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Abstract

Background: Tumor mutation burden is an emerging biomarker for immunotherapy. Although several clinical trials
for immunotherapy in lymphoma have been carried out, the mutation burden of various lymphomas is not well
known yet. Thus, the objective of this study was to compare tumor mutation burden of various non-Hodgkin
lymphomas using panel based massively parallel sequencing.

Methods: We conducted 405 gene panel based massively parallel sequencing of 300 non-Hodgkin lymphomas and
investigate the number of SNV/Indel in each lymphoma.

Results: The number of SNV/Indel was higher in mature B-cell lymphoma than in mature T- and NK-cell lymphoma.
(P < 0.001) The number of SNV/Indel in primary mediastinal large B-cell lymphoma and primary diffuse large B-cell
lymphoma of the central nervous system was the highest, which was significantly higher than that in diffuse large
B-cell lymphoma, not otherwise specified (DLBCL NOS).(P = 0.030 and P = 0.008, respectively) The SNV/Indel number
in EBV-positive DLBCL NOS was significantly lower than that in DLBCL NOS. (P = 0.048) Peripheral T-cell lymphoma,
NOS showed no significant difference in the number of SNV/Indel from extranodal NK/T-cell lymphoma, nasal type
(P = 0.942) or angioimmunoblastic T-cell lymphoma (P = 0.739). The number of SNV/Indel in anaplastic large cell
lymphoma, ALK-positive was significantly lower than that in anaplastic large cell lymphoma, ALK-negative (P =
0.049). It was the lowest among all the lymphomas considered.

Conclusion: Various lymphomas have different mutation burdens. Thus, tumor mutation burden can be used as a
promising biomarker for immunotherapy in lymphomas.
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Background
Tumor mutation burden (TMB) is one of the most valu-
able biomarkers for identifying patients who are likely to
respond to immune checkpoint blockade [1–4]. Tumor
cells harboring more mutations have a higher chance of
producing neoantigens that are recognized and targeted
by the host immune system [5–9]. Host immune cells
can be soldiers that kill cancer cells and immune check-
point blockades can upregulate the anti-tumor activity
of host immune cells, such as cytotoxic T-cells [10–12].
TMB is not only a biomarker to predict the response

to immunotherapy, but also has several other meanings.
The number of mutations varies across tumor types. It
can reflect a different mutational signature and tumori-
genesis of each malignancy [1, 13–16]. For example,
cutaneous squamous cell carcinomas have higher TMB,
whereas uterine cervix squamous cell carcinomas have
lower TMB [13]. This difference is due to the fact that
etiologies of these two squamous cell carcinomas are dif-
ferent, i.e., ultraviolet light for skin cancer and human
papillomavirus infection for uterine cervix cancer.
Moreover, the number of mutations can reflect the
progression of neoplasms. In general, if the neoplasm
progresses, mutations are likely to accumulate. This is
not only due to the instability of DNA, but also due to
tumor evolution for evading immune surveillance and
for cancer survival [17–19]. In this respect, comparing
the number of mutations of different tumors and within
the same tumor group can provide interesting informa-
tion about these malignancies.
Immunotherapy has emerged as an important treat-

ment modality not only in carcinomas and melanomas,
but also in lymphoid malignancies [20, 21]. To date,
studies on immunotherapy for lymphoid malignancy
have been mainly been conducted for classic Hodgkin
lymphoma [22–24]. In addition, the effects of immuno-
therapy for a subset of non-Hodgkin lymphomas have
been reported [25, 26]. Although the significance of TMB
in lymphomas is increasing, studies on TMB in
lymphomas are insufficient. Therefore, the objective
of this study was to investigate the number of single
nucleotide variant (SNV) and Indel in 300 various
non-Hodgkin lymphomas using massively parallel se-
quencing with a 405-gene panel.

Methods
Patient selection
Patients diagnosed with lymphoma at Samsung medical
center (Seoul, Korea) were enrolled in the “SMC lymph-
oma registry” with informed consent. From January
2019, next generation sequencing (NGS) was performed
for patients with sufficient tumor sample volumes
encompassing those diagnosed for the first time and
relapsed/refractory patients. The results for 300 non-

Hodgkin lymphoma patients who underwent NGS by
December 2020 were analyzed. Pathologic diagnosis was
made according to the 2016 WHO classification [27] by
two pathologists (JC and YHK).

Panel based massively parallel sequencing
(LymphomaSCAN)
Targeted genetic sequencing was performed using
the LymphomaSCAN panel, including 405 genes
(Supplementary Table 1). The Samsung medical center
operates an NGS platform called XSCAN for various
malignancies (CancerSCAN, BrainTumorSCAN, and
PedSCAN). The gene panel of LymphomaSCAN was con-
structed by adding genes known to be associated with
hematologic malignancies to a common gene panel shared
with other XSCANs for discussions between oncologists
and hematopathologists. Extracted genomic DNA was
sheared using a Covaris S220 (Covaris, Woburn, MA,
USA). Targeted genes were captured using a SureSelect
XT Reagent Kit, HSQ (Agilent Technologies) and a
paired-end sequencing library was constructed using a
barcode. DNA sequencing was performed on a NextSeq
550 Dx sequencer (Illumina, San Diego, CA, USA). The
paired-end reads were aligned to the human reference
genome (hg19) using BWA-MEM v0.7.5, Samtools
v0.1.18, GATK v3.1–1, and Picard v1.93. SNVs were called
using MuTect version 1.1.4, LoFreq version 0.6.1, and
VarDict version 1.06 software with a variant allele fre-
quency ≥ 1% or a number of variant supporting reads >
4. We manually reviewed variants with supporting
reads < 20 using an Integrative Genomics Viewer
browser and filtered out sequencing errors. We identi-
fied small Indels using Pindel version 0.2.5a4 with a
number of variant supporting reads > 9. We further fil-
tered out variants with a minor allele frequency ≥ 1% in
the 1000 Genomes Project database [28], the Exome
Aggregation Consortium database [29], the National
Heart, Lung, and Blood Institute’s Exome Sequencing
Project database [30], the Korean Reference Genome
Database [31], the Korean Variant Archive [32], and an
in-house database of 192 Korean individuals. To meas-
ure the number of mutations consistently, only SNV/
Indel results were used, whereas copy number variation
and fusion results were discarded. To filter out false-
positive results, variants with a variant allele frequency
(VAF) < 5% and total reads < 100 were excluded.

Statistical analysis
We used the SPSS 27 statistical software program (IBM
Corporation) for all statistical analyses. The Mann–
Whitney U test was performed to test the difference
between the TMB for two tumors. Two-tailed P values
< 0.05 were considered statistically significant.
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Results
Patient characteristics
The median age of the 300 patients was 58 years (range,
19–90 years). There were 187 males and 113 females
(male to female ratio: 1.65:1) (Table 1). Among the 300
lymphomas, there were 243 (81.0%) mature B-cell neo-
plasms, 53 (17.6%) mature T- and NK-cell neoplasms,
and 4 (1.3%) precursor lymphoid neoplasms. Among
mature B-cell neoplasms, diffuse large B-cell lymph-
oma, not otherwise specified (DLBCL NOS) was the

most common, with 154 patients, followed by follicular
lymphoma in 29 patients, primary diffuse large B-cell
lymphoma of the central nervous system (CNS DLBCL)
in 17 patients, and mantle cell lymphoma in 11 pa-
tients. Among mature T- and NK-cell neoplasms,
extranodal NK/T-cell lymphoma, nasal type (ENKTL)
was the most common (18 patients), followed by per-
ipheral T-cell lymphoma, not otherwise specified
(PTCL NOS) and angioimmunoblastic T-cell lymph-
oma (AITL) (10 patients each).

Table 1 Clinical characteristics and the number of SNV/Indel by pathologic diagnosis

Diagnosis Number
of
patients

Age M:F Ann-Arbor
stage

Therapeutic status Number of SNV/Indel

median
(range)

I or II III or IV Pre-Tx.
(at diagnosis)

Post-Tx.
(relapsed/
refractory)

Mean Median Range

Mature B-cell neoplasms 243

Diffuse large B-cell lymphoma, NOS 154 61 (26–86) 93:61 71 83 125 29 24.84 23 11–87

Primary diffuse large B-cell lymphoma
of the CNS

17 62 (34–86) 10:7 17 0 16 1 31.53 30 17–51

Primary mediastinal large B-cell
lymphoma

5 36 (25–62) 3:2 1 4 5 0 31.80 32 26–41

EBV-positive diffuse large B-cell
lymphoma, NOS

6 62 (19–90) 4:2 2 4 5 1 17.00 18 5–28

High-grade B-cell lymphoma 6 50.5 (37–63) 5:1 1 5 4 2 20.83 21.5 15–27

Burkitt lymphoma 1 69 0:1 0 1 0 1 22.00 22

Plasmablastic lymphoma 2 58 (52–64) 2:0 1 1 1 1 19.50 19.5 17–22

Follicular lymphoma 29 50 (28–79) 18:11 5 24 27 2 19.62 18 8–35

Mantle cell lymphoma 11 63 (47–80) 8:3 2 9 7 4 19.09 20 11–27

Nodal marginal zone lymphoma 3 59 (58–63) 1:2 2 1 2 1 23.33 16 12–42

Extranodal marginal zone
lymphoma of MALT

4 55.5 (44–68) 2:2 3 1 3 1 19.25 20.5 13–23

Lymphoplasmacytic lymphoma 2 59.5 (53–66) 2:0 0 2 0 2 17.00 17 14–20

Chronic lymphocytic leukemia/Small
lymphocytic lymphoma

3 56 (53–61) 1:2 0 3 3 0 15.33 16 10–20

Mature T- and NK-cell neoplasms 53

Peripheral T-cell lymphoma, NOS 10 48 (25–71) 7:3 3 7 5 5 17.60 18 11–23

Angioimmunoblastaic T-cell
lymphoma

10 66.5 (43–81) 5:5 0 10 7 3 18.70 19.5 10–24

Follicular T-cell lymphoma 2 50 (48–52) 2:0 0 2 1 1 14.00 14 13–15

Nodal peripheral T-cell lymphoma
with TFH phenotype

4 68.5 (64–75) 3:1 0 4 3 1 14.25 14.5 13–15

Extranodal NK/T-cell lymphoma,
nasal type

18 56 (32–79) 11:7 11 7 12 6 17.44 17 9–25

Anaplastaic large cell lymphoms,
ALK-positive

5 35 (20–58) 4:1 1 4 4 1 12.20 14 6–16

Anaplastaic large cell lymphoms,
ALK-neative

4 40 (29–56) 3:1 1 3 4 0 22.25 23 15–28

Precursor lymphoid neoplasms 4

Lymphoblastic leukemia/lymphoma 4 44.5 (34–70) 3:1 1 3 4 0 19.00 19.5 15–22

Total 300 58 (19–90) 187:113 122 178 238 62 22.68 21 5–87

SNV Single nucleotide variant, NOS Not otherwise specified
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Number of SNV/Indel in all cases
When the number of SNV/Indel was counted by dividing
VAF by 1%, VAF between 39 and 52% was higher than
expected (Fig. 1). Therefore, this area was considered a sec-
tion with a high probability of including germline mutations.
Upon excluding VAF < 5% and total read < 100, the average
of the number of SNV/Indel was 22.68 (6804/300). The
average SNV/Indel number was 23.98 in mature B-cell neo-
plasms and 17.21 in mature T- and NK-cell neoplasms, with
a significant (P < 0.001) difference between the two. When
all lymphomas were arranged in the order of median value
of the number of SNV/Indel mutations, primary mediastinal
large B-cell lymphoma (PMLBL) (median: 32) ranked first,
followed by CNS DLBCL (median: 30), DLBCL NOS (me-
dian: 23), and anaplastic large cell lymphoma, ALK-negative
(ALCL, ALK-) (median: 23) (Fig. 2). Lymphomas with the
lowest SNV/Indel numbers were in the order of ALCL,
ALK-positive (ALCL, ALK+) (median: 14), follicular T-cell
lymphoma (median: 14), and nodal peripheral T-cell lymph-
oma with TFH phenotype (PTCL TFH) (median: 14.5). The
number of variants corresponding to the VAF 39–52% sec-
tion did not show significant difference according to the
type of lymphoma (P = 0.529) (Fig. 2B).

Number of SNV/Indel in diffuse large B-cell lymphoma
variants
Regarding types of DLBCL NOS according to Hans’ clas-
sification [33], 93 cases had a post-germinal center B-

cell type (activated B-cell type, ABC type) and 53 cases
had a germinal center B-cell type (GCB type), with no
significant difference in the number of SNV/Indel be-
tween these two types of DLBCL NOS. (P = 0.308)
(Fig. 3A) Compared with DLBCL NOS, PMLBL (P =
0.030) and CNS DLBCL (P = 0.008) had more SNV/Indel
mutations, whereas EBV-positive diffuse large B-cell
lymphoma, not otherwise specified (EBV DLBCL) had
significantly (P = 0.048) less SNV/Indel mutations. Even
after performing Bonferroni correction five time to cor-
rect for multiple testing (P values < 0.01 were considered
statistically significant), the number of SNV/Indels in
CNS DLBCL was significantly higher than that in
DLBCL NOS. High grade B-cell lymphoma (HGBCL)
(P = 0.287), including double-hit lymphoma and triple-
hit lymphoma, and DLBCL NOS admixed with extrano-
dal marginal zone lymphoma of mucosa-associated
lymphoid tissue (MALT lymphoma), showed no signifi-
cant (P = 0.199) difference in SNV/Indel number com-
pared with DLBCL NOS. There was no significant
difference in SNV/Indel number according to the Ann
Arbor stage (Fig. 3B) and therapeutic status (Fig. 3C) of
DLBCL variants.

Number of SNV/Indel in mature B-cell lymphomas other
than DLBCL variants
The results of a comparison of the number of SNV/Indel
of mature B-cell lymphomas other than DLBCL variants

Fig. 1 Number of SNV/Indel according to variant allele frequency in 300 cases. Red bars are the section with variant allele frequency less than 5%.
Green bars are the section estimated to contain lots of germline mutations
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are depicted in Fig. 4A. When follicular lymphoma was
classified as low grade (grade 1–2, n = 19) and high
grade (grade 3A and 3B, n = 10) by histologic grading
[27], the number of SNV/indel of high grade follicular

lymphoma (median: 20) was significantly (P = 0.013)
higher than that of low grade follicular lymphoma
(median: 17). Mantle cell lymphoma, lymphoplasmacytic
lymphoma, chronic lymphocytic leukemia/small lymphocytic

Fig. 2 A Scatter plot of number of SNV/Indel for all cases. The horizontal bar represents the median value. B Bar graph in which the number of
SNV/Indel is arranged in the order of median value. Blue bar represents the total number of SNV/Indel and green bar represents the number of
SNV/Indel corresponding to the germline-containing VAF interval (39.0–51.99%). The classification of lymphomas is indicated by the color of dots
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lymphoma (CLL/SLL), and nodal marginal zone lymphoma
showed no significant differences in the number of
SNV/Indel. Compared with DLBCL NOS, low grade
follicular lymphoma (P < 0.001) and mantle cell
lymphoma (P = 0.026) had significantly less SNV/Indel
numbers whereas high grade follicular lymphoma
showed no significant difference (P = 0.973). There
was no significant difference in SNV/Indel number
according to Ann Arbor stage (Fig. 4B) and thera-
peutic status (Fig. 4C) of mature B-cell lymphomas.
The remaining small B-cell lymphomas were not suit-
able for statistical analysis because of the small num-
ber of cases. However, all of them showed lower
SNV/Indel median values than mantle cell lymphoma.

Number of SNV/Indel in mature T- and NK-cell neoplasms
PTCL NOS showed no significant difference in SNV/
Indel number compared with ENKTL (P = 0.942) or
AITL (P = 0.739) (Fig. 5A). When these three T-cell
lymphomas of T follicular helper (TFH) cell origin were

compared, the median number of SNV/Indel of AITL
was higher than that of follicular T-cell lymphoma (P =
0.133) or PTCL TFH (P = 0.056), although the difference
was not statistically significant. In ALCL, the TMB was
significantly higher in ALK-negative than in ALK-
positive (P = 0.049). PTCL NOS showed a significantly
lower SNV/Indel number than DLBCL NOS (P = 0.008).
There was no significant difference in SNV/Indel num-
ber according to Ann Arbor stage (Fig. 5B) and thera-
peutic status (Fig. 5C) of mature T- and NK-cell
lymphomas. ENKTL tended to show more mutations in
advanced disease (Ann Arbor stage III or IV) or post-
chemotherapy patients (relapsed/refractory), but the dif-
ference was not statistically significant.

Discussion
In this study, we aimed to determine whether there are
differences in the TMB of various non-Hodgkin lymph-
omas across B- and T−/NK-cell lymphomas. Whole
exome sequencing (WES) is the gold standard for

Fig. 3 A Scatter plot showing SNV/Indel numbers of diffuse large B-cell lymphoma (DLBCL) variants. Horizontal bar represents the median value.
The P value above each lymphoma is the result of Mann-Whitney U test in comparison with DLBCL, not otherwise specified (germinal center B-
cell type + activated B-cell type). B Box plot comparing SNV/Indel numbers of DLBCL variants by Ann-Arbor stage. C Box plot comparing SNV/
Indel numbers of DLBCL variants between tumors at diagnosis and relapsed/refractory tumors. DLBCL, diffuse large B-cell lymphoma; CNS, central
nervous system; NOS, not otherwise specified, GCB, germinal center B-cell; ABC, activated B-cell; MALT, mucosa-associated lymphoid tissue, EBV,
Epstein-Barr virus; PMLBL, primary mediastinal large B-cell lymphoma, HGBCL, high-grade B-cell lymphoma
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measuring TMB in cancers. However, because of its high
cost, WES is generally performed for research, not for
diagnosis. Recently, several studies have shown that a
well-designed gene panel can be used to calculate TMB
which is very similar to those of WES [13, 34–37]. The
gene panel used in this study consists of more than 400
genes designed for lymphomas, however, calculated
TMB using them has not been validated through parallel
WES. Rather than classifying TMB-high and TMB-low
groups of lymphomas using precise cutoff value, we tried
to compare the number of genetic mutations of various
non-Hodgkin lymphomas using the same platform, and
were able to make some meaningful discoveries.
Overall, B-cell lymphomas had more mutations than

T-cell lymphomas. This result is consistent with the
existing knowledge that B-lymphocytes have a complex
maturation process, including somatic hypermutation
that T-lymphocytes do not have [38]. Among DLBCL
variants, PMLBL and CNS DLBCL had more mutations
than DLBCL NOS. Of all the lymphomas included in
this study, these two tumors were the only two lymph-
omas with median SNV/indel number ≥ 30. PMLBL is a
distinct subtype of DLBCL variants and is known to have

a gene expression profile that overlaps with the profile
of classic Hodgkin lymphoma [39, 40]. Some studies
have shown that a part of refractory and recurrent
PMLBL responds to pembrolizumab, a programmed
death-1 (PD-1) blocker [26, 41]. This is thought to be
related to the fact that frequent amplification and trans-
location events occur at 9p24.1, in which CD274 (PD-
L1) gene is located, in PMLBL [42, 43]. In addition, the
formation of an immune cell-rich microenvironment,
such as classic Hodgkin lymphoma, is also a necessary
condition for the action of immune checkpoint blockade.
The high TMB observed in PMLBL may also be one of
the reasons why this tumor is eligible for immune check-
point blockade treatment. CNS DLBCL also had a large
number of SNV/Indels, comparable to that of PMLBL.
According to gene expression profiling analysis of CNS
DLBCL, it was not markedly different from systemic
DLBCL [44], although it mainly belongs to the post-
germinal center B-cell type. Although not included in
this study, our NGS results for CNS DLBCL had a
higher 9p21 (including CDKN2A and CDKN2B) loss ra-
tio (13/17, 76.5%) than DLBCL NOS (43/154, 27.9%). In
our cohort, CNS DLBCL was considered to be a group

Fig. 4 A Scatter plot showing SNV/Indel numbers of mature B-cell lymphoma except diffuse large B-cell lymphoma (DLBCL) variants. Horizontal
bar represents the median value. B Box plot comparing SNV/Indel numbers of mature B-cell lymphoma except DLBCL variants by Ann-Arbor
stage. C Box plot comparing SNV/Indel numbers of mature B-cell lymphoma except DLBCL variants between tumors at diagnosis and relapsed/
refractory tumors. MALT, mucosa-associated lymphoid tissue; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; FL, follicular
lymphoma; MALToma, extranodal marginal zone lymphoma of MALT; MCL, mantle cell lymphoma; LPL, lymphoplasmacytic lymphoma; NMZL,
nodal marginal zone lymphoma
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with specific features such as high TMB and 9p21 loss,
whereas it is genetically included in the spectrum of
systemic DLBCL. Owing to the specificity of immune
sanctuary site, further studies are needed to determine
the effect of high TMB of CNS DLBCL on the effective-
ness of immune checkpoint blockades. It has been
reported that CNS DLBCL also shows reactivity to pem-
brolizumab [45]. In contrast, EBV DLBCL showed sig-
nificantly lower TMB than DLBCL NOS. This supports
the hypothesis that EBV infection is a strong driver of
tumorigenesis in B-cell lymphoma. In general, TMB-low
cancers are considered to be less suitable for immuno-
therapy. However, apart from the number of mutations,
EBV infection can generate neoantigens that can be tar-
gets of host immune cells [46]. Therefore, EBV DLBCL
patients should not be excluded from candidates for im-
munotherapy, although they have a low TMB [47].
Mature B-cell lymphomas not included in DLBCL

variants had lower TMB than DLBCL NOS, and the dif-
ference in SNV/Indel number between them was not
significant. The fact that the SNV/Indel number of grade
3 follicular lymphoma was significantly higher than that
of grade 1–2 follicular lymphoma suggests that the
histologic grade of follicular lymphoma might increase
with disease progression. The TMB of high-grade
follicular lymphoma was between that of low grade

follicular lymphoma and DLBCL NOS. Owing to the
ethnic characteristics of our cohort, only three CLL/SLL
patients were included. In addition to CLL/SLL, there
were only a few samples of small B-cell lymphomas in
this study. Therefore, further research using a sufficient
number of cases is needed.
Several interesting findings with regard to the TMB in

mature T-cell lymphomas were observed. There was no
difference in TMB between PTCL NOS and ENKTL.
This is in contrast with the significantly lower TMB of
EBV DLBCL compared with that of DLBCL NOS in B-
cell lymphoma. Although ENKTL is not EBV-positive
PTCL per se, this suggests that the role of EBV infection
in the tumorigenesis of B-cell lymphoma and T−/NK-
cell lymphoma is different [48, 49]. Among those of
PTCLs derived from TFH cell, the TMB of AITL tended
to be higher than that of the other two (follicular T-cell
lymphoma and PTCL TFH), although the difference was
not statistically significant. Considering that follicular T-
cell lymphoma and PTCL TFH have molecular signa-
tures similar to that of AITL [50], this supports the hy-
pothesis that AITL is a more progressed disease than
the other two lymphomas. It is known that ALK-positive
and ALK-negative ALCLs share a common molecular
signature [51], however, the significantly higher TMB of
ALCL ALK- compared with that of ALCL ALK+

Fig. 5 A Scatter plot showing SNV/Indel numbers of mature T- and NK- cell lymphomas. Horizontal bar represents the median value. B Box plot
comparing SNV/Indel numbers of mature T- and NK- cell lymphomas by Ann-Arbor stage. C Box plot comparing SNV/Indel numbers of mature T-
and NK- cell lymphomas between tumors at diagnosis and relapsed/refractory tumors. PTCL, peripheral T-cell lymphoma; NOS, not otherwise
specified; TFH, T follicular helper cell; ALCL, anaplastic large cell lymphoma, ALK, anaplastic lymphoma kinase; ENKTL, extranodal NK/T-cell
lymphoma, nasal type; AITL, angioimmunoblastic T-cell lymphoma; FTCL, follicular T-cell lymphoma
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suggests that ALK gene translocation is a very strong
oncogenic event. In addition, it is consistent with the
fact that ALCL ALK- generally has poorer clinical out-
come than ALCL ALK+, despite their similar histologic
morphology [52].
Interestingly, the number of SNV/Indel was not asso-

ciated with Ann Arbor stage in most lymphomas. In this
study, high-grade lymphoma generally had more muta-
tions than low-grade lymphoma, however, there was no
difference in the number of mutations between ad-
vanced/systemic disease and localized disease in the
same diagnosis. These findings suggest that high- or
low-grade lymphomas develop via separate pathways but
accumulation of mutations is not a major mechanism of
disease progression in most lymphomas. Moreover, a
history of chemotherapy was not associated with an in-
crease in the number of SNV/Indel. Although the diag-
nosis of patients in our cohort varied, most patients with
relapsed/refractory tumors received CHOP-containing
regimen as first-line chemotherapy. Cyclophosphamide
and doxorubicin are agents that damage DNA, but they
did not actually increase the number of mutations in
post-therapeutic lymphoma patients. Further research is
needed to understand these observations.
Our study has several limitations. First, we used panel-

based target sequencing instead of WES. Although tar-
geted sequencing has been widely used as a method for
measuring TMB in various malignancies [34–37], and
more than 400 genes were included in our panel, it has
not been validated for TMB measurement. For this rea-
son, our study did not suggest a cutoff value for classify-
ing TMB-high and TMB-low group lymphomas. Second,
matched normal tissues were not used in the sequencing
process. Therefore, germline mutations were not clearly
filtered out. Third, copy number variation and transloca-
tion results other than SNV/Indel were not included in
our analysis. Finally, our study only analyzed the number
of SNV/Indel, not specific mutant genes. The number of
mutations is determined by a variety of factors, such as
different molecular subtypes or mutational signatures
even in tumors of same histologic diagnosis. Because
these factors may also affect responsiveness to immuno-
therapy, the pattern of mutations should also be consid-
ered in using TMB as a biomarker for immunotherapy.
It is expected that through further studies that comple-
ment the aforementioned limitations, the TMB of
lymphomas can be more accurately analyzed and the
TMB-high group lymphomas eligible for immunother-
apy can be classified.

Conclusion
Different types of lymphomas have different numbers of
mutations. The number of mutations might reflect the
clinical and pathological characteristics of each lymphoma.

In general, the number of mutations in B-cell lymph-
oma is higher than that of T/NK-cell lymphoma, and
the number of mutations in high-grade lymphoma is
higher than that in low-grade lymphoma. TMB is ex-
pected to be a useful biomarker for immunotherapy
of various lymphomas, and our findings suggest that
patients with high grade B-cell lymphoma (PMLBL,
CNS DLBCL etc.) and some T/NK-cell lymphoma
(ALCL, ALK-negative etc.) are most likely to respond
to immunotherapy. Further clinical research is re-
quired to verify whether these results can be applied
in patient treatment.
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