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Many genetic association studies used single nucleotide polymorphisms (SNPs) data to identify genetic variants for complex
diseases. Although SNP-based associations are most common in genome-wide association studies (GWAS), gene-based association
analysis has received increasing attention in understanding genetic etiologies for complex diseases. While both methods have
been used to analyze the same data, few genome-wide association studies compare the results or observe the connection between
them. We performed a comprehensive analysis of the data from the Study of Addiction: Genetics and Environment (SAGE) and
compared the results from the SNP-based and gene-based analyses. Our results suggest that the gene-based method complements
the individual SNP-based analysis, and conceptually they are closely related. In terms of gene findings, our results validate many
genes that were either reported from the analysis of the same dataset or based on animal studies for substance dependence.

1. Introduction

Genome-wide association studies (GWAS) have become a
powerful tool in the identification of susceptible loci for
numerous diseases [1]. A typical strategy in GWAS is to
analyze single nucleotide polymorphisms (SNPs) individu-
ally and select the top SNPs by setting a stringent threshold
for the P value. Then the top SNPs were mapped into
functional regions such as a gene or pathway to facilitate
further investigation of the corresponding gene and disease.
Based on SNP-based association analysis, many genetic
variants underlying complex diseases or traits were detected
[2, 3]. Due to the large number of SNPs with each of
which entails an association test, it is essential to control
the type I error or false discovery rate [4]. A predefined
P value < 5× 10−8 is usually used as the threshold to
declare a genome-wide significance SNP, which also limits
the discoveries of the genes that are important to the disease.
Also importantly, susceptible SNPs generally explain a small
fraction of the risk—a phenomenon commonly referred
to as the “missing heritability” [5, 6]. To alleviate this

problem, alternative methods have emerged to complement
the simple SNP-based methods. Among those methods,
gene-based analysis [7–9], which jointly analyzes the SNPs
within genes, is a promising solution to improve the power
of GWAS. Compared with the SNP-based approach, gene-
based association analysis has certain advantages. First, gene
is a unit of heredity and function, and hence the gene-
based association approaches can provide direct insights into
the heredity and functional mechanisms of complex traits
[10]. Second, from the statistical perspective, the gene-based
association approaches reduce the number of association
tests in the order of millions to about 20,000 gene-based tests,
which dramatically reduces the chance of false discovery.
In addition, the gene-based methods are not affected by
the heterogeneity of a single locus. Hence, the results are
highly consistent across populations [11], which enhances
the likelihood of replication.

Gene-based methods have been successfully applied to
GWAS of complex diseases, including Crohn’s disease [7],
type 1 diabetes [12], and melanoma [8]. Despite the above-
noted features of the gene-based association approach, there
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are few comparisons of genetic association analyses between
SNP and gene-based methods. Here, we compare and relate
these two approaches using the data from the Study of
Addition: Genetics and Environment (SAGE) [13].

Recent studies show that there are many candidate
genes associated with substance dependence. For example,
GABRA2, CHRM2, ADH4, PKNOX2, GABRG3, TAS2R16,
SNCA, OPRK1, and PDYN are well studied for alcohol ad-
diction and have been replicated in many samples [13–
28]. However, other candidate genes, such as KIAA0040,
ALDH1A1, DKK2, and MANBA [25, 27, 29, 30], remain
illusive. For addiction to nicotine, CHRNA5, CHRNA3,
CHRNB4, and CSMD1 have been replicated in many studies
[31–39].

Based on the analysis of the SAGE data, we report a
number of susceptible loci at the SNP and/or gene levels,
which validate many susceptibility loci that have been
reported to be associated with substance dependence [13, 14,
25, 27, 29, 37, 38, 40–44]. Meanwhile, both SNP- and gene-
based analyses reveal three novel risk genes: NCK2, DSG3,
and PUSL1.

2. Materials and Methods

2.1. Dataset and Study Design. The dataset included 4,121
subjects in SAGE with six categories of substance dependence
data: alcohol, cocaine, marijuana, nicotine, opiates, and
other dependencies on drugs. The data were downloaded
from dbGaP (study accession phs000092.v1.p1) [13]. SAGE
[13] is a large case-control study which aims to detect
susceptible genetic variants for addition. The subjects were
recruited from eight study sites in seven states and the
District of Columbia in the United States. All subjects’ life
time dependencies on these six dependencies are diagnosed
by using the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV). All samples were geno-
typed on ILLUMINA Human 1 M platform at the Center for
Inherited Disease Research in Johns Hopkins University. In
this paper, we strictly followed the quality control/quality
assurance as we did in our previous analysis [14]. Genome-
wide SNP data were filtered by setting thresholds: MAF > 5%
and call rate > 90%. In addition, 60 duplicate genotype
samples and 9 individuals with ethnic backgrounds other
than African origin or European origin were excluded in
our analysis. Finally, 3,627 unrelated samples with 859,185
autosomal SNPs passed the quality control procedures. To
avoid population stratification, the dataset was stratified into
four subsamples: 1,393 white women, 1,131 white men, 568
black women, and 535 black men. To capture most of the
gene coding and regulatory variants, SNPs are considered
being mapped to a gene if their physical locations are
within 20 kilobases (kb) 5′ upstream and 10 kilobases (kb)
3′ downstream of gene coding regions [26]. In addition,
SNPs are also assigned to a gene if they are in strong LD
(r2 > 0.9) with the initially assigned SNPs within the gene
[10]. Together, around 533,639 SNPs were assigned to 18,699
protein coding genes (28.6 ± 47.7 (mean ± SD) SNPs per
gene).

Following the conventional standards, we used 5.0E − 8
and 2.5E − 6 as the genome-wide significant thresholds for
SNP-based and gene-based methods, respectively [4]. To
increase the power of detecting potentially important SNPs
that do not meet the stringent thresholds, we also considered
relaxed thresholds. Specifically, SNPs with P < 1.0E − 5
and genes P < 5.0E − 4 were considered further. These P
values are referred to as relaxed significance thresholds below.
The selected SNPs were then mapped into the corresponding
genes by the mapping rule proposed above.

2.2. Genetic Association Test at SNP and Gene Levels. We
took several steps in testing the associations between genetic
variants (SNP or gene) and substance dependenice. First,
the P value of each SNP was evaluated by the logistic
regression, and then the correlation coefficients (r2) of all
SNP pairs were calculated. The computation was performed
in PLINK software (version 1.07) [45]. In the second step,
we implemented the gene-based analysis in the open-source
tool: Knowledge-Based Mining System for Genome-Wide
Genetic Studies (KGG, version 2.0) [46] based on the
association test results and LD files obtained from PLINK.
Simes procedure (GATES) was employed in the gene-based
association test [7]. Specifically, assume that m SNPs are
assigned to a gene; an association test such as through the
traditional logistic regression or linear regression is used to
examine the association between the phenotype and each
single SNP. This step yields m P values for m SNPs. GATES
combines the available m P values within a gene by using
a modified Simes test to give a gene-based P value. The
summary P value is defined as

PG = Min

(
mep( j)

me( j)

)
, (1)

where p( j) is the jth smallest P value among the m SNPs;
me is the effective number of independent P values among
m SNPs within the gene, and me( j) is the effective number of
independent P values among the top j SNPs. The effective
number of independent P values was derived by accounting
for the LD structure among the specified SNPs; we refer to
[7] on the calculation.

In order to compare the performance of the SNP-based
and gene-based methods, in the SNP-based method, we
selected those SNPs whose P values were less than 1.0E − 5
and then mapped them into the corresponding genes. This
allows us to compare the susceptible genes identified by both
methods discussed above.

3. Results

3.1. Detecting Susceptibility Loci at the Relaxed Significance
Level. Table 1 summarizes the susceptible genes identified by
the SNP-based association test and gene-based association
test at the relaxed significance level. In total, 207 genes passed
the relaxed gene-based threshold, whereas only 64 genes with
SNPs passed the relaxed SNP-based threshold.

Next, we performed a literature search on the genetic
regions which contain the identified genes and filtered the
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Table 1: Summary statistics for susceptibility loci identified by gene-based method and SNP-based method.

Alcohol Cocaine Marijuana Nicotine Opiates Other

G S G S G S G S G S G S

Black men 4 3 4 1 6 2 5 2 8 2 9 5

Black women 4 3 8 5 9 3 7 3 3 1 6 3

White men 16 3 9 2 10 3 4 1 11 3 3 1

White women 20 5 12 2 10 2 11 1 4 5 24 3

G refers to gene-based method. S refers to SNP-based method.

Table 2: Summary of the candidate genes identified by the gene-based and SNP-based methods.

Chr Gene Source P value (gene-based)a Min P value (SNP-based)b Detected SDc Reported SD Reference

1 KIAA0040 White women 3.75E − 05 2.60E − 06 Alcohol Alcohol [27, 44]

2 HAAO White women 4.40E − 04 3.02E − 05 Cocaine Alcohol [41]

2 NCK2 Black men 2.70E − 06 1.10E − 07 Opiates NA NA

3 SH3BP5 White men 1.20E − 04 4.24E − 06 Cocaine Alcohol [13]

4 MANBA White men 4.63E − 04 3.47E − 05 Alcohol Alcohol [29]

7 RELN White men 8.53E − 04 5.32E − 06 Cocaine Smoking [37]

8 CSMD1 Black women 1.23E − 02 8.50E − 06 Nicotine Smoking [37, 38]

11 LRP5 White men 4.01E − 05 1.58E − 06 Opiates Smoking [42]

11 PKNOX2 White women 1.84E − 04 2.20E − 06 Alcohol Alcohol [13, 27, 41]

12 IFNG White women 1.16E − 04 1.57E − 05 Opiates Smoking [37]

18 FAM38B Black women 9.24E − 04 5.61E − 06 Cocaine Smoking [40]

18 PTPRM Black women 2.21E − 3 9.50E − 06 Marijuana Alcohol [43]

22 MAPK1 Black women 2.79E − 04 3.52E − 05 Marijuana Alcohol [25]
a
P value (gene-based): the P value obtained by the gene-based association test;

bmin P value (SNP-based): the minimal P value of the SNPs within the corresponding gene;
cSD: substance dependence.

susceptible genetic regions which have been reported to asso-
ciate with substance dependence for further investigation. In
Table 2, we listed the filtered genes, their associated substance
dependence type, the P values for the gene-based method,
the minimal P value of SNPs within a gene, and their
literature references and reported substance dependence.

In Figure 1, we plot the filtered genes obtained from
the SNP-based and gene-based analyses by the position on
the chromosomes against their log-transformed P values,
−log10(P). Each point for the SNP-based analysis in Figure 1
corresponds to the smallest SNP-based P value within the
gene.

Overall, five genes, NCK2 (opiates dependence in black
men), SH3BP5 (cocaine dependence in white men), LRP5
(opiates dependence in white men), KIAA0040 (alcohol
dependence in white women), and PKNOX2 (alcohol
dependence in white women), were identified by both the
SNP-based and gene-based methods as meeting either of
the relaxed significance levels for a specific dependence
and within a gender-racial group. Four genes, MAPK1
(marijuana dependence in black women), MANBA (alcohol
dependence in white men), HAAO (cocaine dependence
in white women), and IFNG (opiates dependence in white
women), met the threshold by the gene-based method only.
We found that the significant signal of gene MAPK1 was
mainly driven by SNPs: rs7290469 (P = 3.25E−5), rs9610271
(P = 4.19E − 5), rs9610417 (P = 5.38E − 5), and rs2876981
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Figure 1: Comparison of candidate genes associated with substance
dependence by the SNP- and gene-based analyses. A triangle
represents the −log10 transformed P value of the marked gene
from the gene-based analysis, and a dot represents the –log10
transformed the minimal P value of the SNPs within the marked
gene. The solid and dashed ones are the genome-wide thresholds of
SNP- and gene-based significance, respectively.

(P = 7.51E − 5). The P values for these SNPs are slightly
greater than the relaxed SNP-based threshold (P < 1.0E− 5),
and hence the SNP-based method failed to detect them.
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Table 3: Summary of genome-wide significant genes at the gene level (P value < 1.0E − 5) and their top SNPs with P value < 1.0E − 3.

Population Substance dependence Gene Gene’s P value Top SNPs SNP’s P value

Black men Opiates NCK2 2.70E − 06

rs2377339 1.10E − 07

rs7589342 1.45E − 04

rs12995333 1.89E − 04

rs12053259 2.31E − 04

rs6747023 3.90E − 04

rs879900 7.72E − 04

White men Nicotine DSG3 1.99E − 06

rs6701037 1.20E − 07

rs1057302 3.93E − 07

rs6425323 2.94E − 04

rs1057239 3.35E − 04

Furthermore, four other genes, FAM38B (cocaine depen-
dence in black women), PTPRM (marijuana dependence
in black women), CSMD1 (nicotine dependence in black
women), and RELN (cocaine dependence in white men),
contain at least one SNP that met the SNP-based relaxed
threshold of significance. The gene-based P values for
FAM38B, PTPRM, and RELN are 9.27E − 4, 2.21E − 3, and
8.53E − 4, respectively, which are greater than yet at the
same order as the relaxed threshold (P value < 5.0E − 4).
For CSMD1, 1,934 SNPs were mapped into it. Its signal was
mainly determined by only five SNPs: rs2624087 (P value =
8.50E − 6), rs4875371 (P value = 4.0E − 4), rs2623607
(P value = 6.89E−4), rs10503267 (P value = 7.22E−4), and
rs4875372 (P value = 8.18E − 4). Because there were only
5.3% of the SNPs (103 SNPs) with P value less than 0.05, the
overall association from the gene became less significant.

3.2. Genome-Wide Significant Loci. Since none of the SNPs
attained the genome-wide significance for any dependence
by the SNP-based method, in this section we will only focus
on the results from the gene-based method.

Table 3 presents the genes with gene-based P value <
1.0E−5. This method identified one genome-wide significant
gene, DSG3 (P value = 1.99E − 6) for nicotine dependence
in white men. The P value of gene NCK2: 2.70E − 6 is
very close to the genome-wide significant threshold, which
provided very strong evidence for the association of opiates
in black men. As shown in Table 3, both NCK2 and DSG3
contained SNPs with strong signals; they are rs2377339 (P
value = 1.09E−7) for NCK2 gene and rs6701037 (P value =
1.20E − 7) and rs1057302 (P value = 3.93E − 7) for DSG3
gene. However, none of these SNPs reached genome-wide
significance.

4. Discussion

In this paper, we thoroughly analyzed the SAGE data from
the SNP-based and gene-based methods, and compared the
results obtained from these two methods. Specifically, for
each sex-racial group, we performed association analysis for
the six categories of substance dependence separately. The
gene-based method appears to be more powerful in detecting
susceptibility loci.

Most of the genes identified in our study are supported
by various reports in the literature related to the genetics of
substance dependence [47, 48]. Based on some of the genes
that we identified, here common genetic variants among
different substance dependencies may exist [49].

Overall, we did not detect any genome-wide significant
SNP when using the SNPs-based method. However, one
gene, DSG3, is genome-wide significantly (P = 2.70E −
6) associated with nicotine dependence in the white men,
according to the gene-based method. Another gene, NCK2,
is nearly genome-wide significant (P = 2.7E − 6) in its
association with substance dependence.

The SNP-based method and gene-based method are
closely related. In fact, the SNP-based method can be viewed
as a gene-based method using the extreme function, namely,
the minimal P value of the SNPs within a gene, whereas
the typical gene-based method uses a weighted approach.
The advantages and limitations of these two approaches are
similar to those between the extreme function and a weighted
average.

We should point out that both the SNP-based and gene-
based methods have their own advantages and disadvantages.
The SNP-based method has its unique strength in identi-
fying genes with only a small number of significant SNPs.
However, since the SNP-based method focuses on a single
SNP at a time, it is less powerful to detect a gene whose
SNPs have weak marginal effects, but a strong joint effect.
In our analysis, 207 genes passed the relaxed gene-based
threshold, whereas only 64 genes passed the relaxed SNP-
based threshold.

Both the SNP-based and gene-based methods can be
conducted conveniently in commonly available software,
such as PLINK [45] for the SNP-based method and KGG
[46] for the gene-based method. For the SNP-based analysis,
PLINK is the most convenient platform. For the SAGE GWAS
data, it took about 25 minutes to do a genome-wide SNP
scan on a regular desktop computer (Intel Core 2, 4 GB
Memory). In our gene-based analysis, we used the SNP-based
association results and the linkage disequilibrium (LD) files
from PLINK as the input to the KGG software. After this
preparation, it took about 30 minutes to perform the gene-
based association scan with the same desktop as mentioned
above.
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