch to a high aerobic glycolysis mode after
encountering target antigens (90, 91). By analyzing complete
responding patients with chronic lymphocytic leukemia
after CAR-T cell therapy, it revealed that CAR-T cells from these
patients possessed memory-like characteristics and were enriched in
memory-related genes (92). The transcriptomic profiling of anti-
CD19 CAR T cells from patients with large B cell lymphomas
revealed that patients who achieved complete response had three-
fold higher frequencies ofmemory signatures expressing CD8+ T cells
than patients with partial response or progressive disease (93).
Meanwhile, memory T cells yielded optimal anti-tumor effects after
transferring to a heightenedmetabolismmode in vivo (94). Therefore,
CAR-T cell products with higher proportions of central memory T
(Tcm) cells should display longer clinical efficacy and persistence than
other T cell subsets in vivo. By this point, inducing T cell
differentiation toward memory subsets by taking advantage of their
metabolic characteristics should be another potential strategy to
enhance the efficacy and prolong the persistence of redirected T cells.

Reprogramming T cell metabolism to modify T cell
differentiation can be achieved by the regulation of
activation signaling in the IS. Each costimulatory signaling has its
ownmetabolic favor toT cells. For instance,CD28 co-stimulation is
required for T cells to increase their glycolytic rate in response to
activation, inducing naïve T cell differentiation toward effector T
cells (95). CAR-T cells containing 4-1BB signaling domain showed
memory phenotype metabolism tendency with increased
mitochondrial biogenesis and central memory subsets, and had
enhanced in vitro persistence (96). Similarly, supply of 4-1BB
signaling in BiTE-T cells should be also a promising strategy for
reprogramming BiTE-T cell metabolism.

Alternatively, the other candidates for reprogramming T cell
metabolism are metabolic immune checkpoints (87). The
glutaminolysis pathway plays a key role in immune metabolism
reprogramming (97). It has been proven that blockade of both
Frontiers in Immunology | www.frontiersin.org 6
T cell and cancer cell glutamine metabolism by glutamine
antagonism can suppress cancer cell survival but markedly
upregulate T cell oxidative metabolism to a long-lived, highly-
activated phenotype (98). Transient inhibition of Glutaminase
may enhance CAR-T cell function and long-lasting cell survival
in vivo (99). Therefore, reprogramming of T cell metabolism by
directing T cell fate to memory subsets may be a potent strategy
to yield enhanced efficacy and prolonged persistence for
redirected T cell therapies.
CONCLUSION

CAR or bsAb-redirected T-cell therapy has been regarded as the
most promising cancer immunotherapy. However, further
improving the clinical outcomes of redirected T cell therapy is
currently an urgent demand due to its limited efficacy and poor
persistence. Therefore, based on inspiration from IS generated by
natural TCR,we discussed optimized strategies to boost the efficacy
and improve the persistence of redirected T cells, including
improved stability, balanced signaling, and reprogramming
metabolism (Figure 4). By emulating the elaborate and
sophisticated process of natural T cell activation, the therapeutic
potential of redirected T cells can be fully explored. In conclusion,
in-depth understanding of natural T-cell immune recognition,
activation, and function is profound for optimized artificial
receptor design and improved redirected T cell functionality.
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