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Aims The dilated cardiomyopathy (DCM) phenotype is the result of combined genetic and acquired triggers. Until now,
clinical decision-making in DCM has mainly been based on ejection fraction (EF) and NYHA classification, not con-
sidering the DCM heterogenicity. The present study aimed to identify patient subgroups by phenotypic clustering
integrating aetiologies, comorbidities, and cardiac function along cardiac transcript levels, to unveil pathophysio-
logical differences between DCM subgroups.

...................................................................................................................................................................................................
Methods
and results

We included 795 consecutive DCM patients from the Maastricht Cardiomyopathy Registry who underwent in-
depth phenotyping, comprising extensive clinical data on aetiology and comorbodities, imaging and endomyocardial
biopsies. Four mutually exclusive and clinically distinct phenogroups (PG) were identified based upon unsupervised
hierarchical clustering of principal components: [PG1] mild systolic dysfunction, [PG2] auto-immune, [PG3] genetic
and arrhythmias, and [PG4] severe systolic dysfunction. RNA-sequencing of cardiac samples (n = 91) revealed a dis-
tinct underlying molecular profile per PG: pro-inflammatory (PG2, auto-immune), pro-fibrotic (PG3; arrhythmia),
and metabolic (PG4, low EF) gene expression. Furthermore, event-free survival differed among the four phe-
nogroups, also when corrected for well-known clinical predictors. Decision tree modelling identified four clinical
parameters (auto-immune disease, EF, atrial fibrillation, and kidney function) by which every DCM patient from
two independent DCM cohorts could be placed in one of the four phenogroups with corresponding outcome
(n = 789; Spain, n = 352 and Italy, n = 437), showing a feasible applicability of the phenogrouping.
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Conclusion The present study identified four different DCM phenogroups associated with significant differences in clinical pres-
entation, underlying molecular profiles and outcome, paving the way for a more personalized treatment approach.
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Introduction

Non-ischaemic, non-valvular, dilated cardiomyopathy (DCM) repre-
sents a heterogeneous group of patients, as it results from a variety
of genetic and acquired triggers.1,2 The heterogeneity makes it diffi-
cult to classify DCM with great precision to guide clinical decision-
making. Until now, clinical decision-making in DCM has mainly been
based on ejection fraction (EF) and NYHA classification,3,4 which
does not recapitulate the complexity of the interactions with comor-
bidities and underlying aetiologies in the development and progres-
sion of DCM.5,6 Therapeutic modalities and outcome may differ
pending on the underlying aetiologies.7,8 Overall, only 40–50% of

DCM patients show left ventricular reverse remodelling (LVRR) after
12–24 months of optimal heart failure therapy.9,10 Classification
which integrates the aetiological heterogeneity with cardiac function
and comorbidities, may better reflect the biological differences be-
tween patients, and may allow guidance for a more targeted ther-
apy.10 In an ideal situation, patients with corresponding
pathophysiology would be classified together, creating more homo-
geneous patient populations.

Phenomapping based upon unsupervised clustering of clinical data
may help to create homogeneous DCM subgroups, called phe-
nogroups.11 Machine learning aids in detecting patterns between vari-
ables which explain the heterogeneity in a dataset.12 The
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..methodology has previously helped to create clinically valid phe-
nogroups in heart failure with preserved and reduced EF.11,13 So far,
studies applying machine learning to create phenogroups in patients
with DCM are missing.

The goal of this study is (i) to identify patterns in clinical data and
cluster patients based on phenotypic similarities; (ii) to study their
underlying molecular profiles and possible pathomechanisms by per-
forming RNA-sequencing on cardiac biopsies of patients from each
phenogroup; and (iii) to create a clinical classifier based on the gener-
ated patients clusters and test its applicability in external DCM
cohorts (Figure 1).

Methods

Study population and clinical information
The DCM diagnosis was defined according to the World Health
Organization criteria and the latest ESC proposal.14,15 Enrolled patients
presented with a left ventricular (LV) EF <50% at baseline echocardio-
graphic evaluation in the absence of any of the following conditions: ob-
struction >50% of a major coronary artery branch [at coronary
angiography (CAG)], pericardial diseases, congenital heart diseases, cor
pulmonale, and active myocarditis. Patients, when not contraindicated,
received guideline-directed medical therapy titrated to the maximal toler-
ated dose as well as device therapy (ICD and CRT-D implantation)
according to the latest ESC guidelines.4 Three European DCM cohorts
were analysed. The study was performed according to the declaration of
Helsinki and approved by all the local Institutional Review Boards. All
patients gave written informed consent.

Index cohort

The index cohort was derived from the prospective Maastricht
Cardiomyopathy Registry of the Maastricht University Medical Center
(MUMC, Maastricht, The Netherlands) between 2012 and 2019. As part
of the diagnostic protocol, all patients received genetic counselling and
DNA testing using a 47 DCM-associated gene panel (Supplementary ma-
terial online, Table S1), and underwent a physical examination, blood sam-
pling, 12-lead electrocardiogram, 24-h Holter monitoring, a complete
echocardiographic and Doppler evaluation, and CAG at baseline. See the
Supplementary material online, Methods for a detailed overview of the in/
exclusion criteria, definitions of non-genetic disease modifiers and per-
formed genetic analysis. Endomyocardial biopsies (EMB) and cardiovascu-
lar magnetic resonance imaging were performed if patient consented and
was able to undergo these procedures. Table 1 demonstrates the pheno-
typic domains covering all of the collected clinical variables.

Application cohorts

The cohort from Italy was derived from the prospective Heart Muscle
Disease Registry of Trieste Registry.16 Patients were enrolled between
2006 and 2019. All patients underwent physical examination, blood sam-
pling, 12-lead electrocardiogram, 24-h ECG Holter monitoring, a com-
plete echocardiographic and Doppler evaluation at baseline and
during structured, systematic follow-up.6 Genetic testing was performed
using a 23 DCM-associated gene panel. In order to exclude
ischaemic heart disease, a CAG was systematically performed in patients
>_35 years, with cardiovascular risk factors and/or without familial history
for DCM.

The cohort from Madrid included DCM patients followed in the
Hospital Puerta de Hierrós Inherited Cardiac Diseases Unit from 2004–

19.17 All patients underwent a physical examination, blood sampling, gen-
etic testing, a 12-lead electrocardiogram, echocardiogram, and systematic
follow-up.

Follow-up
The median follow-up time of the Maastricht cohort was 53 months
(interquartile range 28–98 months), 85 months (interquartile range 34–
145 months) for Madrid and 40 months (interquartile range 13–
77 months) for Trieste. Information about the occurrence of adverse
events at follow-up was retrieved from the hospital medical records, the
Personal Records Database, and/or telephone contact with the patient
or their general practitioners in the three cohorts. We collected informa-
tion regarding the following composite outcome measures: (i) death due
to cardiovascular (CV) disease (heart failure or thrombo-embolic
events), (ii) heart transplantation (Htx), (iii) LV assist device (LVAD) im-
plantation, and (iv) life-threatening arrhythmias (LTA) defined as non-fatal
ventricular fibrillation (with or without ICD shock), and/or sustained ven-
tricular tachycardia treated with appropriate ICD shock. The combined
endpoint is defined as the first occurrence of at least one of the above-
mentioned adverse events: CV-related death, Htx, LVAD implantation,
or an LTA.

Data processing
Figure 1 shows the study aims and design including all data processing
steps, performed statistical analysis and application. The detailed descrip-
tion of these steps and used methods can be found in the Supplementary
material online, Methods. Table 1 includes all 47 clinical parameters which
were measured in the DCM patients, see Supplementary material online,
Table S2 for an overview of the variable selection process. All 47 variables
were used for data imputation using proximity from Random Forest for
mixed-type data. Cardiovascular magnetic resonance parameters were
imputed based on their equivalent echocardiographic parameters
(Supplementary material online, Figure S1). The correlation matrix among
variables is comparable between the imputed and non-imputed data,
depicting high similarity (Supplementary material online, Figure S2).
Fourteen variables with more than 25% missing data in the unimputed
raw data were excluded from further analysis (Supplementary material
online, Figure S3). Only late gadolinium enhancement (LGE) was kept in
the analysis despite 29.8% of missing data, due to the established clinical
importance of this variable.18 Five variables were excluded due to redun-
dancy (Supplementary material online, Methods, Table S2). This left 28 var-
iables for the clustering analysis.

Phenotypic clustering
We used optCluster (v1.3.0) to determine the stability and validity of
various clustering methods to help determine the optimal clustering
method (Supplementary material online, Methods). Phenotypic clusters
were defined based on 28 clinical parameters without high multicollinear-
ity using unsupervised hierarchical clustering of principal components
(HCPC) approach, in which principle components of the clinical data
were obtained with Factor Analysis for Mixed Data (FAMD), ensuring the
balance of the influence between continuous and categorical variables.
The optimal number of clusters was determined based on the gain in
within-inertia (inside group variance) and using the Nbclust package
(Supplementary material online, Figure S4). The over- or underrepresen-
tation of character variables in each cluster were analysed by v-test based
on the hypergeometric distribution. The clustering was performed with
FactoMineR package v1.41 in R. The patient groups identified with the un-
supervised clustering method were used as input for the decision tree
modelling to identify the key parameters able to distinguish the created

164 J.A.J. Verdonschot et al.

https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data


..

..

..

..

..

..

..groups. Meaning that the decision tree modelling creates a classifier which
can be applied on external cohorts, which is based on the unsupervised
clustering. For this, conditional interference tree methods were used, a
recursive binary partitioning with less overfitting and variable selection
problems using the party package v1.3-3 in R. A detailed description of

the used methods can be found in the Supplementary material online,
Methods. The Jaccard similarity index was calculated using the clusteval
package to estimate the robustness between the unsupervised and super-
vised clustering.

Figure 1 Summary of the aims and study design including data processing steps, survival analysis, and application.

....................................................................................................................................................................................................................

Table 1 Phenotype domains and corresponding clinical variables

Phenotypic domain Clinical variables

Demographics Agea, gendera

Disease modifiers Genetic mutation, genetic group,a familial disease,a toxic trigger,a auto-immune disease,a cardiac inflammation,a signifi-

cant viral load,a electrical trigger

Physical characteristics NYHA>_III,a hypertension,a body mass index,a diabetes,a heart rate,a systolic blood pressure,a diastolic blood pressure

Echocardiography LV ejection fraction, LV end-diastolic diameter index, LV end-systolic diameter, left atrial volume index, LV mass index,

E/A ratio, E/e’ ratio, posterior wall thickness, intraventricular septum thickness

Laboratory NT-pro B-type natriuretic peptide,a high-sensitive troponin T, creatinine,a soluble interleukin-2 receptor, neopterin,

cardiac auto-antibodies, c-reactive protein,a aspartate transaminase,a alanine transaminasea

ECG/Holter Atrial fibrillation,a non-sustained ventricular tachycardia,a left bundle branch block,a out of hospital cardiac arrest,a atrio-

ventricular blocka

Cardiovascular magnetic

resonance

LV mass index,a LV end-diastolic volume index,a LV end-systolic volume index, LV stroke volume index, LV ejection

fraction,a late gadolinium enhancementa

Endomyocardial biopsy Collagen volume fraction

LV, left ventricular; NYHA, New York Heart Association classification of severity of Heart Failure.
aClinical variables used in the model-based clustering.

Phenotypic clustering of dilated cardiomyopathy patients 165
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Figure 2 Four mutually exclusive phenogroups as determined by hierarchical clustering of principal component using phenotypical information as
input. The most distinct clinical characteristics are listed per phenogroup. Variables with an asterisk are key parameters to distinguish the phe-
nogroups, as selected by supervised decision tree modelling (A). Characteristic plots of the four proposed phenogroups including their most repre-
sentative clinical variables. The over- or underrepresentation of a variable within a cluster was analysed by v-test within the hierarchical clustering of
principal component function, based on the hypergeometric distribution. A positive value indicates overrepresentation of this variable in the applic-
able phenogroup, a negative value indicates underrepresentation of the corresponding variable (B).
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Table 2 Clinical characteristics stratified by phenogroup

Clinical Characteristic Group 1—mild systolic

dysfunction

Group 2—auto-

immune

Group 3—cardiac

arrhythmias

Group 4—severe

systolic dysfunction

(n 5 331) (n 5 83) (n 5 165) (n 5 216)

Age, year 50.5 ± 13.1 52.5 ± 13.8 57.9 ± 11.5 56.3 ± 11.4

Female, n (%) 150 (45) 49 (59) 20 (12) 77 (36)

Disease modifiers, n (%)

Genetic mutation 45 (14) 9 (11) 94 (57) 27 (13)

TTNtv 14 (4) 6 (7) 43 (26) 9 (4)

LMNA 0 (0) 1 (1) 20 (12) 1 (0)

Other 30 (9) 1 (1) 24 (15) 17 (8)

Multiple 1 (0) 1 (1) 7 (4) 0 (0)

Familial disease 59 (18) 15 (20) 78 (41) 48 (23)

Toxic trigger 31 (9) 7 (8) 9 (5) 36 (17)

Auto-immune disease 7 (2) 57 (69) 2 (1) 3 (1)

Cardiac inflammation 50 (15) 16 (19) 20 (12) 44 (20)

Significant viral load 31 (9) 11 (13) 15 (9) 25 (12)

Electrical trigger 137 (41) 12 (14) 73 (44) 99 (46)

NYHA functional class >_III, n (%) 33 (10) 26 (31) 49 (30) 114 (53)

Hypertension, n (%) 117 (35) 36 (43) 72 (44) 72 (33)

Body mass index, kg/m2 26.8 ± 5.2 24.4 ± 5.1 28.3 ± 4.4 26.4 ± 4.7

Diabetes mellitus, n (%) 22 (7) 14 (17) 21 (13) 29 (13)

Heart rate, b.p.m. 72.3 ± 14.6 80.1 ± 18.1 73.3 ± 16.6 77.7 ± 17.2

Systolic blood pressure, mm Hg 134.6 ± 19.5 136.9 ± 26.3 135.8 ± 19.6 128 ± 19.6

Diastolic blood pressure, mm Hg 78.6 ± 12 79.9 ± 13.7 80.3 ± 12.6 78.4 ± 12.5

Echocardiography

LV ejection fraction, % 37.6 ± 8.6 33.4 ± 10.2 32.7 ± 9.7 21.8 ± 7.2

LV EDD index, mm/m2 29 ± 3.7 30.9 ± 5.3 28.9 ± 3.8 34.7 ± 5.2

LV ESD, mm 45 ± 7.3 46 ± 9.5 49 ± 8.9 60 ± 8.8

LA volume index, mL/m2 39.2 ± 13.8 43.6 ± 16.8 53.2 ± 16.5 50.3 ± 19.1

LV mass index, g/m2 95.4 ± 22.9 108.1 ± 32 107 ± 25 140.2 ± 36

E/A ratio 1.1 ± 0.5 1.1 ± 0.5 1.4 ± 0.9 1.2 ± 0.8

E/e0 ratio 7.5 ± 2.7 11.6 ± 5.2 10.8 ± 5.1 13.1 ± 4.3

Posterior WT, mm 8.6 ± 1.3 9.1 ± 1.8 9.1 ± 1.6 9.4 ± 1.6

Intraventricular ST, mm 8.7 ± 1.5 9.1 ± 2.2 9.6 ± 2 9.2 ± 1.7

Laboratory data

NT-proBNP, pmol/L 16 [7–42] 102 [39–520] 94 [39–230] 60 [19–229]

Hs-Troponin T, ng/L 8 [4–12] 19 [9–48] 18 [10–32] 17 [10–36]

Creatinine, mmol/L 83 [73–94] 113 [87–149] 103 [89–120] 97 [84–113]

sIL-2R elevation, n (%) [488] 39 (19) 38 (60) 17 (20) 40 (29)

Neopterin elevation, n (%) [485] 46 (22) 38 (62) 29 (35) 52 (39)

Cardiac auto-antibodies, n (%) [505]4 (2) 8 (12) 4 (4) 5 (4)

C-reactive protein, mg/L 2 [1–5] 5 [2–11] 2 [1–5] 3 [1–11]

ASAT, U/L 23 [19–28] 24 [19–28] 28 [22–36] 26 [21–33]

ALAT, U/L 24 [19–34] 20 [15–27] 32 [24–42] 27 [19–40]

ECG/Holter, n (%)

Atrial fibrillation 43 (13) 17 (20) 100 (61) 31 (14)

Non-sustained VT 49 (15) 16 (19) 103 (62) 60 (28)

Left bundle branch block 94 (28) 8 (10) 40 (24) 83 (38)

Atrioventricular block 26 (8) 7 (8) 42 (25) 21 (10)

Out of hospital cardiac arrest 12 (4) 2 (2) 24 (15) 13 (6)

Cardiovascular MR (n = 558)

LV mass index, g/m2 62.7 ± 15.4 66.8 ± 24.3 66.4 ± 14.8 94.2 ± 27.4

LV EDV index, mL/m2 110.1 ± 24.6 113.5 ± 31 115.1 ± 28.8 178.1 ± 52.5

Continued
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RNA-sequencing
RNA was isolated from cardiac biopsies from DCM patients and checked
for quality and integrity. The mRNA-sequencing library was generated
using TruSeq mRNA sample preparation kit (Illumina) and sequenced on
the NextSeq 500 (Illumina). Molecular pathway analysis was performed
using gene enrichment in Kyoto Encyclopaedia of Genes and Genomes
(KEGG) pathways. The RNA-sequencing steps and bioinformatical ana-
lysis are described in more detail in the Supplementary material online,
Methods.

Statistical analysis
The link between clinical variables and the created clusters was analysed
by ANOVA for numeric and v2-test for categorical variables. The over-
or underrepresentation of a variable within a cluster was analysed by v-
test within the HCPC function, based on the hypergeometric distribution.
A P-value < 0.05 was considered as statistically significant.

For outcome analyses, we used unadjusted and multivariable-adjusted
Cox proportional hazards models to determine the independent association
between patient groups and outcome, after testing the proportional hazards
assumption. Primary outcome was the combined endpoint of CV death,
Htx, LVAD implantation, and/or an LTA. Covariates included in the adjusted
analysis included variables known to be predictive of outcomes in DCM
such as NT-proBNP, EF, creatinine, heart rate, NYHA class, hypertension,
LGE, atrial fibrillation (AF), age, and gender. Model discrimination (c-statistics
comparison using DeLong test), calibration (likelihood ratio test), and reclas-
sification [(continuous) net reclassification index (NRI), and integrated dis-
crimination index (IDI)] were evaluated for the clinical predictors with and
without phenogrouping. Kaplan–Meier survival curves were estimated, and
differences between groups were assessed by the log-rank test, using time at
diagnosis as time zero. Calculations were done using SPSS version 23.0
(SPSS Inc., Chicago, IL, USA).

Results

Comparison of clinical characteristics
among phenogroups
Figure 1 summarizes the data processing of the clinical variables,
selecting 28 variables as input for the cluster analysis (Table 1,

Supplementary material online, Table S2). Four was the minimal
number of clusters which could accurately reflect the phenotypic
variation in the index cohort (Supplementary material online,
Figure S4). Twenty-seven of the 28 clinical input variables had a
contribution in defining the patient clusters. Only the cardiac viral
load in EMBs did not contribute (Figure 2, Supplementary material
online, Table S2). This led to the identification of four phenogroups
with significant differences in their clinical characteristics (Table 2,
Figure 2).

Phenogroup 1 (PG1; n = 331; 42%) had a moderate reduction in
left ventricular ejection fraction (LVEF; 43% ± 9%) and overall small-
est cardiac dimensions, lower NT-proBNP [16 (7–42) pmol/L] and
NYHA class I and II (90%) compared with the other patients.
Phenogroup 4 (PG4; n = 216; 27%) appears to be the opposite pole
of severity, consisting of patients with a low LVEF (23% ± 8%), and
the largest cardiac dimensions. More than half of the patients in this
subgroup had NYHA III or IV (53%).

Patients in phenogroup 2 (PG2) and 3 (PG3) more reflect the
aetiological diversity, irrespective of cardiac function and clinical pres-
entation. Patients in PG2 (n = 83; 10%) consisted primarily of patients
with an auto-immune disease (69%), females (59%), and chronic kid-
ney disease [creatinine: 113 (87–149) mmol/L]. In contrast, PG3
(n = 165; 21%) consisted mainly of males (88%) with a high preva-
lence of cardiac arrhythmias [mainly AF (61%) and NSVT (62%)],
pathogenic gene variants (57%), and LGE at MRI (59%). Two-third of
the gene variants were pathogenic TTNtv and LMNA variants
(Table 2).

RNA-sequencing of cardiac biopsies to
unravel underlying pathophysiology
To gain better insight into the cardiac pathophysiological differen-
ces between the phenogroups, genome-wide transcriptome ana-
lysis (RNA-sequencing of EMB) was performed in a sub-cohort of
patients with available spare biopsies for RNA-sequencing (n = 91,
distribution phenogroups 1–4 = 21/9/35/26). All phenogroups had
a distinct transcriptomic signature separating them from the other
groups (Figure 3A). PG4 (low EF) had large differences in gene

....................................................................................................................................................................................................................

Table 2 Continued

Clinical Characteristic Group 1—mild systolic

dysfunction

Group 2—auto-

immune

Group 3—cardiac

arrhythmias

Group 4—severe

systolic dysfunction

(n 5 331) (n 5 83) (n 5 165) (n 5 216)

LV ESV index, mL/m2 63.4 ± 21 73.8 ± 31.5 75.1 ± 27.4 138.7 ± 51.6

LV stroke volume index, mL/m2 46.8 ± 11 40.1 ± 11 40.3 ± 12.5 39 ± 12.8

LV ejection fraction, % 42.9 ± 8.8 37.4 ± 12.5 36.1 ± 11.1 22.8 ± 8.2

Late gadolinium enhancement, n (%)41 (17) 33 (52) 68 (59) 42 (29)

Endomyocardial biopsy

Collagen volume fraction, %/area 4.7 [2–7] 6 [3–10] 6 [3–11] 6.2 [3–10]

Categorical variables are presented as counts and percentages; continuous variables are presented as mean ± SD; and right-skewed variables are presented as median (25th–
75th percentile).
ALAT, alanine transaminase; ASAT, aspartate transaminase; EDD, end-diastolic diameter; EDV, end-diastolic volume; ESD, end-systolic diameter; ESV, end-systolic volume.; LA,
left atrial; LMNA, lamin A/C; LV, left ventricular; MR, magnetic resonance; NYHA, New York Heart Association; sIL-2R, soluble interleukin-2 receptor; ST, septum thickness;
TTNtv, truncating titin variants; VT, ventricular tachycardia; WT, wall thickness.
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.expression, as reflected by the number of differentially expressed
genes and strong separation (Figure 3B). Subsequent gene set en-
richment analysis with KEGG terms revealed unique expression of
molecular pathways per phenogroup (Figure 3C, Table 3). Overall,
cardiac metabolism was the strongest differentially expressed bio-
logical pathway in PG4 [reflecting (i) a decrease in fatty acid path-
ways and an increase in pathways involved in glycolytic substrate
usage; and (ii) an increase in purine and pyrimidine metabolism
reflecting DNA replication], PG2 (auto-immune) had a pro-
inflammatory gene profile (NFŒB- and TNF-signalling) and PG3 (ar-
rhythmia) was the most pro-fibrotic (focal adhesion and extracel-
lular matrix remodelling).

Association of phenogroups with
outcome
We tested whether the four different phenogroups were associated
with the combined outcome measure as defined by CV death, Htx,
LVAD implantation or the occurrence of an LTA. PG1 (mrEF) has the
lowest, and PG3 (arrhythmia) the highest risk for an adverse event (1.1
vs. 6.5 events per 100 patient-years; P < 0.001; Figure 4, Table 4). Both
PG2 (auto-immune) and PG4 (low EF) shared a high-risk profile with
4.2 events per 100 patient-years. PG3 (arrhythmia) remained a high-risk
subgroup, even after correction of well-established prognostic factors
(Table 4). The addition of phenogroup information improved the out-
come prediction beyond the clinical predictors (c-statistic 0.63–0.734,

Figure 3 Analysis of RNA-sequencing data of endomyocardial biopsies from dilated cardiomyopathy patients. Principal component analysis (PCA)
of RNA-sequencing data divided on phenogroup (PG). Principal component 1 shows strong division of PG4 and the others (A). Venn diagram of the
number of significant differentially expressed genes in the comparison between two corresponding PG (FDR < 0.01þ fold change >1.5) (B).
Significantly enriched Kyoto Encyclopaedia of Genes and Genomes pathways (P-value < 0.05) in the comparison between the PG (Table 4) (C).
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P = 0.006; likelihood ratio test P < 0.001; IDI 6%, P< 0.001; NRI 20%,
P = 0.026; Supplementary material online, Table S3). Overall, the prog-
nosis of PG2, 3 and 4 were comparable (Figure 4), reflecting the influ-
ence of aetiological fraction (Group 2: auto-immune disease Group 3:
genetics) on prognosis irrespective of cardiac function (Group 4).
Patients classified in PG3 (arrhythmia) had specifically an increased risk
for LTAs compared with the other phenogroups (4.1 events per 100
patient-years; Table 4).

52.5% of the patients showed LVRR after 12 months of guideline-
directed medical therapy (Supplementary material online, Table S4).
Patients in PG4 (low EF) had the highest rate of LVRR (61%) com-
pared with PG1-3 (48%, 49%, and 50%, respectively). Although
patients in PG2-4 had similar or a higher rate of LVRR compared with
PG1 (mrEF), they still had a higher event rate, which could be partly
explained by differences in disease mechanism.

Supervised decision tree modelling to
enhance clinical utility
We applied supervised decision tree modelling with the phe-
nogroups from the clustering as input, to create a classifier consisting

....................................................................................................................................................................................................................

Table 3 Molecular Kyoto Encyclopaedia of Genes and Genomes pathway analysis in RNA-seq data from endomyocar-
dial biopsies of DCM patients stratified per phenogroup

Top enriched KEGG pathways

(functional annotation clustering)

Number of

genesa

P-valueb Top enriched KEGG pathway

(functional annotation chart)

Number of

genesa

P-valueb

Phenogroup 2 vs. Phenogroup 1

NF-kappa B signalling pathway " 12 7.5E-6 NF-kappa B signalling pathway " 12 7.5E-6

RIG-I-like receptor signalling pathway " 7 7.0E-3

Glutathione metabolism " 4 3.4E-2

Phenogroup 3 vs. Phenogroup 1

ECM-receptor interaction " 7 7.9E-2 Focal adhesion " 12 4.3E-3

Focal adhesion " 12 4.3E-3

PI3K-Akt signalling pathway " 10 9.8E-2

Phenogroup 4 vs. Phenogroup 1

DNA replication " 19 1.3E-7 Metabolic pathways " 201 4.1E-4

Dilated cardiomyopathy " 16 1.4E-2

Fatty acid metabolism # 7 1.8E-1

Phenogroup 2 vs. phenogroup 3

RIG-I-like receptor signalling pathway " 5 2.1E-2 TNF-signalling pathway " 17 5.0E-7

T-cell receptor signalling " 8 3.9E-2

B-cell receptor signalling " 5 7.0E-2

Phenogroup 4 vs. phenogroup 2

cGMP-PKG signalling pathway " 29 5.3E-3 Metabolic pathways " 188 5.2E-3

DNA replication " 10 3.7E-2

Dilated cardiomyopathy " 15 6.7E-2

Phenogroup 4 vs. phenogroup 3

DNA replication " 16 9.2E-5 Metabolic pathways " 200 5.3E-2

PI3K-Akt signalling pathway " 11 4.6E-2

Focal adhesion # 15 6.5E-2

The arrow indicates the direction of the pathway (up- or down-regulation) in the cardiac RNA-sequencing data from the underlined phenogroup compared with the phe-
nogroup in direct comparison.
KEGG, Kyoto Encyclopaedia of Genes and Genomes.
aNumber of significant differentially expressed genes between datasets which are represented in the specific pathway.
bA P-value < 0.05 indicates a significant enrichment of the corresponding pathway in the comparison.

Figure 4 Event-free survival stratified by phenogroup. Kaplan–
Meier curves for the combined outcome of life-threatening arrhyth-
mias, cardiovascular death, heart transplantation, or left ventricular
assist device implantation stratified by phenogroup.
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of only a few clinical variables which can still place a patient in their
corresponding phenogroup. A low number of variables in such classi-
fier will increase the likelihood that it can be applied in other DCM
patient cohorts, instead of the extensive dataset which was needed
to identify the phenogroups. The presence of an auto-immune dis-
ease, LVEF, AF, and creatinine were selected as the most important
variables characteristic for these phenogroups with a combined ac-
curacy of 71% (Figure 5, Supplementary material online, Figure S5,
Table S5). However, placing patients in PG2 (auto-immune) had an
accuracy of 95%, mostly by the presence of an auto-immune disease
(Supplementary material online, Table S5). The decision tree has the
most difficulty in recognizing patients from PG3 (arrhythmia), mainly
due to the placement is completely independent of LVEF (nodes 5
and 9 in Supplementary material online, Figure S5; accuracy of 80%
Supplementary material online, Table S5).

Application of the phenomapping
analysis
To test the clinical utility of the supervised model, we applied the
classifier derived from the clustering method on an external, inde-
pendent DCM cohort gathered from a Spanish and Italian registry
(Supplementary material online, Table S6). The decision tree was
able to successfully match every patient in one of the four phe-
nogroups (Supplementary material online, Table S6). The phe-
nogroups were associated with event-free survival in the
application cohort, resembling the overall outcome in the index
registry (P < 0.001; Figures 4 and 6; Supplementary material online,
Figure S6): PG1 (mrEF) was associated with the lowest event rate,
PG3 (arrhythmia) had the worst outcome, and PG2 (auto-im-
mune) and PG4 (low EF) were the intermediate-risk groups. The
application shows the feasibility of clinical utility and validity of the
created phenogroups.

Discussion

We identified four distinct phenogroups with unique clinical charac-
teristics, reflecting the integration of cardiac function, comorbidities,
and underlying aetiology. Each phenogroup had a distinct cardiac
transcriptomic profile, which could pave the way to a more targeted
and personalized treatment approach (Take home figure).

Identified phenogroups in a
heterogeneous dilated cardiomyopathy
dataset
The four mutually exclusive phenogroups integrated a broad range of
clinical variables: (i) younger patients with mild systolic dysfunction,
small cardiac dimensions, and relatively few symptoms; (ii) young
females with a clinical history of auto-immune disease with cardiac
and renal involvement; (iii) males with a genetic mutation and preva-
lent ventricular and supraventricular arrhythmias; and (iv) patients
with severe systolic dysfunction, large cardiac dimensions, moderate
diastolic dysfunction, and pronounced symptoms. All phenogroups
had a distinct cardiac transcriptomic signature, characterizing differ-
ences in underlying molecular pathology. This confirms that the gen-
erated phenogroups are more homogeneous patient subgroups who
could share a common pathophysiology compared with patients in
other phenogroups. Supervised decision tree modelling identified
four parameters that are sufficient to adequately cluster patients in
these subgroups: EF (PG1 and 4), auto-immune disease and creatin-
ine (PG2), and AF (PG3). We could successfully apply this decision
tree on an external application cohort placing every patient in one
the four phenogroups.

Clinical validity of created phenogroups
The present study puts forward an approach of DCM patient classifi-
cation based on the integration of extensive, but well-accessible

....................................................................................................................................................................................................................

Table 4 Association of phenogroups with adverse outcomes on cox proportional hazards analysis

Group 1—mild

systolic dysfunction

Group 2—auto-

immune disease

Group 3—cardiac

arrhythmias

Group 4—severe

systolic dysfunction

P-value

(n 5 331) (n 5 83) (n 5 165) (n 5 216)

Outcome, n (events/100 patient-years)

Life-threatening arrhythmias 13 (0.7) 9 (2.1) 35 (4.1) 20 (1.9) <0.001

CV Death/Htx/LVAD 6 (0.3) 14 (2.9) 28 (2.8) 26 (2.4) <0.001

Combined Endpoint 19 (1.1) 19 (4.2) 54 (6.5) 42 (4.2) <0.001

Unadjusted HR (95% CI)

Life-threatening arrhythmias 1.0 2.9 (1.2–6.7)* 5.5 (2.9–10.4)‡ 2.4 (1.2–4.9)* . . .

CV Death/Htx/LVAD 1.0 9.0 (3.4–23.3)‡ 8.7 (3.6–21)‡ 7.4 (3.1–18.1)‡ . . .

Combined Endpoint 1.0 4.0 (2.1–7.5)‡ 6.0 (3.6–10.1)‡ 3.9 (2.3–6.7)‡ . . .

Adjusted HR (95% CI)

Life-threatening arrhythmias 1.0 1.8 (0.5–5.6) 5.3 (2.1–13.5)‡ 1.1 (0.7–6.4) . . .

CV Death/Htx/LVAD 1.0 7.5 (1.4–39.3)* 9.2 (1.9–44.7)† 4.9 (0.9–27.6) . . .

Combined Endpoint 1.0 2.3 (0.9–5.7) 5.1 (2.3–11.2)‡ 2.6 (1.1–6.2)* . . .

Adjusted analysis include the phenogroups þ NT-proBNP þ age þ gender þ ejection fraction þ creatinine þ heart rate þ NYHA class þ hypertension þ late gadolinium en-
hancement þ atrial fibrillation.
CI, confidence interval; CV, cardiovascular; HR, hazard ratio; Htx, heart transplantation; LVAD, left ventricular assist device.
*P < 0.05; †P < 0.01; ‡P < 0.001.
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. diagnostic tools. A recent post-hoc analysis of the POSEIDON-DCM
trial revealed a genetic aetiology in a large percentage of non-res-
ponders.19 This illustrates the heterogenicity of DCM and the diffi-
culty to recognize all clinical variables influencing the clinical course
of a patient. The variety of underlying disease mechanisms in DCM
could be an important reason for the variation in treatment efficacy
in clinical trials.1,19 The identification of valid DCM patient subgroups
with distinct underlying molecular profiles may therefore help to bet-
ter guide future DCM clinical trials.

PG1 (mrEF) and PG4 (low EF) represent two opposites of DCM
severity, which is mainly reflected in their LVEF. PG4 (low EF) had a
distinct transcriptomic profile, reflecting a cardiac metabolic shift
away from fatty acid metabolism towards glycolytic substrate usage,
which is characteristic for an increasing heart failure severity as the
heart has to metabolically adapt to the increased cardiac energy de-
mand.20,21 Furthermore, purine and pyrimidine metabolism was
increased, which was in line with the increased DNA replication path-
ways, which is also a hallmark of heart failure. PG2 (auto-immune)
and PG3 (arrhythmia) are distinct disease subgroups independent of
LVEF. Cardiac involvement in patients with an auto-immune disease
(PG2) was associated with a high-risk profile (PG2). As one would
expect, pro-inflammatory pathways predominated in the auto-
immune PG2, and this PG could therefore benefit from additional

Figure 5 A simplified adaptation of the decision tree model shows the clinical parameters which are the core of the phenogroups. The black box
indicates that the model cannot accurately place the patient in one of the four phenogroups (see Supplementary material online, Figure S5 for exact
accuracy).

Figure 6 Event-free survival stratified by phenogroup as deter-
mined by the supervised decision tree model. Kaplan–Meier curves
for the combined outcome of life-threatening arrhythmias, cardio-
vascular death, heart transplantation, or left ventricular assist device
implantation stratified by phenogroup in the application cohort
(Madrid and Trieste).

172 J.A.J. Verdonschot et al.

https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehaa841#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
immunomodulatory therapy as suggested in the position statement
of the ESC.22

Patients in PG3 are characterized by cardiac arrhythmias, patho-
genic gene variants, and increased cardiac fibrosis. Patients in PG3
had the highest risk profile, with a five times higher risk for LTAs
compared with DCM patients in PG1 even after adjustment for
well-known clinical predictors such as LVEF and LGE. The close
interaction between arrhythmias, fibrosis, and gene variants cre-
ated difficulties for the decision tree to pick one variable that could
place patients in PG3. Expanding genotype-phenotype knowledge
(i.e. unveiling the association and disease expression of specific
gene variants with AF) could be valuable input to finetune PG3 and
enhance the decision tree accuracy. Finding the gene variant which
causes the electrical disturbance may help to provide more tar-
geted therapy in otherwise heart failure (HF)-therapy resistant
patients in the future. This is exemplified in DCM patients with a
pathogenic lamin A/C (LMNA) variant, in which hyperactivation of
the p38a signalling pathway plays a central pathophysiological

role.23 ARRY-797, an oral, selective p38 inhibitor is currently
under investigation in DCM patients with an LMNA variant in a
randomized, double-blind, placebo-controlled phase 3 trial
(NCT03439514). It is not unexpected that this PG had the highest
prevalence of LMNA and TTN variants along with NSVTs, both
known risk factors for LTA.5,24 This could indicate that patients in
this specific phenogroup could benefit the most from prophylactic
ICD therapy before advanced LV dysfunction as is currently only
implemented in the guidelines for LMNA, shedding new light on the
outcome of the DANISH trial.4,25

Future directions of dilated
cardiomyopathy patient care
The main aim of this study was to find patterns in clinical data which
represent patient groups who share a similar pathophysiology. This
finding precedes potential therapeutic implications which deserve
further investigation: (i) response to currently used HF medication
per PG and (ii) targeted therapy aimed at the underlying

Take home figure This study identified four phenotypic clusters based on patterns in clinical data which had a unique underlying molecular
profile identified by RNA-sequencing on cardiac biopsies of patients from each phenogroup. A classifier derived from the initial clustering could be
succesfully applied on an external cohort placing every DCM patient in a specific phenogroup.
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..pathomechanism of the specific PG. In-depth analysis of transcrip-
tomic data per phenogroup and additional functional studies are next
steps to elucidate specific molecular targets for treatment.

Although we focused on clinical utility, the effect on clinical
decision-making remains elusive. We acknowledge that the current
approach is a major departure from the classical studies, but it is a
first attempt to a more personalized approach of the DCM patient in
everyday clinical practice. Application of patient clustering as a tool
to guide clinical decision-making should be further explored in pro-
spective studies. Besides a refined DCM clustering and ensuing tar-
geted therapies, an additional goal would be the development of a
comprehensive DCM risk score for sudden cardiac death and LTA,
as already available for hypertrophic cardiomyopathy.26

Limitations and perspectives
In this study, we chose for an unsupervised approach with hierarchic-
al k-means clustering of principal components to look in an unbiased
way for underlying clinical patterns. The HCPC method allows us to
use principal components instead of individual variables and maximize
robustness by an additional k-means consolidation step, which can be
used for FAMD. This is a different strategy from model-based cluster-
ing methods, which are semi-supervised and more appropriate to im-
prove prognostic assessment. The analysis of the registries is of a
retrospective nature, although patients are included prospectively.
The results and clinical implications of this study need therefore to be
validated in a prospective manner, not only for predicting outcome,
but also for its more value in predicting the response to existing or
novel HF therapies.

The definition of systemic immune-mediated diseases (based on
the recent position statement of the ESC22) includes a broad spec-
trum of immune-mediated diseases with diverse implication in cardiac
disease development. Larger registries studying this specific immune-
mediated subset of DCM patients are needed to be able to look at
the specific immune-mediated diseases and their impact on long-
term outcome.

Conclusions

The present study identified four different DCM phenogroups associ-
ated with significant differences in clinical presentation, underlying
molecular profiles and outcome, paving the way for a more personal-
ized treatment approach.
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