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Abstract

The pandemic coronavirus disease 2019 (COVID-19), caused by Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of

people worldwide. To date, there are no proven effective therapies for this

virus. Efforts made to develop antiviral strategies for the treatment of COVID-

19 are underway. Respiratory viral infections, such as influenza, predispose

patients to co-infections and these lead to increased disease severity and mor-

tality. Numerous types of antibiotics such as azithromycin have been employed

for the prevention and treatment of bacterial co-infection and secondary bacte-

rial infections in patients with a viral respiratory infection (e.g., SARS-CoV-2).

Although antibiotics do not directly affect SARS-CoV-2, viral respiratory infec-

tions often result in bacterial pneumonia. It is possible that some patients die

from bacterial co-infection rather than virus itself. To date, a considerable

number of bacterial strains have been resistant to various antibiotics such as
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azithromycin, and the overuse could render those or other antibiotics even less

effective. Therefore, bacterial co-infection and secondary bacterial infection are

considered critical risk factors for the severity and mortality rates of COVID-

19. Also, the antibiotic-resistant as a result of overusing must be considered.

In this review, we will summarize the bacterial co-infection and secondary bac-

terial infection in some featured respiratory viral infections, especially

COVID-19.
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1 | INTRODUCTION

The coronavirus disease 2019 (COVID-19) is an infectious
disease caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) that was first identified
in December 2019 in Wuhan, China, and is currently cir-
culating throughout the world.1 By July 5, 2020, more
than 11,125,245 million cases have been diagnosed in
216 countries, and more than 528,204 deaths have been
reported.2 The ongoing COVID-19 pandemic highlights
the critical need for rapid development of vaccines and
antiviral treatments to reduce the number of hospitaliza-
tions and deaths caused by this new dangerous coronavi-
rus.3 Co-infections and superinfections are common in
respiratory viral infections.4,5 According to the labora-
tory, clinical, and epidemiological studies, secondary
or bacterial co-infections with other viruses can signifi-
cantly increase the mortality rate in patients infected
with viral infections.6,7 It has previously documented that
the mortality rate of viral infections can be influenced by
different factors, such as bacterial co-infection.8–10 For
instance, influenza-related bacterial infections contribute
to severe illness and mortality during the epidemic
and seasonal influenza outbreaks.11 Some influenza-
related bacterial species include Streptococcus pyogenes,
Neisseria meningitidis, Moraxella catarrhalis, Streptococcus
pneumoniae, Haemophilus influenzae, and Staphylococcus
aureus.11–18 The mechanisms of severe complications cau-
sed by influenza-bacterial co-infections mainly include a
lack of effective immune response as well as pathogenic
synergy.5 Although multiple microbial agents can cause
acute lower respiratory tract infections, in most cases, the
disease is caused by viruses and bacteria at the same
time.19 Secondary and bacterial co-infections with pan-
demics and viral epidemics have irreversible consequences,
especially in high-risk groups, including those with immu-
nodeficiency or immunosuppression.20

Emerging evidence suggests that the number of
patients with COVID-19 diagnosed with bacterial

co-infections during hospitalization periods is increasingly
raised.21–23 The source and specific nature of these infec-
tions are yet to be fully explored, but there is some evi-
dence suggesting that multidrug-resistant bacteria are
among the pathogens that are thought to be responsible
for the development of these infections.21–23 Patients vul-
nerable to viral lung infections, such as influenza, severe
acute respiratory syndrome (SARS), and COVID-19 are
the greatest risk to be co-infected with superbugs.21–25

For example, the 2009 H1N1 influenza pandemic caused
approximately 300,000 deaths around the world in which
30–55% of cases die of bacterial pneumonia.26,27 It is now
known that viral infections can weaken the host immu-
nity, paving the way for the development of viral-bacterial
co-infection.28,29 The new coronavirus, COVID-19, is
another example of this fact as most of the hospitalized
patients with COVID-19 acquired a secondary bacterial
infection.30–32 In some severe form of SARS-CoV-2,
patients exhibited increased levels of infection-related bio-
markers and inflammatory cytokines, suggesting potential
bacterial co-infection as a result of the dysregulated
immune system.33 Besides, the emergence of antibiotic
resistance could be an additional burden for the health
care system as co-infection with coronavirus and pneumo-
nia stretches health care units beyond their capabilities
and resources. Understanding the mechanism underlying
the synergy between Covid-19 and bacteria paves the way
for the discovery of novel therapeutic agents to prevent
the mortality rate in patients co-infected with COVID-19
and bacteria. In the current situation, appropriate and sys-
tematic analysis of COVID-19 patients diagnosed with
bacterial co-infection should be implemented to choose
proper antibiotics to increase the survival of patients and
limit the spread of drug-resistant bacteria. The use of
rapid diagnostic tools and methods promoting the pre-
scription of effective narrow-spectrum antibiotics should
be taken into account. In this review, we will summarize
the current data available for bacterial infections in
patients with COVID-19.
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1.1 | Bacterial co-infection with viral
respiratory infections

Viral pneumonia and lower respiratory tract infections are
well characterized in adult patients, including those diag-
nosed with severe forms of viral infection.34 Most viral
lower respiratory tract infections seem to be acquired in the
community and considered a leading cause of infection
in patients who undergo mechanical ventilation.34 The
most common cases diagnosed with bacterial co-infection
with viral infections are seen in those infected with influ-
enza virus.27 The oldest report of bacterial infections that
occurred simultaneously or shortly after influenza is related
to the 1918 Influenza pandemic, in which most deaths
occurred as a result of co-infection with infectious bacte-
ria.35 Also, the H1N1 Influenza pandemic in 2009 was com-
plicated by bacterial pneumonia in 4–33% of hospitalized
patients.36–38 Bacterial-viral co-infection is not restricted
to influenza and also caused by other respiratory viruses,
such as parainfluenza virus, respiratory syncytial virus, ade-
novirus, rhinovirus, and human metapneumovirus.34,39,40

Despite the discovery of antibiotics and viral vaccines in
1918–1957, the mortality rate, resulting from secondary
bacterial pneumonia remained a major problem. The mor-
tality rate seems to be still growing mostly because of the
rapid rate of aging in the human population.41,42

Although viruses are commonly responsible for the
development of acute upper and lower respiratory infec-
tions, in most cases patients may be infected by both
bacterial and viral pathogens; however, the clinical mani-
festations at the early stages of the disease would not be
nosologically distinguishable for physicians to differen-
tially diagnose viral from a bacterial infection.43 Recently,
a group of respiratory emerging viruses has been identi-
fied, such as human coronavirus (HCoV), NL63, human
bocavirus, influenza viruses' type H1N1 and H5N1, SARS,
Middle East Respiratory Syndrome-related coronavirus
(MERS), and Covid-19.44–48 In children, atypical bacterial
pathogens, such as Legionella pneumophila, Mycoplasma
pneumoniae, and Chlamydophila pneumoniae include the
majority of infectious agents that cause mild, moderate,
or even severe forms of acute respiratory infections.49,50

Bacterial co-infections with respiratory viral pathogens
are very common, often through synergistic interaction
among viruses such as influenza virus, and bacterial path-
ogens and the host immune system of the human being;
nevertheless, the interaction between viruses and unusual
bacteria is not yet fully understood.50,51 These secondary
infections predominantly involve a specific group of
bacterial pathogens, such as S. aureus, S. pneumoniae,
S. pyogenes, and H. influenzae.11–18 A complete list of bac-
terial co-infections with viral pathogens is depicted in
Table 1.

1.2 | Viral predisposition to bacterial
co-infection in the respiratory tract

Commonly, viral infection can destroy histologically and
functionally the respiratory tract of individuals upon viral
spread.42 Depending on the type of the virus, the histo-
pathological outcomes could be relatively different from
mild types to severe ones. These detrimental changes
include altered mucus secretion, cell death, hyperplasia,
decreased mucosal clearance, reduced oxygen exchange,
and impaired surfactant secretion.42,77 Each of these
effects is caused by various molecular mechanisms,
depending on the virus, bacterial species, as well as the
degree of the host immune reaction to either a bacterium
or virus.42 It has been noted that viral infections promote
bacterial colonization of the airway through a variety of
mechanisms.42 Peltola and colleagues found that influ-
enza viruses can enhance the colonization of the naso-
pharynx by S. pneumoniae bacterium, however, only
particular subtypes were found to mediate the develop-
ment of bacterial otitis media and sinusitis.78 These data
explain why the rate of bacterial infection is high in influ-
enza seasons.42 The neuraminidase enzyme of the influ-
enza virus has been found to be presented on the host cell
receptors, and they are employed for the adherence of
bacteria due to its sialidase ability that changes the carbo-
hydrate moieties on the host epithelial cells.77,79 This
enzyme is also capable of increasing the possibility of bac-
terial adherence to the host cells through the stimulation
of transforming growth factor-beta (TGF-β) which triggers
the up-regulation of integrins and fibronectin. Integrins
and fibronectin have been shown to act as receptors
for bacteria.80 Besides, interferons (IFNs) induction of by
influenza virus can cause reduced C-C Motif Chemokine
Ligand 2 (CCL2) expression resulting in failed macro-
phages recruitment that necessary for clearance of
pneumococcal cells thereby enhance the colonization of
S. pneumoniae in vivo.81 Also, it has been found that the
influenza virus predisposes the host to develop pneumo-
nia caused by S. aureus where viral and bacterial loads
are increased during co-infection.52 It has been hypothe-
sized that viral load is increased following bacterial co-
infection because of increased shedding rate of the virus
from infected host cells; however, bacterial loads would
be elevated as a result of impaired function of alveolar
macrophages.82

Additionally, other upper respiratory tract viruses
increase the adherence ability of bacterial pathogens to pri-
mary and immortalized epithelial cells with particular dif-
ferences. Such differences are determined by the types of
epithelial cells and their response to parainfluenza virus-3,
respiratory syncytial virus, and/or influenza virus.83

Novotny et al84 showed that adenovirus and respiratory
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syncytial virus stimulated the expression of intercellular
adhesion molecule 1 (ICAM-1) by primary respiratory tract
epithelial cells. ICAM1 acts as a receptor for Type 4 pilus
(T4P) of non-typeable H. influenzae (NTHI), thus promot-
ing the binding of this pathogen to cells expressing
this molecule. Also, respiratory syncytial virus infection
increases the binding ability of P. aeruginosa to normal
epithelial cells, as well as cells affected by cystic fibrosis.
Such phenomena have been frequently employed by other

bacteria to increase their virulence to infect the cells.66

Studies have indicated that, following the infection with
the respiratory syncytial virus, the rate of the binding
of S. pneumoniae serotypes epithelial cells is increased
by 2–10 folds.85 Similarly, the antibody titers against
S. pneumoniae are elevated in the nasopharynx when the
cells co-infected with the respiratory syncytial virus, rhino-
virus, and community-acquired pneumonia.86 The higher
degree of colonization of nasopharynx with S. pneumoniae

TABLE 1 Common respiratory viral-bacterial coinfections and their associated clinical infections in human

Viral infection Bacterial coinfection Clinical infection References

Influenza Staphylococcus aureus, MRSA Community-acquired pneumonia, 18,52–57

Streptococcus pneumoniae Pneumococcal pneumonia, sepsis,
meningitis, otitis media

58

Streptococcus pyogenes (group A streptococci) Sepsis, pleural empyema 15

Haemophilus influenzae Pneumonia 59

Moraxella catarrhalis Pneumonia and bacteremia 60,61

Neisseria meningitidis Meningococcemia 62,63

Chlamydophila pneumoniae Pneumonia 64

Mycoplasma pneumoniae Pneumonia 64

Legionella pneumophila, Klebsiella
pneumoniae, Pseudomonas aeruginosa,
Acinetobacter baumannii, Burkholderia
cepacia, Enterobacter aerogenes

Pneumonia 57

Metapneumovirus Haemophilus influenzae, enterococcus spp,
N. meningitidis group B, Brucella spp,
Streptococcus pyogenes, Streptococcus
pneumoniae

Acute otitis media, pneumonia 65

Respiratory syncytial
virus

Pseudomonas aeruginosa Respiratory infections in cystic fibrosis
patients

66,67

Adenovirus Non-typeable Haemophilus influenzae,
Chlamydia trachomatis

Pneumonia or acute otitis media 68

Parainfluenza Streptococcus pneumonia, Streptococcus
agalactiae,

Haemophilus influenza

Acute otitis media, pneumonia 69,70

Rhinovirus Streptococcus pneumonia,
Mycoplasma

Pneumonia 50

Staphylococcus aureus Respiratory complications 71

SARS Chlamydophila pneumonia
Mycoplasma pneumonia

Pneumonia 72

MRSA Pneumonia 73,74

MERS Mycobacterium tuberculosis Immune suppression and augment the
infection of each other

75

Mycoplasma spp.
Legionella
Chlamydia spp.

Not reported 76

Abbreviations: MERS, Middle East respiratory syndrome; MRSA, methicillin-resistant Staphylococcus aureus; SARS, severe acute respiratory
syndrome.
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is also found when the individuals are co-infected with
viral upper respiratory tract infection or human immuno-
deficiency virus infection.87

Bacterial and viral co-infection can alter some proper-
ties of the host mucosal immunity, leading to the failure
in controlling the replication of bacteria in this site.88,89

Some key findings are discussed here, including the influ-
ence of viral infection on phagocytic activity. The reduction
of alveolar macrophages by the influenza virus facilitates
bacterial co-infection.88,90 Several lines of evidence demon-
strated that 90% of resident alveolar macrophages were lost
in the early weeks after influenza infection through track-
ing dye-labeled alveolar macrophages,42 whereas 95% of
the initial bacterial inoculum was eliminated during 3 hr
by alveolar macrophages in non-influenza inoculated hosts.
Notably, in those cells co-infected with influenza virus
about 50% of the bacterial inoculum remained recover-
able.42 Also, it has been suggested that phagocyte activity,
along with the cell proliferation could be influenced by
viral infection. The infection of alveolar macrophages
with influenza causes a marked decrease in the level of
cytokines and chemokines, leading to decreased rates of
recruitment and stimulation of neutrophils.88 It may also
suppress the phagocytic bacterial clearance mediated to
nicotinamide adenine dinucleotide phosphate (NADPH),
thereby increasing the susceptibility to secondary bacterial
infection.91 As mentioned earlier, the dysregulation of pro-
inflammatory cytokine-induced by viral infection has been
shown to play an essential role in the susceptibility of
the cells to secondary bacterial infection. It is now known
that type 1 IFNs have antiviral and immune-stimulatory
properties and could have detrimental effects on human
cells when their expression is inappropriate and excessive.
It has been reported that IFNs play a fundamental role in
the production of anti-inflammatory cytokines, such as
interleukin (IL)-10 and IL-6, as well as the inhibition of
proinflammatory cytokines, linking the innate immunity to
adaptive immune responses, such as IL-17 and IL-23. They
also decrease the activity of macrophages, dendritic cells,
natural killer cells, along with the number of CD4- and
CD8-positive T cells, leading to the impaired eradication of
bacterial co-infection.79,92–94

Also, there are a number of mechanisms that are inde-
pendent of the phagocytosis process by which viral
host infection can predispose the human body to second-
ary bacterial co-infection. The production of antimicrobial
peptides (AMPs), such as lipocalin-2, cathelicidin,
Regenerating Islet Derived Protein 3 Beta (REG3B),
calprotectin, may be dysregulated by upper respiratory
tract viruses.94 The respiratory syncytial virus infection is
able to diminish the expression of human β-defensin-3
orthologue named chinchilla beta-defensin 1 when used
in vivo. Of note, con-infection with the respiratory

syncytial virus is capable of stimulating the viral load of
Nontypeable Haemophilus influenzae (NTHi) in the naso-
pharynx by 10–100 folds.95 The intranasal delivery of anti-
chinchilla beta-defensin 1, human β-defensin 3, or the
recombinant form of chinchilla beta-defensin 1 showed
that the disruption of the availability of even a single
innate immune effector could have a great impact on
bacterial load since the viral infection has a critical in
the loading of H. influenzae within the host airway.95

Some mechanisms by which viral respiratory infections
may predispose patients to bacterial infections to include
failure immune response, viral-induced changes in epithe-
lial cells, and the increased bacterial colonization34 and
summarize of the potential mechanisms responsible for
bacterial coinfection with viral respiratory infections is
depicted in Table 2.

1.3 | Coronaviruses influence on host
immune system

The human immune reaction to SARS-CoV-2 infection is
a two-step reaction that during the non-severe infection
phase, a particular adaptive immune reaction is neces-
sary to viral eradicate and prevent the disease from pro-
gressing to a severe phase.127,128 Hence, approaches to
increase immune reactions such as using anti-serum and
Pegylated IFNα are crucial at this phase.127,128 To provide
a protective immune reaction in the early phase, the
host must be in a good general health condition and have
a genetic background to be able to exhibit an acceptable
antiviral reaction. Genetic diversity is well known to
involve in particular changes in the host immune
response to various microbial pathogens.

There is few information about the initial events in
the process of virus elimination and inflammatory reac-
tions during SARS-CoV infection. However, the innate
immune reactions is mediated to the adaptive immunity
development and disease severity in SARS-CoV.129 Of
note, SARS-CoV evolved escape mechanisms to avoid
IFN responses in infected host cells. Besides, inflamma-
tory reactions are regulated by inflammatory cytokines
and chemokines such as IL-6, interferon-γ-inducible
protein-10 (IP-10), monocyte chemoattractant protein-1
(MCP-1) as well as the penetration of inflammatory cells
such as macrophages into infected host tissues.129 The
suppression of antiviral type I interferons is one of the
marked characteristics of SARS-CoV infection as well as
other group II coronaviruses including mouse hepatitis
virus.130 It has been shown that the formation of type I
interferons is impaired in host cells infected with SARS-
CoV, but pretreatment of cells with IFN suppresses the
growth of SARS-CoV.131,132 This shows that these viruses
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have developed mechanisms to overcome IFN responses
in infected cells. Type I interferons are rarely found in
acute SARS patients, and SARS-CoV is sensitive to

Pegylated IFN-α, as shown in in vivo murine models.133

Studies indicated that type I interferon suppression in
SARS-CoV-infected hosts is mediated by the inactivation

TABLE 2 Summary of the potential mechanisms responsible for the bacterial coinfection with viral respiratory infections

Mechanism Description References

Elevation in bacterial adherence due
to viral infection

Virus can modulate surface membrane
receptors, thereby enhancing
bacterial adhesion

16,96–98

Cell destruction by viral enzymes Viral enzymes destroy mucosal
glycoproteins, mainly those inhibiting
bacterial attachment

98,99

Reduction of mucociliary clearance Virus can reduce mucociliary clearance
leading to the decreased production
of bactericidal materials

100

Reduction in chemotaxis Virus can decrease the chemotactic
factors, leading to the reduced cell
response to attacking organisms

101

Direct effect on phagocytic and
induction of post phagocytic
alveolar macrophage functions

Virus hinders or modifies a number of
immune functions, such as
phagosome-lysosome fusion and
intracellular killing

102,103

Induction of immature phagocytes Virus can disrupt macrophages and
probably replace them with immature
phagocytes

98,104,105

Reduction of surfactant levels Virus impairs the function of alveolar
type-2 pneumocyte

98,106,107

Induction of dysbiosis in lower
respiratory tract microbiome

Microbiome dysbiosis can affect the
immune response against respiratory
viral infection

108

Dysregulation of the innate and
adaptive immune responses

Virus decreases the number of alveolar
macrophages through the
development of apoptosis

42,88,90,91

Modulation of apoptosis and
inflammation

Autophagy and apoptosis facilitates
secondary bacterial pneumonia after
viral infection

109

Reduction of antibacterial immune
function at the respiratory
epithelium

Respiratory viral infection leads to the
predisposition to secondary bacterial
infection via the deviation of the
respiratory tract immune status

110–115

Dysregulation of nutritional
immunity

Some viruses can subvert nutritional
protection to promote bacterial
infection

116–118

Immunosuppression Immunosuppression is induced by
several viruses such as HIV

119–121

Synergism during viral/bacterial co-
infections

Both viruses and bacteria play a role in
the immunopathogenicity of co-
infection

8,122,123

Release of planktonic bacteria from
biofilms

Viruses can manipulate many factors
such as chemokines and hydrogen
peroxide, thereby leading to the
disruption of biofilm structure

42,124–126

Abbreviation: HIV, human immunodeficiency viruses.
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of the IRF-3 (interferon regulatory factor 3) protein, a
transcriptional factor that controls the transcription of
interferons.132 Also, other SARS-CoV accessory proteins
act as powerful interferon antagonists through various
strategies.129 For instance, N proteins inhibit the expres-
sion of interferons, whereas open-reading frame 3b and
6 proteins oppress the signaling pathway and expression
of interferons.129 Also, open-reading frame 6 proteins can
halt the translocation of signal transducer and activator
of transcription 1 (STAT1). The open-reading frame 3b
protein is a shuttling protein, impeding the stimulation
of type I interferon, which is triggered by retinoic acid-
inducible gene 1 (RIG-I) and mitochondrial antiviral-
signaling (MAVS) protein.134 Additionally, M proteins
suppress the production of type I interferon by inhibiting
the generation of the TNF Receptor Associated Factor
3 (TRAF3)–TRAF Family Member Associated NFKB
Activator (TANK) – TANK binding kinase 1 (TBK1)/IκB
kinase ε (IKKε) complex.134 Besides, SARS-CoV NSP1
proteins are able to halt the expression of IFN-β in host
cells by promoting the degradation of the host mRNA and
the suppression of the translation process.135 A polyprotein
complex of SARS-CoV named papain-like protease is able
to inhibit the phosphorylation and nuclear translocation
of IRF-3, resulting in disrupting the activation of type I
IFN response via either Toll-like receptor 3 (TLR-3) or
RIG-1/melanoma differentiation-associated gene 5 (MDA5)
complex.136 Also, infected cells with SARS-CoV can stimu-
late the expression of protein kinase R (PKR) and PKR-like
endoplasmic reticulum kinase (PERK).137

1.4 | Bacterial co-infection
with coronaviruses and COVID-19

Although numerous studies performed on viral and bac-
terial co-infections, little information exists about human
coronaviruses. In addition to seasonal influenza, it has
been reported corona pathogens of pneumonia include
coronavirus 229E, NL63, OC43, SARS, MERS, and SARS-
CoV-2. These viruses can cause co-infection in the setting
of community-acquired bacterial pneumonia.138–141

Human coronavirus NL63 (HCoV-NL63) has been
recently discovered as a human respiratory pathogen
with a high worldwide prevalence.142,143 Arguably,
HCoV-NL63 is among the most clinically significant
human coronaviruses and associated with upper and
lower respiratory tract infections, frequently occurring
in the winter and presenting more severe symptoms
in children, the elderly, and immunocompromised
patients.142–144 In a study conducted by Golda et al.,143

they evaluated the impact of HCoV-NL63 on bacterial
adherence causing respiratory tract diseases. HCoV-NL63

infection has been shown to enhance the adherence of
S. pneumoniae to cells infected with the virus.143 In one
study, Zahariadis et al.72 showed the coinfection of SARS
patients with other pulmonary pathogens. They found
that 30 and 9% of cases with SARS were co-infected with
C. pneumoniae or M. pneumonia, respectively. Addition-
ally, Alfaraj et al.75 reported the coinfection of MERS-
CoV with tuberculosis (TB) in two cases. In a study car-
ried out by Wang et al.,145 they reported seven cases of
SARS-related deaths who developed a secondary bacterial
infection.

The COVID-19 pandemic caused a large number of
immunocompromised individuals to be hospitalized and
some reports indicated that some COVID-19 patients were
diagnosed with secondary infections.30–32 The specific
source and nature of these infections have not yet been
fully investigated; however, there is evidence indicating
that multidrug-resistant bacteria are among those microbes
responsible for the development of these secondary infec-
tions. In one study, five cases (5.1%) with bacterial co-
infections including Acinetobacter baumannii and Klebsiella
pneumoniae were found among 99 patients,146 while in
another study, four cases (9.8%) with secondary bacterial
infections were reported among 41 patients.147 In a study
performed by Zhang et al.,148 221 patients with SARS-
CoV-2 pneumonia were admitted to Zhongnan Hospital,
Wuhan, China. Among them, 25.8% (57/221) patients were
afflicted with co-infections, and among these patients with
co-infections, 29.8% (17/57) were co-infected with bacteria.
In a study conducted by Blasco et al.,149 they detected
one patient who was positive for M. pneumoniae coinfec-
tion among patients with COVID-19 pneumonia. Also,
Claire et al.150 reported a fatal case of necrotizing pneumo-
nia induced by Panton-Valentine leukocidin–secreting
S. aureus in a patient who was affected by COVID-19.

Some patients infected with SARS-CoV-2 showed the
increased levels of biomarkers and inflammatory cyto-
kines related to co-infection by bacteria, caused by dys-
regulation in the immune system.33 The management of
the severe form of SARS-CoV-2 is similar to most viral
pneumonia-causing respiratory failure. In a study carried
out by Bordi et al.,151 they detected M. pneumoniae in five
patients (4.0%), while only one patient was infected with
L. pneumophila and S. pneumoniae (0.8%), and mixed
infections were also observed in a small number of cases.
They found the importance of using a broad-spectrum
molecular diagnostic panel for rapid detection of the most
common respiratory pathogens to improve evaluation and
clinical management of patients with a respiratory syn-
drome consistent with COVID-19.151 A list of bacterial co-
infection with COVID-19 is depicted in Table 3.

One reason for this bacterial co-infection is due to
many hospital-associated bacteria being adapted to develop
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an infection in individuals with a weakened immune sys-
tem. It has been noted that the SARS-CoV-2 infection can
damage the cells and the lung infrastructure.160 Subse-
quently, the changed condition enables bacteria to increase
adherence and invasion (Figure 1). It has been found that
the mortality rate of viral pandemics is heavily impacted by
secondary bacterial infections with myriad numbers of peo-
ple in the 1918 influenza pandemic as well as the 2009 pan-
demic, who died from secondary bacterial infections rather
than the virus alone.26,27,161

Despite the proven significance of co-infections in the
severity of respiratory diseases, these kinds of infections
during large outbreaks of respiratory infections are under-
determined.162 For the precise diagnosis and evaluation of
co-infections during the COVID-19 pandemic, samples
must be taken longitudinally throughout the disease course
via techniques independent of the culture for identifying
mixed infections such as whole-genome metagenomics
(WGMs).162 Such works offer valuable monitoring findings
on co-infection pathogens and drug-resistance infections
resulting in improved antibiotic prescribing options.162

Zhou et al.163 found that in the current COVID-19 pan-
demic, 50% of patients who died from Covid-19 had bacte-
rial co-infections. Correspondingly, Chen et al.146 have
reported fungal and bacterial co-infections in patients with
COVID-19. COVID-19 patients are hospitalized on inva-
sive mechanical ventilation for a long time, leading to
higher chances of using a ventilator and hospital-acquired
infections.162 Thus, the rapid diagnosis of a broad range
of potential pathogens and antimicrobial resistances for
subsequent monitoring of co-infection would be crucial.
The metagenome of COVID-19 patients has shown
that Prevotella is a key player in immune response in a
Chinese study,156 while other opportunistic pathogens
were found in a study conducted in the USA.157–159,164

There is a wide range of bacterial pathogens including
Haemophilus, Lautropia, Prevotella have been detected as
co-infection in Brazil, China, and the USA.157–159,164

However, a further concern with the rapid expansion
of critical care capacity to manage SARS-CoV-2 can poten-
tially increase the rate of nosocomial infection within the
hospital environment.165 To date, although the role of viral
or bacterial co-infection in SARS-CoV-2 remains elusive,
only a few SARS-CoV-2 patients worldwide have had docu-
mented evidence of co-infection; however, there is still
a concern on this issue as many reports claim that a signifi-
cant proportion of COVID-19 patients developed bacterial
co-infections.

1.5 | The era of post-COVID-19
and antimicrobial resistance bacteria

It has been noted during the current pandemic, the antibi-
otic administration has been frequently used for COVID-
19 patients who were admitted to the intensive care
unit.165 While scientists attempt to understand and con-
trol the COVID-19 pandemic, it would be also critical to
prepare for the effect of the current and future viral pan-
demics on secondary bacterial infections, resulting in anti-
microbial resistance in the near future. In combination
with using an antimalarial drug, hydroxyl-chloroquine,
azithromycin has become a popular therapeutic option
for COVID-19 patients. Reports demonstrated that a com-
bination of hydroxyl-chloroquine and azithromycin was
effective for a large proportion of Covid-19 patients.166,167

It is hard to estimate how often this combination is
prescribed, but such a rate would be high enough to
cause a shortage of azithromycin. However, 30–40% of
common types of bacterial agents are already resistant to
azithromycin, and overuse could render this or other anti-
biotics even less effective.168 The findings could help
experts' advice on using the antibiotics in COVID-19
patients and help them to better understand the spread of

TABLE 3 List of bacterial co-infection with COVID-19

Bacterium Infection References

Staphylococcus
aureus

Necrotizing pneumonia 152

Mycoplasma
pneumoniae

Exacerbate clinical
symptoms, increase
morbidity and prolonged
intensive care unit stay

153

Legionella
pneumophila

Pneumonia 154

Enterobacter
cloacae

Pneumonia 155

Acinetobacter
baumannii

Pneumonia 146,155

Klebsiella
pneumoniae

Pneumonia 146

Mycoplasma
pneumoniae

Interstitial pneumonia 149

Mycoplasma
pneumoniae

Not reported 151

Legionella
pneumophila

Not reported 151

Streptococcus
pneumoniae

Not reported 151

Prevotella Not reported 156–158

Haemophilus Not reported 158,159

Lautropia Not reported 159

Cutibacterium Not reported 159

2104 MIRZAEI ET AL.



co-infections in hospitals and the mechanism of bacterial-
viral coinfection. One factor that involves in the antibiotic
resistance in bacterial co-infection is the widespread
use of antibiotics in COVID-19 patients. Emerging data
show that more than 90% of COVID-19 patients receive
antibacterial drugs.169,170 This rapid increase in antibiotic
administration can cause a strong selective pressure on
bacterial pathogens to evolve resistance leading to the
increased incidence of drug-resistant bacterial infections
in the years subsequent to the COVID-19 pandemic.
It was estimated that 10 million people could die from
an antibiotic-resistant bacterial infection in the year of
2050,171 but such prediction may be altered and shortened
because of the devastating impact of the COVID-19
pandemic on the usage of antibiotics, so this timeline

will almost have to be modified. Nevertheless, concerted
efforts must be made to better understand antibiotic
administration in COVID-19 patients. Antibiotics do not
directly act on viral infections but viral respiratory infec-
tions often lead to bacterial co-infections.30–32 The current
pandemic highlights the necessity for understanding the
complex relationship between viral and bacterial infec-
tions. Of note, in patients who have treated with high-
dose antibiotics may have more co-infections with drug-
resistant bacteria.

Additionally, a recent clinical trial conducted by Hagan
et al172 demonstrated that the use of broad-spectrum anti-
biotics (which led to depleting gut microbiota) decreased
and impaired the immune system's ability to generate
antibodies. Also, the current study shows that the use of

FIGURE 1 Postulated schematic of bacterial coinfection with SARS-CoV-2 infection. It has been proposed when SARS- CoV-2 infects

lung cells can damage the cells and the lung infrastructure.160 This situation attracts neutrophil and macrophages to the site of infection and

promoting the inflammation.160 Finally, the changed situation and epithelial damage can cause bacteria to adhere to and invasion of the

cells and proliferation. MQ, macrophage; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
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antibiotics perturbed bile acid metabolism and induced
inflammatory responses.173 Hence, improved functional
therapies, including antibiotics and alternative therapies as
well as the prediction of bacterial respiratory infections
using vaccines, should be regarded as potential therapeutic
approaches. Besides, standard guidelines should also be
established for the administration of the antibiotics. In
addition to the direct effect on drug-resistant bacteria as a
result of enhanced antibiotic administration, the transmis-
sion of drug-resistant bacteria through the medical system
should be taken into account. The COVID-19 pandemic
has highlighted the importance of vaccination, the need
for functional antimicrobials, as well as the necessity for
supporting research into the understanding and control of
co-infections. Rapid characterization of co-infection is
essential in the treatment of the most COVID-19 patients,
and could help to save lives, and will improve antimicro-
bial stewardship during the pandemic. Additionally, mixed
bacterial-viral infections can result in antibiotic treatment

failure. These observations show that a better understand-
ing of the underlying mechanisms will enable researchers
to design effective preventive and therapeutic options.
Several functional suggestions for management and control
of bacterial co-infection with COVID-19 are offered in
Table 4.

2 | CONCLUSION

Respiratory viruses such as SARS-CoV-2 are well-
characterized to cause severe disorders and pneumonia,
particularly in individuals with serious medical com-
orbidities and aged populations. Additionally, respiratory
virus infection could usually lead to enhanced suscepti-
bility to secondary bacterial infections. However, the
mechanisms responsible for bacterial-SARS-CoV-2 co-
infection require further study. It has been noted that an
elicited adaptive immune reaction toward viral infection
fails the reaction of the host innate immunity against bac-
terial infection. This situation can explain why bacterial
co-infections occur when the virus starts to be eradicated
from the lungs of patients with COVID-19. This is accom-
panied by a shift in phagocytic activity of lung cells that
mediate basal levels of innate protection via phagocytosis
and pro-inflammatory cytokines formation to cells better
attuned to antigen presentation and stimulation of adap-
tive immune reactions. Additionally, recently it has been
found the microbiome diversity shapes our immune sys-
tem. In line with this, the depletion of the gut microbiome
hinders the immune system's ability to create a humoral
response against viruses like the flu virus. However, this
novel paradigm ultimately allows the development of new
immune intervention approaches for the prevention and
management of viral-bacterial co-infections in COVID-19
patients. The COVID-19 pandemic reinforces the impor-
tance of preventative measures such as vaccination and
antimicrobial treatments in maintaining human health.
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