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Magnetic and structural properties 
of glass-coated Heusler-type 
microwires exhibiting martensitic 
transformation
A. Zhukov   1,2,3, M. Ipatov1,2, J. J. del Val1, V. Zhukova1,2 & V. A. Chernenko3,4,5

We have studied magnetic and structural properties of the Heusler-type Ni-Mn-Ga glass-coated 
microwires prepared by Tailor-Ulitovsky technique. As-prepared sample presents magnetoresistance 
effect and considerable dependence of magnetization curves (particularly magnetization values) 
on magnetic field attributed to the magnetic and atomic disorder. Annealing strongly affects the 
temperature dependence of magnetization and Curie temperature of microwires. After annealing of 
the microwires at 973 K, the Curie temperature was enhanced to about 280 K which is beneficial for the 
magnetic solid state refrigeration. The observed hysteretic anomalies on the temperature dependences 
of resistance and magnetization in the as-prepared and annealed samples are produced by the 
martensitic transformation. The magnetoresistance and magnetocaloric effects have been investigated 
to illustrate a potential technological capability of studied microwires.

Stoichiometric and non-stoichiometric X2YZ (X and Y are transition metals and Z is the main group element) 
Heusler alloys exhibiting first order martensitic transformation (MT) have gained growing attention due to a 
number of versatile properties promising for applications. They show the related-to-MT prototypical magnetic 
shape-memory (MSM) effect, a remarkable magnetocaloric effect (MCE), large manetoresistance (MR) influ-
enced by the strong magnetoelastic coupling and concurrent ferro - antiferromagnetic interactions1–3.

The most important applied aspect of MSM materials is the magnetic solid state cooling presenting potentially 
better energy efficiency than the conventional refrigeration techniques. One of the ways to improve an efficiency 
of a refrigeration machine is an increase of the surface-to-volume ratio of working material needed to enhance the 
heat exchange rate. Therefore, the development of low-dimensional Heusler alloys (e.g., thin films or thin wires) 
presenting MCE effect is highly desirable1,4–9.

Heusler compounds, including Ni-Mn-Ga alloys, are brittle. This prevents their preparation in a low dimen-
sional form by the conventional metallurgical techniques1. Consequently, a considerable attention is continuously 
paid to the development of novel fabrication methods of Heusler alloys in the form of thin films or wires5–9.

Particularly, a Taylor-Ulitovsky technique was adopted for a fabrication of the quasi-unidimensional 
Ni-Mn-In, Ni-Mn-In-Co and Ni-Mn-Ga MSM Heuslers in the form of a metallic microwire covered by a flexible 
glass coating5–7. This technique involves a rapid quenching from the melt. The thin glass-coated microwire has a 
(nano-)microcrystalline structure4–7,10–12. Typical diameters of the metallic nucleus in such microwires are rang-
ing between 1 and 40 μm, the thickness of flexible and insulating glass-coating is between 0.5 μm and 20 μm. The 
length of wire can be up to 10 km which means good mechanical properties of the product.

Alongside disordered structure, one of the main problems of the glass-coated microwires is the appearance 
of large internal stresses ranging from 100 to 1000 MPa, resulting from the rapid simultaneous solidification of 
metallic nucleus with glass-coating having essentially different thermal expansion coefficients. These internal 
stresses are distributed in a complicated manner within the microwires5–7,10–12. These stresses and disordered crys-
talline structure can impede the martensitic transition. Whereas in much thicker Heusler wires without coating it 
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was not big issue to activate MT (see13,14 and references therein), we had encountered difficulties to get MT in our 
recent reports on the ultrathin glass-coated Heusler wires5–7,10. It is worth noting that the thick wires do not pro-
vide good enough mechanical properties and enhanced flexibility needed for a broad range of applications15–17, 
as thin and long glass-coated wires do.

Thus, the proper recrystallization process and stress relaxation, alongside the alloy composition, are needed to 
enable observation of MT in thin microwires. In the present paper we report our latest results on the preparation, 
processing and full characterization of MSM Ni-Mn-Ga microwires. The results show that microwires exhibit 
MT and relevant magnetic properties ensuring the advanced actuation and caloric properties of these materials.

Results and Discussion
Magnetization and transformation behaviours.  As-prepared microwires exhibit quite a weak mag-
netism in whole temperature range. Temperature dependence of magnetic moment, M(T), in Fig. 1a shows a 
non-monotonic decrease during heating due to the approach to fully paramagnetic state and a small and nar-
row hysteretic anomaly between field cooling (FC) and field heating (FH) curves at different magnetic fields, H. 
This small hysteretic anomaly on M(T) dependence in the temperature interval of 100–120 K is observed at all 
H-values and can be attributed to the presence of martensitic transformation in the wires. Since the difference in 
the magnetization between martensite and austenite is small, no visible shift of MT temperature under H is found.

The M(T) dependences in Fig. 1a reflect a nonuniform magnetic character of the as-received wire produced by 
the atomic disorder and magnetic clustering. Despite the smeared shape of M(T) curves, the Curie temperature of 
as-received sample, TC(as-rec), can be located at about 165 K at 50 Oe or so. A strong influence of magnetic field on 
TC(as-rec) and on the absolute M-values is typical for the non-uniform magnetic systems containing ferromagnetic 
clusters in paramagnetic matrix (see, e.g.18,). Such systems show also signs of superparamagnetism as it follows 
from a comparison of M(H) curves obtained for as-received Ni-Mn-Ga/MgO thin films19 and curves in Fig. 1b. 
In both cases M(H) curves do not show both the saturation and coercive force.

Temperature dependence of resistance, R(T), in Fig. 2 shows the typical for Ni-Mn-Ga alloys hysteretic anomaly 
and kink as the unequivocal signatures of MT and Curie point of the cubic austenite, respectively8. Whereas M(T) 
and M(H) curves in Fig. 1 reflect the magnetic states in the wire, R(T) behavior in Fig. 2 is mainly affected by a struc-
tural condition of the austenitic matrix. As already mentioned, the magnetic characteristics of as-received wire are 

Figure 1.  Temperature dependence of magnetic moment measured for as-prepared Ni-Mn-Ga microwire (a) 
and hysteresis loops measured at different temperatures (b).
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presumably governed by an ensemble of ferromagnetic clusters which is very sensitive to the external magnetic field 
and much less susceptible in our case to MT of the matrix. In fact, the latter point is a reason of the very small, about 
25 K, transformation range manifested through M(T) curves, in contrast to the total width of MT interval in R(T) 
curve, equal to about 80 K. During cooling both R(T) and M(T) shows start of MT at about 120 K and within 10 K 
a significant amount of martensitc phase is formed. The reverse MT is usually more smeared than the forward one. 
On heating R(T) dependence shows the start of reverse MT at about 60 K, while M(T) exhibits change only in the 
range between 95 K and 105 K, where the steep part of heating part of R(T) anomaly occurs. Thus, the temperature 
corresponding the middle point of cooling part of the anomaly on R(T) curve, equal to 100 K, can be taken as the 
characteristic MT temperature, TM(as-rec), for as-received wire. At the same time, both R(T) and M(T) curve shows 
similar value of Curie temperature of the cubic austenite,TC(as-rec), close to about 165 K.

Annealing of the samples resulted in a drastic change of magnetic properties and MT behavior. Particularly, 
a ferromagnetic ordering with Curie temperature, TC, near room temperature is observed (see Fig. 3). While 
annealing shifted TC to high temperatures by about 100 K, the MT temperature was increased by about 60 K (cf. 
Figs 1a and 3a). The temperature dependencies in Fig. 3a show clearly that Ni-Mn-Ga microwire during cooling 
exhibits, first, a ferromagnetic ordering of austenite at TC and then martensitic transformation at TM (see also 
refs20–23). The MT in Ni-Mn-Ga Heusler alloys is a displacive phase transformation from a high symmetry cubic 
austenite to a low symmetry martensite accompanied by temperature hysteresis due to its first-order nature. 
Thus, the hysteresis observed between heating and cooling M(T) curves (Fig. 3a) is an unequivocal signature the 
first-order martensitic phase transition in microwires. Due to the hysteresis, the temperature dependence of the 
volume fraction for each of the two phases could be different for the heating and cooling ramps.

The transitions temperatures TC and TM are basically predetermined mainly by the chemical composition of 
Ni-Mn-Ga alloy also characterized by the valence electron concentration per atom, e/a22,24,25. For Ni59.2Mn12.2Ga28.6 
alloy with e/a = 7.63, TC > TM should be held, that is in an agreement with observed in Figs 1a and 3a anomalies 
sequence on the M(T) dependences20–22.

Figure 3b depicts magnetic hysteresis loops for annealed sample measured at different temperatures representing 
different magnetization process in the paramagnetic austenite (T = 340 K), ferromagnetic austenite (T = 260 K) and 
ferromagnetic martensite (T < 180 K). These magnetic states became well distinguished owing to the mechanism of the 
thermally induced increment of atomic order giving rise to more homogeneous magnetic state of the austenitic matrix. 
The TC values observed in Figs 1a and 3a are still smaller than the value corresponding to e/a ≈ 7.63 in the phase dia-
gram in ref.22, equal to about 370 K. This fact can be accounted by for the essentially reduced amount of the Mn atoms 
per unit cell which are main carriers of the localized magnetic moments in the NiMn-based Heusler alloys.

The R(T) dependence for annealed wire depicted in Fig. 4 confirms the value of Curie temperature, TC = 280 K, 
determined from M(T) curve (Fig. 3a), but does not show anomaly in the temperature range where MT is 
expected to occur based on the data of Fig. 3a, i.e., at 160 K. Instead, a curve deflection at the temperature TI, 
where the upward change of the curvature occurs, is observed. This temperature can be attributed to the trans-
formation temperature into intermediate phase which is typically observed in the bulk Ni-Mn-Ga alloys (see, 
e.g.26,). It should be mentioned that disappearance of R(T) anomaly at MT is typical for the bulk polycrystalline 
low-temperature Ni-Mn-Ga alloys with similar e/a values (see ref.22).

Thus, the aforementioned transformation behaviors of the Ni-Mn-Ga microwires, observed in this work 
by M(T) and R(T) measurements, have been understood by comparing with similar results for the bulk alloys 
well-known from the literature.

It is worth noting that the temperature dependence of resistivity in Ni-Mn-Ga alloys is considerably affected 
by the valence electron concentration per atom, e/a22. Similar decreasing of dR/dT above Tc is reported for bulk 
Ni-Mn-Ga alloys with TM < TC (e/a < 7.7) and discussed in terms of a difference in the magnetic scattering of 
electrons above and below TC

22.
A considerable effect of annealing on the M(T) dependencies, leading to a homogenization of the magnetic 

state in the wire, must be attributed to the improvement of the atomic and crystallographic order and internal 
stresses relaxation. As mentioned above, one of the main peculiarities of the glass-coated microwires is the fabri-
cation method involving simultaneous rapid solidification from the melt of metallic alloy and glass-coating with 
quite different thermal expansion coefficients11,12,27. Similarly to the studied Ni-Mn-Ga microwires, a restoring 

Figure 2.  Temperature dependence of resistance, R, for as-prepared Ni-Mn-Ga microwire measured at zero field.
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of a ferromagnetic state has been reported after annealing of Ni-Mn-Ga thin films presenting the paramagnetic 
behavior in a wide temperature range in as-prepared state8.

Magnetoresistance.  The magnetic field dependences of electrical resistance, R(H), were recorded and then 
magnetoresistance, ΔR/R, was evaluated. As can be appreciated from Fig. 5, as-prepared Ni-Mn-Ga microw-
ire demonstrates a magnetoresistance effect (MR) at low temperatures (5, 20 and 100 K), whereas no MR was 
observed in a non-magnetic phase at 300 K.

Figure 3.  Temperature dependence of magnetic moment (a) and hysteresis loops (b) measured for the 
NiMnGa glass-coated microwires annealed at 973 K for 1 h.

Figure 4.  Temperature dependence of resistance for annealed at 973 K for 1 h Ni-Mn-Ga microwires measured 
at H = 0.
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The decrease of resistivity with magnetic field is typical for a giant magnetoresistance (GMR) effect. The ori-
gin of the GMR effect is commonly attributed to the spin-dependent scattering of the conduction electrons at 
the interfaces between single domain nanograins and nonmagnetic matrix as well as within the magnetic gran-
ules28–31. On the other hand, the magnetically inhomogeneous materials can also present a considerable MR 
effect. MR effect was reported in materials consisting of magnetic clusters within a non-magnetic matrix32 or 
precipitates formed by a spinodal decomposition33.

In classical materials showing GMR effect (either multilayers or granular alloys), MR can be saturated under 
a sufficiently large magnetic field when ferromagnetic alignment is achieved. In contrast, in heterogeneous mag-
netic systems, like alloys containing ferromagnetic clusters embedded in non-magnetic matrix or spin glasses, 
MR cannot be saturated by the magnetic field due to the lack of fully parallel magnetic moments alignment. The 
common feature of all of the materials presenting MR effect is the existence of a conducting medium with mag-
netic inhomogeneities on the scale of the electron mean-free path28–31.

In our case the MR can be related to some structurally triggered magnetic inhomogeneities or clusters in the 
microwire related to the preparation method.

Similarly to the as-prepared sample, we have measured ΔR/R dependences at different temperatures in 
Ni-Mn-Ga glass-coated microwires annealed at 973 K for 1 h. Figure 6 shows that at low temperatures (5 K and 
20 K), a decrease of resistivity with magnetic field typical for giant magnetoresistance (GMR) effect and similar 
to the as-prepared Ni-Mn-Ga glass-coated microwires is observed. Much higher MR effect is observed in the 
vicinity of Curie temperature at 300 K, where the enlarged magnetic fluctuations are expected.

Magnetocaloric effect.  Magnetocaloric effect was studied by the indirect method. Figure 7a shows the 
virgin magnetization curves M(H,T) measured around the ferromagnetic transition of the sample annealed at 
970 K(1 h). From these magnetization curves, measured at different temperatures, we have calculated the mag-
netic field induced entropy change, ΔS, following the procedure described elsewhere3,34.

Figure 7b shows that ΔS(T) exhibits a tendency to a maximum at TC point equal to about 0.2 J/KgK, which is slightly 
below than that found in other low-dimensional Heusler-type materials showing a ferromagnetic transition7. Like in 
the case of Ni-Mn-Ga film9, this value can be multiplied by one or two orders of magnitude if wire is made of Ni-Mn-Ga 
alloy where TC is merged with MT. Tiny ΔS(T) minimum at the small fields is explained by the negative difference in 
the magnetization between martensite and austenite due to the large uniaxial magnetic anisotropy of martensite.

Resuming, we have demonstrated that after appropriate post-processing the thin glass-coated microwires of 
Ni-Mn-Ga alloy exhibit a much more favourable combination of MT and the magnetic properties, among them 
nearly ambient Curie temperature, than in as-received state. The large MR effect was measured. The significant 
MCE was estimated being potentially much enlarged after merging MT with TC. The observation of the martensi-
tic transformation is confirmed by various phenomena, such as standard hysteretic anomalies on the temperature 
dependences of the physical properties.

Such thin wires show great potential in a number of applications, particularly, in the magnetic refrigeration4.

Figure 5.  ΔR/R dependence for as-prepared Ni-Mn-Ga microwires measured at different temperatures.
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Methods
Glass-coated Ni-Mn-Ga microwires with a metallic nucleus diameter of d ≈ 22 μm and total diameter of D ≈ 62 
μm, respectively, have been prepared using master alloy with a nominal composition of Ni50Mn25Ga25 (at.%) by a 
Taylor-Ulitovsky technique described elsewhere5–12

The as-prepared microwires were annealed in a conventional furnace in order to release the internal stresses 
and achieve a more ordered structural and magnetic state. Previously we usually used annealing temperatures 
in the range of 773–823 K5–7,10,12, but we did not observe any evidence of MT either in as-prepared or annealed 
Ni-Mn-Ga microwires5–7. Therefore in the present work, in order to facilitate more homogeneous state and reduce 
internal stress the higher values of annealing temperatures, between 923 K and 973 K, were chosen.

The cross-section images of the sample placed inside the epoxy and mechanically polished were obtained 
using the scanning electronic microscopy (Fig. 8a). The inner part of the image corresponds to the metallic 
nucleus. The outer shell is a glass-coating with thickness of about 20 μm. The metallic nucleus presents quite reg-
ular circular cross-section with a diameter (including the interface layer) of about 22 μm (Fig. 8a). The black lines 
in the Fig. 8a correspond to the cracks that arose during the mechanical polishing of the sample edge.

The chemical composition of the metallic nucleus evaluated using EDX is quite homogeneous indicating 
almost the same composition in different sites of the cross section (marked as B1-B7). The metallic nucleus chem-
ical composition evaluated using EDX (see Fig. 8b where the EDX spectra taken in point B7 of the metallic 
nucleus indicated in Fig. 1a is shown) is Ni59.2Mn12.2Ga28.6 (at.%) with uncertainty of less than 1.0 at.%. This dif-
ference with the nominal composition indicates that Mn was partially evaporated during the microwire casting.

We used the microscope Axio Scope A1 for the metallographic studies of glass-coated microwires. From 
optical images we can deduce that prepared microwire presents rather homogeneous metallic nucleus and total 
diameters (see Fig. 8c).

Structural and phase states have been studied using a BRUKER (D8 Advance) X-ray diffractometer. CuKα 
(λ = 1.54 Å) radiation was used in all measurements.

X-ray diffraction patterns at room temperature for the as-prepared and annealed samples are shown in Fig. 9. 
Both types of samples are polycrystalline with the small grains (Scherrer formula provides an average size of the 
crystallinity domains of around 25–30 nm). Likewise in the case of Ni-Mn-Ga thin films35, a reasonable interpre-
tation of the crystallographic state of the wires can be suggested taking into account the whole set of experimental 
data obtained in this work. According to the measured physical properties described in the following sections, 
all wires are in the austenitic cubic phase at room temperature. In terms of cubic L21-ordered Heusler structure, 
the peaks near 44 deg. and 64 deg. in Fig. 2 can be attributed to the main characteristic 220 and 400 reflections, 
whereby peaks at about 51 deg. and 52 deg. could be related to 311 and 222, respectively36. The peak at about 
48 deg. together with right-hand shoulder on the main peak belong to the unidentified second phase shown 
up after annealing. With such a tentative approach, the variations of positions of the mentioned peaks towards 
smaller angles can be interpreted as a manifestation of a large internal compressive state which reduces during 

Figure 6.  ΔR/R dependences for annealed at 973 K for 1 h Ni-Mn-Ga microwires measured at different 
temperatures.
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annealing. Figure 9 demonstrates a well-pronounced 220 peak ob served already for annealing time of 1 hour 
so, this wire and as-received one were selected for the comparative study of the physical properties in this work.

The thermomagnetization curves were measured using PPMS (Physical Property Magnetic System) 
vibrating-sample magnetometer in the temperature range between 5 K and 400 K. A magnetic field, H, from 50 Oe 
to 90 kOe was directed along the sample axis.

A bunch of microwires was used as a sample for the magnetic measurements revealing relative changes of 
magnetization, which was conveniently presented in terms of the normalized magnetization, M/M5K, where 
M is the magnetic moment at a given H and temperature, T, and M5K is the magnetic moment at T = 5K and 
H = 90 kOe.

Electrical resistance, R, was measured by 4-points method using PPMS option. Magnetic field during the R 
measurements was applied along the microwire axis.

The magnetoresistance (MR), ΔR/R, is defined as:

Δ = − ×R/R(%) (R(H) R(0)) 100/R(0) (1)

The MR was measured for the magnetic field directed along the microwire axis.
The MCE was calculated by a standard Maxwell relationship using measured M(H) dependences at different 

temperatures using the method described by V. K. Pecharsky et al.34. In this method the field-induced entropy 
change, ΔS, is evaluated by integrating of the following formula:

T dS T H M T H
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where HI and HF are the initial and final magnetic field, respectively.
Accordingly, we have measured the virgin magnetization curves M(H, T) at different temperatures and then 

evaluated ΔS.

Figure 7.  Magnetization curves of Ni-Mn-Ga microwires annealed at 973 K measured at different temperatures 
(a); and calculated dependencies of the field-induced entropy change (b).
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Conclusions
Our previous efforts of preparation of thin glass-coated microwires of NiMn-based Heusler alloys intended of 
getting martensitic transformation and related functional properties have been scarcely effective5–7,10,11. In the 
present work, we have successfully prepared Ni59.2Mn12.2Ga28.6 Heusler-type long (up to few meters long) and 
flexible glass-coated microwires, which exhibit a favorable combination of the magnetic properties with the mar-
tensitic transformation behavior. As-prepared microwires present MR effect and considerable dependence of 
M(H) (particularly absolute M-values) on the magnetic field attributed to the magnetic inhomogeneities and 
atomic disorder. Annealing conditions strongly affect the temperature dependence of magnetization and Curie 
temperature of the as-received microwires. We observed the characteristic hysteretic anomalies in R(T) and M(T) 

Figure 8.  Image of the cross-section (a); EDX spectra of one of the points, B7, where the chemical composition 
was determined (b) and optical microscopy image (c) of the Ni-Mn-Ga microwire.

Figure 9.  XRD patterns of as-prepared and annealed at 973 K for different times Ni-Mn-Ga microwires.
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dependences in the as-prepared and annealed samples produced by the martensitic transformation. Annealing at 
973 K, allowing disorder reduction and internal stresses relaxation, gave rise to the magnetic and magnetocaloric 
properties and transformation behaviour of the microwires qualitatively similar to the bulk alloy with the same 
e/a = 7.63 characterized by the inequality TC > TM. On the other hand, TC and TM absolute values obtained in the 
present work do not correspond to the e/a criterion since other factors, such as a considerable off-stoichiometry, 
structural disorder and high internal stress predominantly control the magnetic and MT properties.

As a final conclusion, in this work we have demonstrated that wire-coated technology is a promising route of 
obtaining large amount of the quasi-unidimensional FSMAs suitable for applications.
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