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circular RNA (circRNA) is a closed ring structure formed by cyclic covalent bonds
connecting the 5’-end and 3’-end of pre-mRNA. circRNA is widely distributed in
eukaryotic cells. Recent studies have shown that circRNA is involved in the
pathogenesis and development of multiple types of diseases, including tumors.
circRNA is specifically expressed in tissues. And the stability of circRNA is higher than
that of linear RNA, which can play biological roles through sponge adsorption of miRNA,
interaction with RNA binding protein, regulation of gene transcription, the mRNA and
protein translation brake, and translation of protein and peptides. These characteristics
render circRNAs as biomarkers and therapeutic targets of tumors. Gastrointestinal tumors
are common malignancies worldwide, which seriously threaten human health. In this
review, we summarize the generation and biological characteristics of circRNA, molecular
regulation mechanism and related effects of circRNA in gastrointestinal tumors.
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INTRODUCTION

Gastrointestinal tumors such as gastric cancer, esophageal cancer, colorectal cancer, pancreatic
cancer, hepatocellular carcinoma and gallbladder cancer are common malignancies worldwide,
which seriously threaten human health. The occurrence and progression of carcinomas are related
to multiple factors. It is reported that circRNAs are associated with cancers, including
gastrointestinal cancers (1–4).

circular RNA (circRNA) is a type of long non-coding RNA. In 1976, Sanger et al. found that the
pathogenic plant virus was a single-stranded covalently closed circRNA molecule, but scientists
considered that it was connected by host cell enzymes rather than formed by reverse splicing (5).
circRNA formed by reverse splicing was first reported in the 1890s (6–9). However, only a few
circRNAs were discovered at that time due to technical limitations. Until the 21st century, with the
vigorous development of second-generation sequencing (NGS) technology and bioinformatics, it is
gradually realized that circRNA is a type of non-coding RNA with prevalent distribution in nature
Abbreviations: circRNAs, Circular RNAs; RBP, RNA binding protein; ICS, Intronic complementary sequence; dsRBD,
Double-stranded RNA binding domain; GI, Gastrointestinal; ESCC, Esophageal squamous cell carcinoma; EMT,
Mesenchymal-epithelial transformation; HCC, Hepatocellular carcinoma; CRC, Colorectal cancer; GBC, Gallbladder
cancer; IRES, Internal ribosome entry site; CSCs, Cancer stem cells.
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as well as abundant and diverse expression (10). This renders a
more intensive understanding of circRNA and in-depth
researches on its formation process and mechanism.
GENERATION OF CIRCRNA

circRNA is formed by reverse splicing of pre-mRNA, and the
same pre-mRNA can generate multiple circRNAs with different
compositions due to the difference of splicing sites (11). The
generated circRNA can be classified into three types according to
the different composition: intronic circRNA (ciRNA) formed by
intron cyclization (Figure 1A) (12), and exon-intro circRNA
(EIciRNA) formed by exon and intron cyclization (Figure 1B)
(13), and exonic circRNA (ecircRNA) formed by exon
cyclization (Figures 1C–F) (14), among which exon circRNA
is the most common. Most human endogenous circRNA
contains multiple exons, with two or three exons as the most
common. Each exon generally contains 112 to 130 nucleotides.
There is also single exon formed by reverse splicing, which
generally requires a median exon length of 353 nucleotides (15).

Regardless of the splicing method, circRNA is formed by
reverse splicing via spliceosome on the downstream 5’-splicing
site and upstream 3’-splicing site of pre-mRNA and subsequent
formation of 3’,5’-phosphodiester bond as well as cyclization
(16). The formation modes of circRNA include intronic
complementary sequence (ICS) pair-driven cyclization, RNA
binding protein (RBP)-driven cyclization and lariat-driven
cyclization (17). First of all, ICS of pre-mRNA can make the
distal intron splicing sites closer in space to promote reverse
splicing (Figures 2A, B) (18). Secondly, RBP can regulate the
formation of circRNA by combining with ICS (Figures 2C, D).
RBP usually contains a double-stranded RNA binding domain
(dsRBD), and dsRBD can bind and pair with ICS. Nuclear factor
90 (NF90) and nuclear factor 110 (NF110) encoded by the ILF3
gene both contain dsRBD, which can promote the formation of
circRNA by directly binding to the intronic reverse repeat Alu
element (19, 20). ICS of SEPT9 can bind to EIF4A3 to increase
the production of circSEPT9 (21). Quaking binds to ICS to make
Frontiers in Oncology | www.frontiersin.org 2
the splice site closer to facilitate reverse splicing to increase
circRNAs formation (22). Thirdly, in the exon skipping event,
the exon lariat formed by the covalently combined splice
acceptor and splice donor provided by the exon is another
formation of circRNA (Figure 2E) (23). Additionally, the
formation of intron lariat caused by intron removal during the
pre-mRNA splicing process can give rise to circRNA (Figure
2F) (12).

Then, what are the factors affecting the formation of
circRNA? Firstly, polymerase II plays an important role in
reverse splicing. Analysis of the transcription elongation rate of
human cellular polymerase II showed that the average
transcription elongation rate of genes that can produce
circRNA is higher than that of genes that cannot produce
circRNA. The high transcription elongation rate renders
transcription of more downstream genes and increases ICS
matching that skipps exon, therefore, reverse splicing is more
likely to form circRNA (10). After depletion cleavage/
polyadenylation terminates the inhibitory effect of RNA
polymerase II, the level of circRNA also increases (24).
Moreover, reverse splicing and canonical splicing are in a
competitive relationship. When the canonical splicing speed
becomes slow or the splicing complex is consumed, the level of
circRNA would increase, which is associated with the
transformation from canonical splicing to reverse splicing (25).
DETECTION METHOD AND RESEARCH
TECHNOLOGY OF CIRCRNA

RNA sequencing and gene chip technology have relatively good
sensitivity analysis and quantitative accuracy of circRNA
detection, however, with expensive cost. Northern blot and
reverse transcription polymerase chain reaction are also simple
and effective methods to detect circRNA, however, with relatively
low sensitivity analysis and quantitative accuracy. Quantitative
reverse transcription polymerase chain reaction can be
performed if rapid and accurate detection of the relative
expression abundance of circRNA is required, whose sensitivity
A B

D E F

C

FIGURE 1 | Different splicing sites and compositions form different circRNAs. (A) The splicing sites of pre-mRNA during the formation of intron circRNA (ciRNA) by
intron circularization. (B) The splicing sites of pre-mRNA during exon and intron cyclization to form exon-intro circRNA (EIciRNA). (C-F) The splicing sites of pre-
mRNA in the process exon cyclization to form exonic circRNA (ecircRNA).
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analysis and quantitative accuracy are better, and the cost is
relatively low. The sensitivity analysis and quantitative accuracy
of droplet digital PCR and NanoString Technologies nCounter
assays to detect circRNA are extremely good, however, they are
rarely used due to special equipment and relatively expensive
cost (26).

Two-dimensional denaturing polyacrylamide gel
electrophoresis can be used to assess whether RNA is circular
(27). The cellular localization of circRNA requires FISH
technology (13) and nuclear and cytoplasmic separation (14).
Bioinformatics analysis and RNA-seq can be used to predict and
to analyze the interaction between circRNA and miRNA.
Bioinformatics analysis and identification of RNA pulldown
and mass spectrometry can be used to predict and to analyze
the interaction between circRNA and other proteins. RNA
immunoprecipitation related assays and dual luciferase
reporter gene assay can be used to validate their interaction.
Frontiers in Oncology | www.frontiersin.org 3
BIOLOGICAL CHARACTERISTICS OF
CIRCRNA

In recent years, the continuous in-depth studies of circRNA have
been revealed diverse noteworthy characteristics of circRNA.

Stability of circRNA
circRNA has a closed loop structure with 3’,5’-phosphodiester
bonds, without 5’˜3’ polarity or poly A tail, which makes them
more stable than linear RNA and not easily degraded by RNase R
(28). In addition, during viral infection, circRNA is almost
completely degraded by RNase L (29). The ribonuclease
complex RNase P/MRP can degrade m6A-modified circRNA
through the m6A reader protein YTHDF2 and HRSP12 (30).
Another study has found that the combination of AGO2 protein
and miRNA can mediate the degradation of circRNA. CDR1as
contains miR-671 binding sites, and their binding can mediate
A B

D

E F

C

FIGURE 2 | The formation modes of circRNA. (A, B) CircRNAs with intronic complementary sequence (ICS) of pre-mRNA can make the distal intron splicing sites
closer in space to promote reverse splicing and ICS pair-driven cyclization. (C, D) CircRNAs with double-stranded RNA binding domain (dsRBD) can bind and pair
with ICS to make the splice site closer, as well as facilitate reverse splicing to increase circRNAs formation. (E) In the exon skipping event, the exon lariat formed by
the covalently combined splice acceptor and splice donor provided by the exon. (F) Intronic lariat-driven cyclization was caused by intron removal during the pre-
mRNA splicing process.
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the degradation of CDR1as by AGO2 (31). Meanwhile, miR-7
can also promote the degradation of circRNA by recruiting miR-
671 (32). AGO2 can also mediate the degradation of circFilip11
by miRNA-1224 (33). Moreover, circRNA can also enter
exosomes or extracellular vesicles, which can be eliminated by
the export of active substances (34). Overall, circRNA is more
stable than linear RNA, with an average half-life of 18.8-23.7 h,
while the average half-life of homologous linear RNA is only 4.0-
7.4 h (35).

Localization of Characteristics of circRNA
ciRNA and EIciRNA are mainly distributed in the nucleus of
eukaryotes, and ecircRNA is mainly distributed in the cytoplasm
(12–14). Partially-length circRNA could be transported from the
nucleus to the cytoplasm, and different species have different
requirements for the length of circRNA from the nucleus to the
cytoplasm (36). In drosophila and human cells, Hel25E protein
family is a key regulator that mediates the transport of circRNA
from the nucleus to the cytoplasm. The ATP-dependent RNA
helicase Hel25E (also known as WM6) in drosophila
melanogaster mediates the export of long-chain circRNA with
over 800 nucleotides in length. The homologous protein UAP56
(DDX39B) of Hel25E in human cell mainly mediates the
nuclear export of long-chain circRNA with over 1300
nucleotides in length, while URH49 (DDX39A) mainly
mediates the nuclear export of short-chain circRNA with less
than 500 nucleotides in length. The amino acid sequence
differences of the Hel25E protein family lead to its recognition
of circRNA molecules of different sizes (37). YTHDC1 can
regulate the nuclear export of m6A-modified mRNA (38).
Chen et al. found that m6A-modified circNSUN2 can bind to
YTHDC1 to promote the nuclear export of circNSUN2 (39).

Type and Expression Abundance of
circRNA
High-throughput sequencing analysis has revealed the
expression of multiple types of circRNA in fungi, protists,
plants, worms, fish, insects and mammals (40–45). By
identifying the transcriptomes of normal tissues and tumor
tissues of humans and other animals, Zhao et al. identified
most of the full-length sequences of circRNAs, and compiled
the circRNA database (circAtlas) (46). The circAtlas database
presently contains circRNAs from homo sapiens, macaca
mulatta, mus musculus, rattus norvegicus, sus scrofa
and gallus gallus. There were 421,501 types of circRNAs
from 259 human samples, 169618 types of circRNAs from 80
macaque samples, and 175,273 types of circRNAs from 113
mouse samples.

circRNA is abundantly expressed in mammalian brain tissue
(47–49), which is also enriched in human red blood cells and
platelets (50). Notably, although the efficiency of reverse splicing
is not high, the accumulation of circRNA is considerable due to
its stability, therefore, the expression level of circRNA can be
higher than its homologous linear mRNA. The stable abundance
of circRNA is a balanced consequence of circRNA formation,
nuclear output and turnover efficiency (10).
Frontiers in Oncology | www.frontiersin.org 4
circRNA Is Highly Conservative and
Expresses Specifically at the Stage of
Tissue Development
Despite various types of circRNA, most types of circRNA are
extremely conservative in evolution and among different species
(51). The conservation of circRNAs among different species
indicates that circRNAs are not by-products of precursor
mRNA splicing, suggesting circRNA is extremely important in
certain biological processes. circRNAs are specifically expressed
at the stage of tissue development, and are involved in innate
immunity, development of the nervous system, metabolism of
hormones in the body, as well as tumorigenesis and tumor
progression (52–55).
THE INFLUENCES OF LIFE STYLE,
NUTRITION, DIET, ENVIRONMENT AND
THE MICROBIOME ON CIRCRNAS.

Based on the heterogeneity of disease, molecular pathological
characteristics and epidemiological study design method,
molecular pathological epidemiology analyzes the impact of
molecular level changes caused intrinsic factors and extrinsic
factors (such as life style, nutrition, diet, environment and the
microbiome) on the occurrence, development, prognosis and
outcome of the disease (56, 57). Studies have found that
circRNA can be affected by different extrinsic factors. Chemical
contamination in the environment is known to cause abnormal
circRNA expression through multiple exposure routes (58). Fatty
liver may result from excessive triglyceride uptake and production
by the liver or by a secretory defect (59). The aberrant expression
of circScd1 affects the extent of hepatocellular lipidosis in
nonalcoholic fatty liver disease and promotes fatty liver disease
via the JAK2/STAT5 pathway (60). Plasmatic circRNAMBOAT2
demonstrated a significantly lowered level 24 h after the
marathon (61). CircNF1-419 improves the gut microbiome
structure and function in AD-like mice (62). Cancers are
complex diseases which are related to the above exogenous
factors (63–65). There are also some relationships between
circRNAs and exogenous factors in cancers. Gut microbiota
regulate tumor metastasis via circRNA/miRNA networks (66).
Zhang et al. have found that the expression of circ-DB in plasma
exosomes of in hepatocellular carcinoma (HCC) patients with
high body fat rate is up-regulated. After being taken up by HCC
cells, exosomal circ-DB inhibits the expression level of miR-34a
and activates deubiquitination-related USP/Cyclin A2 signaling
pathway, thereby promoting the proliferation of HCC and
attenuating cell DNA damage (67).
THE MECHANISM OF CIRCRNA IN
GASTROINTESTINAL (GI) TUMORS

In recent years, circRNA has been widely investigated in multiple
diseases (68–70), including GI tumors (Tables S1–S7). Despite
act as miRNA sponge, circRNAs can function as interaction with
April 2021 | Volume 11 | Article 665246
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RNA binding protein, regulation of gene transcription, the
mRNA and protein translation brake, and translation of
protein and peptides in GI tumors.

As miRNA Sponge
circRNA can act as miRNA sponge in GI tumors (Figure 3A).
circLPAR3 is highly expressed in esophageal squamous cell
carcinoma (ESCC) tissues and cells, which can upregulate the
expression of c-MET through sponge adsorption of miR-198 to
increase the migration and invasion of ESCC (55). circCCDC9,
with low expression in gastric cancer tissues and cells, can
attenuate the inhibitory effect on the target gene CAV1 after
adsorbing miR-6792-3p, thereby inhibiting the proliferation,
migration and invasion of gastric cancer cells (71).
circCAMSAP1 is highly expressed in colorectal cancer tissues
than in normal tissues, and its expression is significantly lower in
the plasma of colorectal cancer patients than that before surgery.
circCAMSAP1 sponges miR-328-5p to weaken its inhibitory
effect on transcription factor E2F1, thereby promoting
proliferation of colorectal cancer cells (72). circBFAR, with
high expression in pancreatic ductal adenocarcinoma, up-
regulates the expression of mesenchymal-epithel ial
transformation (EMT) through sponge adsorption of miR-34b-
5p to phosphorylate Akt at Ser 473, which further activates MET/
PI3K/Akt signal transduction pathway to promote the
proliferation, migration and invasion of pancreatic ductal
adenocarcinoma (73). Circular RNA cSMARCA5 with low
expression in HCC tissues and cells, can promote the
Frontiers in Oncology | www.frontiersin.org 5
expression of tumor suppressor gene TIMP3 by sponge
adsorption of miR-17-3p and miR-181b-5p to suppress the
proliferation and migration of HCC (74).

All of the above findings suggest that circRNA can act as a
sponge to adsorb one or more miRNAs to subsequently affect the
expression of downstream target genes, thereby affecting
the biological functions of tumor cells, with potential
therapeutic value.

Interaction With RNA Binding Protein
(RBP)
circRNA can affect the function of downstream target genes
through competitive binding with RBP in GI tumors (Figure 3B)
(75). circGSK3b is highly expressed in ESCC, and circGSK3b
can bind to GSK3b protein to prevent b-catenin from
phosphorylation and degradation, to affect the Wnt/b-catenin
pathway, thereby promoting the migration and invasion of ESCC
(76). circPTK2 is highly expressed in cancer tissues and serum of
patients with colorectal cancer (CRC). To be specific, circPTK2
can affect the phosphorylation and expression level of Vimentin
by binding to Ser38, Ser55 and Ser82 of Vimentin, which can
promote EMT, inhibit apoptosis and enhance cell proliferation,
migration and invasion of CRC cells (77). circAGO2 is
significantly elevated in gastric cancer tissues. circAGO2
interacts with human antigen R (HuR) protein to promote the
activation and enrichment of 3’-UTR of target genes, to prevent
target genes from binding to AGO2, and to decrease the
formation of AGO2-miRNA complex, thereby promoting the
A B
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FIGURE 3 | The mechanism of circRNA in gastrointestinal tumors. (A) CircRNAs can act as miRNA sponge or decoys as well as regulate the function of
downstream mRNA. (B) CircRNAs with RNA binding protein (RBP) binding motifs may sponge or decoy the RBPs and regulate their functions. (C) A few circRNAs
can combine with several RBPs and function as protein scaffolds to affect the tumor progressions. (D) Some circRNAs are involved in gene transcription regulation
by recruiting the transcription regulators to influence promoters. (E, F) CircRNAs containing internal ribosome entry site (IRES) elements and AUG sites may act as
templates as well as be translated.
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proliferation, invasion and metastasis of gastric cancer cells (78).
circ-FOXP1 is highly expressed in gallbladder cancer (GBC)
tissues and cells. By interacting with PTBP1 protein, circ-FOXP1
can protect PKLR mRNA from decay, promote cell proliferation,
migration, invasion and inhibit apoptosis of GBC (79).

circRNA can combine with several RBPs to act as a protein
scaffold (Figure 3C). In metastatic CRC, m6A-modified
circNSUN2 combines with IGF2BP2 protein and HMGA2
protein to form a ternary complex to promote liver metastasis
of CRC (39). circMRPS35 is lowly expressed in gastric cancer,
and it can serve as a protein scaffold to recruit histone
acetyltransferase KAT7 to the promoters of FOXO1 and
FOXO3a genes to further cause H4K5 acetylation, which
further activate the transcription of FOXO1 and FOXO3a and
trigger the expression of their downstream targets (p21, p27,
Twist1 and E-cadherin genes), thereby inhibiting the
proliferation and invasion of gastric cancer cells (80).

Regulation of Gene Transcription
Li et al. have found that in cervical cancer Hela cells, circEIF3J,
circPAIP2 interact with Pol II and U1 snRNP to bind to the
parent gene promoter to promote parental gene transcription
(13). However, the above regulatory pathway of gene
transcription by circRNA has not been reported in GI tumors,
while circRNA can regulate gene transcription through other
pathways (Figure 3D).

circRHOT1 is highly expressed in HCC tissues and cells.
circRHOT1 recruits TIP60 to the NR2F6 promoter and initiates
NR2F6 transcription, promotes the expression of NR2F6, and
enhances the proliferation, migration and invasion of HCC cells
via the NOTCH2 signaling pathway (81). circERBB2 is highly
expressed in GBC tissues and is mainly located in the nucleoli of
GBC cells. It can bind to PA2G4 to regulate the nuclear
localization of PA2G4. The binding of circERBB2 to PA2G4
can regulate the expression of TIFIA to regulate rDNA
transcription, thereby promoting the proliferation of GBC cells
(82). circ-DONSON is highly expressed in gastric cancer tissues
and cells. It can interact with the important subunit SNF2L of the
NURF complex, recruit NURF to the SOX4 promoter to initiate
its transcription, promote the proliferation, migration and
invasion and inhibit apoptosis of gastric cancer cells (83).
circITGA7, with low expression in CRC, can increase the
expression of NF1, a negative regulator of the Ras1 pathway
after sponge adsorption of miR-370-3p, which can inhibit the
Ras pathway, decrease the expression of RREB1, promote linear
ITGA7 transcription to increase the expression of linear ITGA7,
while overexpression of circITGA7 can inhibit the proliferation,
migration and invasion of CRC cells (84).

The mRNA and Protein Translation Brake
In GI tumors, a few circRNAs can interfere with the translation
of mRNA or protein. circBACH1 is significantly elevated in liver
cancer tissues and cells. It can bind to HuR and promote the
translocation of HuR from the nucleus to the cytoplasm. In HCC,
circBACH1 can enhance the inhibitory effect of HuR on p27
translation and accelerate the cell cycle from G0/G1 phase to S
Frontiers in Oncology | www.frontiersin.org 6
phase, thereby promoting the proliferation of HCC (85). circ-
MALAT1 is highly expressed in cancer stem cells (CSCs) of HCC
tissues. circ-MALAT1 binds to ribosomes through the internal
ribosome entry site (IRES) and binds with PAX5 mRNA through
11 bases to form circ-MALAT1, ribosome and PAX5 mRNA
ternary complex, which prevents the translation of PAX5 and
promotes the self-renewal of CSCs (86).

Protein or Peptide Translation
Studies have found that endogenous circRNA containing IRES
and ribosome binding sites (AUG) has protein coding capacity
(87). The translation mechanism of circRNA is different from
that of ordinary linear mRNA, and it is initiated by ribosome
scanning. Several circRNAs can act as templates for translation
in GI tumors (Figures 3E, F). The translation mechanism of
circRNA is similar to the cap-independent translation pathway.
Studies have shown that m6A modification can drive circRNA
translation in a cap-independent manner (88).

circPPP1R12A is highly expressed in gastric cancer tissues
and cells. The short 216 nt small open reading frame of
circPPP1R12A has the potential to peptide encoding
(containing 73 amino acids). The encoded circPPP1R12A-73aa
peptide can activate the hippo-YAP signaling pathway and
enhance the proliferation, migration and invasion of gastric
cancer cells (89). circFNDC3B is lowly expression in colon
cancer tissues, and it can encode a new protein circFNDC3B-
218aa. circFNDC3B-218aa can decrease the expression of Snail
to promote the antitumor effect of FBP1 in colon cancer, to
suppress the proliferation, invasion, migration and EMT of colon
cancer cells (90). circb-catenin is highly expressed in HCC
tissues, which can encode a 370-amino acid protein (known as
b-catenin-370aa). b-catenin-370aa competitively binds to
GSK3b to prevent the binding and phosphorylation of GSK3b
and b-catenin, thereby antagonizing the GSK3b-induced
degradation of b-catenin and activating the Wnt pathway to
promote the growth and metastasis of HCC cells (91).

Collectively, circRNA regulates GI tumors through various
mechanisms, including miRNA sponge adsorption, interaction
with RBP, regulation of gene transcription, the mRNA and
protein translation brake, and translation of protein and
peptides. These mechanisms are not completely separated,
but interactive.
BIOLOGICAL FUNCTIONS OF CIRCRNA IN
GI TUMORS

Regulation of Proliferation, Migration,
Invasion and Apoptosis of Tumor as Well
as Self-Renewal of CSCs
There are extensive studies concerning the roles of circRNA the
regulation of tumor proliferation, migration, invasion and
apoptosis. In addition, circRNA can also affect the self-renewal
of CSC. circHuR expression is down-regulated in gastric cancer
tissues and lines. circHuR interacts with CNBP protein (CCHC-
April 2021 | Volume 11 | Article 665246
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type zinc finger nucleic acid-binding protein) and inhibits the
binding of CNBP to the HuR promoter, thereby leading to HuR
down-regulation to further inhibit the proliferation, invasion and
metastasis of gastric cancer cells (92). circLgr4 is highly expressed
in CRC tissues and CSCs, with peptide-coding functions. The
peptide encoded by circLgr4 interacts with Lgr4 and is activated
by Lgr4, to further promote the activation of Wnt/b-catenin
signal, which can promote the invasion of CRC cells and self-
renewal of CSCs (93). circZMYM2 is overexpressed in pancreatic
cancer tissues and cells. It increases the expression of JMJD2C by
binding to miR-335-5p, promotes the proliferation and invasion
as well as inhibits apoptosis of pancreatic cancer cells (94).
hsa_circ_0016788 is up-regulated in HCC tissues and cell lines.
It can increase the expression of CDK4 by binding to miR-486,
promote the proliferation and invasion as well as inhibit
apoptosis of HCC cells (95). The expression of circ-CCAC1
derived from ERBB2 is increased in cholangiocarcinoma cells.
circ-CCAC1 up-regulates the expression of transcription factor
YY1 by competitively binding to miR-514a-5p in tumor cells.
YY1 promotes its transcription by directly binding to CAMLG
promoter, thereby promoting the proliferation, migration and
invasion of GBC cells (96).

Regulation of the Radiotherapy and
Chemotherapy Response of Tumor Cells
In addition to affecting tumor proliferation and metastasis,
circRNA can also affect the sensitivity of tumor cells to
radiotherapy and chemotherapy. Then, does circRNA still have
this function in GI tumors?

circVRK1 is lowly expressed in ESCC tissues and cells. It can
positively regulate PTEN, inhibit the activity of PI3K/AKT
signaling pathway, suppress proliferation, migration and
EMT of ESCC cells as well as reverse radiation therapy
resistance by adsorbing miR-624-3p (97). Has_circ_001680 is
highly expressed in CRC tissues. It can induce irinotecan
resistance by regulating the miR-340 to affect the target gene
BMI1 (98).

The activity of key metabolites of autophagy is associated with
the drug resistance of tumors, and circRNA can regulate the drug
sensitivity of tumor cells by affecting autophagy (99).
circRACGAP1 can sponge miR-3657 and further up-regulate
the expression level of ATG7 by competitively inhibiting miR-
3657 activity. Both endogenous and exogenous knockdown of
circRACGAP1 expression can increase the sensitivity of gastric
cancer cells to apatinib by suppressing autophagy, and
knockdown of circRACGAP1 can decrease the toxicity of
apatinib and enhance its therapeutic effect on gastric cancer
(100). circCUL2 is lowly expressed in gastric cancer tissues and
cells. circCUL2 can increase the expression of ROCK2 and p62,
inhibit the expression of autophagic marker LC3 and Beclin1 by
adsorbing miR-142-3p, which can inhibit autophagy and
improve cisplatin sensitivity of cisplatin-resistant GC cells (101).

ABC transporter can transport chemotherapeutics to the
extracellular compartment, specific organelles and exosomes.
Therefore, the drug retention in the cellular vesicles and
compartments can increase drug efflux, which reduces the drug
Frontiers in Oncology | www.frontiersin.org 7
concentration to cause chemotherapeutic resistance of tumor
(100). circFBXO11 is highly expressed in HCC tissues. It can
sponge miR-605 to decrease its inhibition of FOXO3 protein,
and increased FOXO3 expression targets the promoter region of
ABCB1 to accelerate its expression, thereby increasing the anti-
oxaliplatin ability of HCC (102).

Effects on Immune Therapy
Immune function is crucial to tumorigenesis and tumor
progression. circRNA can affect immune function.
circ_0000977 in pancreatic cancer can adsorb miR-153 to
affect the expression of HIF1A and ADAM10 as well as
regulate the immune escape of pancreatic cancer cells mediated
by HIF1A (103). circMET is highly expressed in HCC. It can
affect the expression of Snail/dipeptidyl peptidase 4 (DPP4)/
CXCL10, induce EMT, enhance the immunosuppression of the
tumor microenvironment and promote HCC progression after
adsorbing miR-30-5p (104). The HCC cell-secreted exosomes
circUHRF1 can inhibit the function of NK cells, promote the
immune escape of HCC cancer, and increase the resistance of
anti-PD1 immunotherapy through the miR-449c-5p/TIM-3
pathway, which provide a novel therapeutic approach for HCC
patients, that is, targeting circUHRF1 (105).

circRNAs and Tumor Microenvironment in
GI Tumors
The tumor microenvironment (TME) consists of extracellular
matrix components, endothelial cells, stromal cells, immune
cells, vasculature and various signaling entities. TME,
nourished by the vasculature, is an indispensable condition for
metastatic tumor cell growth. It is important that endothelial
cells of the TME which associate with angiogenesis and tumors
metastasis. VEGF is the most important regulatory factor in
angiogenesis (106). It is a mitogenic factor to promote the
proliferation of endothelial cel ls and angiogenesis .
circ_0072088 is overexpressed in ESCC cells and tissues. It can
sponge miR-377 to attenuate the inhibitory effect of miR-377 on
VEGF expression, which could elevate the expression of VEGF,
thereby promoting migration and invasion of ESCC (107).
Furthermore, exosomal circ-IARS is overexpressed in
pancreatic cancer cells. It can promote the permeability of the
vessel wall to accelerate tumor metastasis. The circ-IARS can
sponge miR-122 and enhance the activity of Ras homolog gene
family, member A (RhoA), which restrains tight junction ligand-
protein Zonula occludens-1(ZO-1) and promotes endothelial
monolayer permeabi l i ty , thereby promoting tumor
development (108). In conclusion, circRNA may plays a crucial
role in the TME.
EXOSOMAL CIRCRNAS IN GI TUMORS

Exosomes are extracellular vesicles (EV) secreted by most
eukaryotic cells and involved in intercellular communication.
The components of exosomes include protein, DNA, RNA, etc.
After circRNA is exported from exosomes and released in
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recipient cells, it plays a critical role in regulating tumor growth,
metastasis and angiogenesis during tumor development (109).
Then, what is the expression and role of exosomal circRNA in
GI tumors? The expression of circPAGRAL is significantly up-
regulated in CRC cells treated with tumor-derived exosomes,
which promotes the proliferation, migration and invasion of
CRC cells by modulating the miR-142-3p/miR-506-3p-TGF-b1
axis (110). The high expression of circSHKBP1 in gastric
cancer, can be delivered by exosomes and promote the
proliferation, migration and invasion of gastric cancer cells in
vitro via sponge adsorption of miR-582-3p and binding to
HSP90 (111). Exosome-delivered circ_MMP2 in HCC
promotes HCC metastasis by up-regulating MMP2 (112).
After endothelial cells receive extracellular vesicles (mainly
exosomes) carrying circ-CCAC1 released by cholangiocarcinoma
cells, circ-CCAC1 can bind to EZH2 in endothelial cells and
prevent the nuclear translocation of EZH2, weakening EZH2-
mediated H3K27me3 modification of SG3GL2 promoter region.
The SG3GL2 promoter is activated and leads to up-regulated
expression of SG3GL2 to inhibit the expression of ZO-1/Occludin,
to weaken the tight junction of endothelial cells, to increase
permeability and to promote infiltration and migration of tumor
cells (96).
CLINICAL APPLICATION

The Diagnostic and Prognostic Roles of
circRNAs in GI Tumors
At present, a variety of circRNAs have been found to have
abnormal expression in plasma, serum and exosomes in ESCC,
gastric cancer, HCC and CRC (113), which makes circRNA
as a promising marker for liquid biopsy of GI tumors. For
instance, the abnormal expression of circGSK3b (76),
hsa_circ_0001946 and hsa_circ_0043603 (114) in the plasma
of ESCC patients is associated with the prognosis of ESCC
patients. circSHKBP1 is highly expressed in the serum of
patients with gastric cancer, which is also correlated with the
prognosis of patients with gastric cancer (111). The abnormal
expression of hsa_circ_0051443 (115), hsa_circ_100338 (116),
circ-ZEB1.33 (117) in the serum of HCC patients is related to
the prognosis of HCC patients. The abnormal expression of
hsa_circ_0000370 in the blood of CRC patients is associated
with the prognosis of CRC patients (118). The expression of
circ-LDLRAD3 in the plasma of patients with pancreatic
cancer is high, which is also related to lymph node
metastasis, vascular invasion and clinical stage (119). The
high stability and specific expression of blood circRNAs
render it as an ideal biomarker for liquid biopsy.

circRNA as a Possible Therapeutic Target
for GI Tumors
Jost et al. have found that circRNA, which targets miR-122,
isolates miR-122 from HCV through sponge action, thereby
effectively suppressing and decreasing the replication and
Frontiers in Oncology | www.frontiersin.org 8
spread of HCV (120). In GI tumor studies, many animal
experiments have revealed that interference with circRNA
expression can inhibit the occurrence and progression of
tumors. For instance, circLPAR3 is highly expressed in ESCC.
Nude mice injected with ESCC cells with low expression of
circLPAR3 had significantly lower lung metastasis rate than
those injected with control cells (tail vein model) (55). In
addition, MET inhibitors can inhibit circBFAR-mediated PDCA
in nude mice (73).
CONCLUSIONS AND PERSPECTIVES

circRNA, a novel type of non-coding RNA, has been a research
hotspot in GI tumors in recent years. Despite gratifying results,
there are still many problems to be solved, such as the
generation mode, influencing factors, degradation, biological
effects and mechanisms of circRNA in GI tumors. A large
number of in-depth studies are required for circRNA as a
biomarker and therapeutic target for GI tumors as well as its
clinical application.
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