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ABSTRACT

In eukaryotes, 5′–3′ co-translation degradation ma-
chinery follows the last translating ribosome pro-
viding an in vivo footprint of its position. Thus,
5′ monophosphorylated (5′P) degradome sequenc-
ing, in addition to informing about RNA decay, also
provides information regarding ribosome dynam-
ics. Multiple experimental methods have been devel-
oped to investigate the mRNA degradome; however,
computational tools for their reproducible analysis
are lacking. Here, we present fivepseq: an easy-to-
use application for analysis and interactive visual-
ization of 5′P degradome data. This tool performs
both metagene- and gene-specific analysis, and en-
ables easy investigation of codon-specific ribosome
pauses. To demonstrate its ability to provide new bi-
ological information, we investigate gene-specific ri-
bosome pauses in Saccharomyces cerevisiae after
eIF5A depletion. In addition to identifying pauses at
expected codon motifs, we identify multiple genes
with strain-specific degradation frameshifts. To show
its wide applicability, we investigate 5′P degradome
from Arabidopsis thaliana and discover both motif-
specific ribosome protection associated with partic-
ular developmental stages and generally increased
ribosome protection at termination level associated
with age. Our work shows how the use of improved
analysis tools for the study of 5′P degradome can
significantly increase the biological information that
can be derived from such datasets and facilitate its
reproducible analysis.

INTRODUCTION

The functional status of living cells largely depends on reg-
ulation of the pool of translating mRNAs, realized via op-
posing mechanisms of transcription and RNA decay. In eu-
karyotes, general mRNA decay starts by poly(A) tail short-
ening followed by 5′–3′ or 3′–5′ decay (1). 5′–3′ decay,
whereby the exonuclease XRN1 degrades 5′ monophospho-

rylated (5′P) mRNA intermediates after decapping, is con-
sidered to be the main contributing factor in cytoplasmic
mRNA turnover (1). Although initially considered inde-
pendent events, multiple evidence has now demonstrated
that translation and mRNA decay are interconnected pro-
cesses and that co-translational mRNA degradation is a
general phenomenon (2–5). The interaction between the
translation and decay machinery occurs so close that the
positions of 5′P co-translational mRNA degradation in-
termediates can be used as a proxy for ribosome dynam-
ics, as we and others have shown in yeast (6–8) and plants
(4,9,10). In particular, XRN1-driven 5′–3′ mRNA degrada-
tion is linked to the movement of the last (most 5′) trans-
lating ribosome allowing to obtain an in vivo footprint of
the ribosome position. This interaction has been charac-
terized also at the structural level showing how mRNA is
channeled from the ribosome decoding site directly into the
active center of the exonuclease (11). Ribosome profiling,
a method based on cellular extraction followed by in vitro
RNA degradation and sequencing, is the current standard
to investigate genome-wide ribosome protection (12,13).
However, investigating the 5′P degradome is a very use-
ful complementary approach and allows to obtain a drug-
free measurement of in vivo ribosome position (omitting in
vitro RNA degradation) and to focus on those mRNAs
that are undergoing co-translational decay (3,8,14). 5′P de-
gradome sequencing thus enables enrichment for those ri-
bosome stalls that are associated with mRNA decay, and
it disentangles them from the general pool or from ribo-
somes identified in ribosome profiling (e.g. translating ri-
bosomes, ribosome stalls that can be resolved). Over the
years, multiple techniques have been developed to inves-
tigate 5′P mRNA degradation intermediates (6–8,15–18).
Methods such as GMUCT (genome-wide mapping of un-
capped and cleaved transcripts) (16,18) and PARE (parallel
analysis of RNA ends) (17) were originally developed to in-
vestigate endonucleolytic cleavage mediated by microRNA
(miRNA) in plants. Similar approaches have also been used
to investigate endonucleolytic cleavage in budding yeast.
To investigate the link between the ribosome position and
mRNA decay, we developed 5PSeq (6,7) and, more recently,
an improved version of this approach, HT-5PSeq (8). In-
terestingly, the re-analysis of 5′P data originally generated
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to investigate miRNA-mediated endonucleolytic cleavage
demonstrated that general 5′P degradome sequencing in-
forms about ribosome position also in plants (4,18,19). This
highlights that in addition to optimized experimental pro-
tocols for 5′P degradome sequencing (3–5,9), it is necessary
to develop reproducible and simplified computational pro-
tocols enabling the systematic study of 5′P mRNA degra-
dation intermediates in respect to the ribosome position.

However, analysis of 5′P degradome sequencing is not
trivial. It is commonly performed using custom scripts op-
timized for the methodology and the organism of interest
(3,7,9). Although sufficient to derive useful biological in-
formation, this makes it difficult to reproduce and share re-
sults. Additionally, it demands a high level of computational
competence and complicates the biological interpretation
by users with limited bioinformatics experience. Contrary
to the case of 5′P degradome sequencing, multiple pipelines
have been developed to analyze ribosome profiling data
(20–23). Those pipelines focus on identification of trans-
lational open reading frames (ORFs), differential expres-
sion at translational level and ribosome stalling, with the
assumption that ribosome protection fragments are mark-
ers of translational activity (12,20). A primary feature of ri-
bosome profiling pipelines is the ability to take into consid-
eration variable lengths of ribosome protected fragments,
which mostly range from 20 to 22 or 28 to 32 nt in length
(depending on factors, such as ribosome conformation and
use of translocation inhibitors, in vitro nuclease digestion,
sequence context, etc.) and to determine the positioning of
the fragments relative to ribosome peptidyl (P) and aminoa-
cyl (A) sites. This is usually performed by read stratifica-
tion by length, followed by alignment of same-length reads
relative to all the annotated start sites in the genome. The
resulting cumulative counts of read 5′ endpoints show a
peak at a certain distance from the start codon, which is
regarded as the P-site offset––the distance from read 5′ site
to the ribosome P site. This offset is computed either for the
most abundant read length or for several read lengths sep-
arately (20). Such preprocessing steps for read length selec-
tion and adjustment, although important for ribosome pro-
filing, are not relevant for 5′P mRNA degradome datasets,
as the latter usually produce longer reads [e.g. >50 nt (8)],
where only the 5′ site is functionally relevant, and do not
require 5′ adjustment (6–8). Thus, applying ribosome pro-
filing analysis tools to 5′P degradome sequencing data is
complex and would require computational preprocessing to
trim the reads to 28–32 nt, limiting the advantages of long-
read sequencing and requiring bioinformatics expertise. In
addition, there is no simple interactive application that al-
lows for easy exploration of 5′-3′ co-translational degrada-
tion profiles, something that is essential to facilitate biolog-
ical inference from 5′P degradome sequencing data.

Here, we present fivepseq, a simple Python-based stand-
alone command line application that performs comprehen-
sive analyses of 5′P degradome datasets and provides inter-
active visualization features for data exploration. Fivepseq
allows for reproducible analysis of 5′P degradome in re-
spect to translational features informing about ribosome
protection patterns in respect to ORFs and codons, at
genome-wide and gene-specific levels, and it is particularly
well suited for the identification of ribosome stalls asso-

ciated with mRNA decay. We demonstrate its applicabil-
ity by investigating 5′P degradome sequencing in budding
yeast and plants. Using this improved approach, we identify
gene- and codon-specific ribosome stalls after depletion of
eIF5A in budding yeast. In addition, we identify multiple
novel degradation frameshift events associated with strain-
specific ribosome stalling. Finally, we validate our compu-
tational analysis strategy in plants by Arabidopsis thaliana
investigating GMUCT 2.0 data in A. thaliana developmen-
tal stages. In addition to developmental stage- and codon-
specific regulation of translation elongation, we report a
clear increase of ribosome stalling at termination level in
an age-dependent manner.

MATERIALS AND METHODS

Implementation

Fivepseq is written in Python 2.7 and can be used with
Python 2.7 or 3.x in Unix operating systems. RNA sequenc-
ing, where 5′ endpoints have been captured, such as 5PSeq,
GMUCT, PARE, etc. or even ribosome profiling datasets
can be used for downstream analysis by fivepseq. The in-
put for the main fivepseq program is alignment and genome
sequence and annotation files. To ease the user experience,
we also provide a script that accepts raw read files as input,
and performs adapter trimming, removal of unique molec-
ular identifiers (UMIs), alignment, deduplication, etc. The
alignment files from the script can then be used as an input
to the main fivepseq application.

We used the Python plastid package (24) for retrieving
5′P counts in respect to annotated start and stop positions
of gene coding sequences (CDS). Protein coding genes (or
alternative features specified at input) are filtered based on
transcript attributes in the annotation files. The general dis-
tribution of 5′P counts is used to determine outliers. The
counts are assumed to fall within Poisson distribution with
the λ parameter defined as the mean of all the counts >0.
Counts that fall below nominal probability 0 defined by
Python package stats are considered as outliers and their
values are set to the lowest value among all the outliers. The
noise removal options are adjustable. Library size normal-
ization is performed accounting for preprocessed counts in
the coding regions, and counts are presented as reads per
million (RPM).

To obtain metagene counts, we query 100 nt (adjustable)
around start and stop positions and combine the position-
wise counts across all the genes. In order to find periodicity
patterns that could indicate co-translational generation of
the degradation fragments, we apply fast Fourier transfor-
mation (FFT) on the meta-counts. To obtain meta-count
vectors for FFT, we align the genes at the start or stop po-
sitions, then truncate all the genes to the 0.75 percentile of
lengths and add stretches of zeros to shorter genes. The re-
sulting equal length vectors are summed up at each position
and the resulting meta-vector is used for FFT analysis im-
plemented in the Python numpy package. The periodicity
values are determined by normalizing the number of waves
to the meta-vector length, and the absolute values of the
corresponding signals are taken as the measure of periodic-
ity strength. A signal-to-noise ratio is computed for the FFT
signal by dividing it by the mean of the rest of the signals,
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and the strongest periodicity statistics are stored as output.
To obtain frame preference statistics, we sum the counts
falling into the first (F0), the second (F1) and the third (F2)
nucleotide in each codon of all the genes. For each frame i,
the relative preference compared to the other two frames j
and k is computed as the frame protection index (FPI) with
the formula log22 × Fi/(Fj + Fk). Significance of differen-
tial preference between two frames is estimated by a t-test
comparing the log ratio of frame-specific counts. The same
calculations are also performed for each gene separately. All
the statistics are stored in text files, while the global FPI and
the maximum Bonferroni adjusted P-value for two possible
comparisons in each frame are displayed in the reports.

For each codon, we sum the counts at certain posi-
tions upstream from its first nucleotide in all the CDS re-
gions across the genome. By default, we store counts 30
nt upstream and 5 nt downstream (adjustable). For each
amino acid, we combine the counts for the set of codons
it is encoded by. The same computations are performed
for all combinations of two/three consecutive codons (or
di/tripeptides), taking the relative positions of 5′P counts
from the first nucleotide of the first codon. The di/tricodons
and di/tripeptides are then filtered to include the top 50 mo-
tifs with highest relative counts at positions −14 and −11
nt (adjustable) compared to background distribution in the
given region (−30 to +5 nt).

We use the Python bokeh package (v1.0.4) (25) to visual-
ize the counts and statistics obtained above and export to
images (.png and .svg) and HTML formatted report files.
We use the interactive bokeh tools for zooming and hover-
ing over features of interest and limiting the view to certain
samples.

Preprocessing

The input for fivepseq is alignment (.bam) files. To ease the
experience for the user, we also provide a script for prepro-
cessing of raw (.fastq) files and (.bam) alignment file gen-
eration (https://github.com/lilit-nersisyan/fivepseq/blob/
master/preprocess scripts/fivepseq preprocess.sh), which
performs (i) adapter trimming with cutadapt (26) (with
the standard Illumina adapter AGATCGGAAGAGCAC
and options –minimum-length 28 -e 0.2 -o 9 –nextseq-trim
20), (ii) extraction of UMIs with UMI-tools (27) (with the
option –bc-pattern NNNNNNNN), (iii) quality control
before and after fastq preprocessing with FastQC (https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/)
and MultiQC (28), (iv) reference index generation and
alignment with STAR (29) (with options –alignEndsType
Extend5pOfRead1 –outFilterMatchNminOverLread 0.9
–outFilterMultimapNmax 3 –alignIntronMax 2500), (v)
selection of primary alignments for multi-mapped reads
with SAMtools view program (30) (with the option -F
0x100) and indexing with SAMtools index program, (vi)
UMI-based removal of PCR duplicates with UMI-tools
(27), (vii) generation of read distribution statistics over dif-
ferent features (rRNA, mRNA, tRNA, snoRNA, snRNA,
ncRNA) with BEDTools intersect program (31) and (viii)
generation of lightweight 5′P endpoint distribution (.bed-
graph) files with BEDTools genomecov program (31) (with
options -bg -5 -strand +/−).

Datasets

The 5PSeq data from Saccharomyces cerevisiae with eIF5A
depletion (7) are available from the Gene Expression
Omnibus (GEO) under accession GSE91064 (replicates
GSM2420386, GSM2420387 and GSM2420390 presented
in the main figures). 5PSeq data for S. cerevisiae 3AT and
CHX treatments and randomly fragmented controls (3)
are available under accessions GSM1541731, GSM1541711
and GSM1541717. The A. thaliana GMUCT 2.0 dataset
was available from GSE72505 and the PARE dataset from
GSE77549 (9). R64-1-1 and TAIR10 assemblies were used
for S. cerevisiae and A. thaliana genomes. The fastq files
were preprocessed with the fivepseq preprocess.sh script
with its default parameters. UMI extraction and dedupli-
cation steps were skipped for the GMUCT 2.0 and PARE
datasets and adapter trimming was performed with the op-
tions -a TGGAATTCTCGGGTGCCAAGG –minimum-
length 20. Fivepseq reports were generated with fivepseq
version 1.0b5 with its default options.

Motif and frameshift analysis

Counts for the tripeptide motifs were taken from the tripep-
tide pauses.txt files in the fivepseq output. The relative
counts at position −11 nt over the background were consid-
ered to filter motifs with at least 3-fold enrichment. The logo
plots for common motifs were generated with the Seq2Logo
generator (32). Motif enrichment for frameshift analysis in
RNA sequences was performed with the MEME suite ver-
sion 5.1.1 (33) under one-order model of sequences, restrict-
ing motif length to 6–7 nt. Variable-nucleotide and out-of-
frame motifs were filtered out.

For comparison of gene-specific frame preferences, we
took statistics from the frame counts TERM.txt files in the
fivepseq output for the wild-type and the tif5A1–3 strains.
Only genes with at least 50 reads mapping to at least 30 po-
sitions were considered. We took the genes where the domi-
nant frame (the one with highest positive FPI) was the same
across all the replicates in each strain. Transcripts with a dif-
ferential frame preference computed in this manner were in-
vestigated further for a possible change in frame. The frame-
specific count line charts were produced in R by process-
ing the counts FULL LENGTH.txt output of fivepseq. The
counts along the gene body were averaged over a 90-nt win-
dow and then separated into a vector for each frame and
plotted as overlaid line charts. We then performed manual
selection of genes for which we could observe change in the
frame along the gene body consistently among the replicates
in each strain. We then plotted combined counts across the
replicates for the 13 genes chosen in this manner.

RESULTS

Fivepseq facilitates reproducible analysis of 5′P degradome
data

To address the current limitation of computational methods
to analyze and interpret 5′P mRNA degradome sequenc-
ing data, we developed fivepseq, a Python-based stand-
alone command line application that performs comprehen-
sive analyses of 5′P endpoint distribution and facilitates its

https://github.com/lilit-nersisyan/fivepseq/blob/master/preprocess_scripts/fivepseq_preprocess.sh
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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> fivepseq_preprocess.sh -f [FQ] -g [FA] -a [GFF] 
> fivepseq -b [BAM] -g [FA] -a [GFF] [optional args]

FASTQ

BAM

BEDGRAPH

f ivep s eq

preprocess
FASTA

GTF/GFF FASTA

GTF/GFF INTERACTIVE REPORTS

TEXT FILES

QUALITY IMAGES

optional

Figure 1. Schematic representation of the fivepseq workflow. The preprocessing steps generate alignment (.bam) files from raw reads (.fastq) and may
optionally be performed with the preprocessing script fivepseq preprocess.sh. It also produces lightweight files (.bedgraph) for visualization in genome
browsers. The main fivepseq workflow takes alignment and genome sequence and annotation files as input and generates interactive reports and publication
quality image files describing the translational features, as well as stores counts and statistics in text files suitable for downstream analysis.

biological interpretation. We designed fivepseq to generate
full reports regarding translational features with a single
command (‘fivepseq’) indicating the mapped reads, and the
sequence and annotated features of the genome of inter-
est (Figure 1). Although normally most users will already
have reads mapped to their genome of interest, to further
facilitate its usability we have also included an auxiliary
script (‘fivepseq preprocess.sh’) to perform all required pre-
processing steps from raw sequencing data (.fastq), such
as adapter and quality trimming, removal of PCR dupli-
cates to generation of alignment files (.bam) (see the ‘Mate-
rials and Methods’ section for details). This step also gen-
erates lightweight files (.bedgraph) to enable visualization
of the 5′P endpoints in a genome browser. To facilitate the
study of co-translational degradation features, fivepseq au-
tomatically masks reads mapping to rRNA, tRNA or non-
coding RNA (adjustable upon user input). With this infor-
mation, fivepseq generates interactive reports in HTML for-
mat (see the report links in the ‘Data Availability’ section),
providing tools for navigation, zooming, hovering and sam-
ple selection, using the bokeh package as framework (25).
To facilitate data sharing and downstream analysis, we have
designed fivepseq to output also text files with count dis-
tribution and statistics, and to generate publication quality
vector images.

In brief, fivepseq performs the following analysis. First,
we analyze the mapped reads to obtain 5′P count vectors in
respect to annotated start and stop positions of gene coding
sequences (CDS) using plastid as a framework and sum the
counts at each position across genes to obtain metagene in-
formation (Figure 2A) (24). As fivepseq has been designed
to investigate in vivo 5′–3′ footprints generated by the cel-
lular degradation machinery, we decided not to apply any
correction to the 5′ end position, unlike many ribosome pro-
filing approaches (12,20). We reasoned that any observed
variation will be caused by in vivo physiological variations
(not due to differential in vitro RNA digestion) and decided
to provide the user with real protection patterns to facilitate
the biological interpretation with no prior assumptions re-
garding fragment position relative to the ribosome. To avoid
potential distortions at metagene levels caused by outlier

reads, such as those originating from tRNA and snoRNAs,
we perform data cleaning and noise reduction steps, down-
scaling extremely high 5′P counts, which adds to robustness
of fivepseq.

As ribosomes move along the mRNAs one codon at a
time, we also analyze the presence of 3-nt periodicity and
frame preference in the 5′P degradome data. We sum the
counts falling into the first (F0), the second (F1) or the
third (F2) nucleotide of each codon in each gene and rep-
resent it as a histogram. To quantify variations in the ob-
served frame protection patterns, we also provide statis-
tics for frame protection––the FPI (see the ‘Materials and
Methods’ section) and a t-test p-value comparing counts in
each frame to the other two. In addition to global profiles,
5′P degradome sequencing can also provide gene-specific in-
formation. To achieve this, we transform the gene-specific
frame counts into 2D coordinates and visualize them with
triangle plots, where each point is a gene and each triangle
vertex a frame (Figure 2B). The higher the counts in frame
F0, F1 or F2, the closer is the point to the respective tri-
angle vertex. To provide a more sensitive measure of pres-
ence of periodic count patterns without restricting to 3 nt,
we also perform an FFT-based analysis. As anticipated, the
FFT analysis shows a clear periodicity peaking at 3 nt, as
expected from the protection patterns of a ribosome moving
one codon at a time (Figure 2B).

In addition to general ribosome protection patterns as-
sociated with translation initiation and termination, it is
also important to identify codon-specific protection pat-
terns arising in translation elongation. Context-dependent
ribosome protection (or stalling) can inform, for exam-
ple, about differential velocity for incorporation of certain
amino acids (3) or even interactions between the ribosome
exit tunnel and particular peptide sequences (7). This ef-
fect can be even more drastic when targeting amino acid
or tRNA metabolism (3,34). To aid in those analyses, we
compute the metagene profiles for 5′P endpoint positions
at a certain distance from the first nucleotide of each codon
or amino acid (see Figure 3A). We generate interactive line
charts for each individual codon (or amino acid) where sam-
ples are overlaid and specific samples may be interactively
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Figure 2. General 5′P degradome distribution in budding yeast. (A) For each transcript, fivepseq queries a region around the CDS start and stop codons
and gets a vector containing 5′P count information. These vectors are summed up to derive a metagene coverage around the start and stop codons. Library
size normalized counts are presented as RPM considering only those reads mapping in the coding regions. (B) Top: FFT analysis showing the strength
(y-axis) and periodicity (x-axis) values. Bottom: Histograms displaying the global frame preference for the first (F0), the second (F1) and the third (F2)
nucleotide of each codon. The FPI shows the strength of preference for each frame along with a t-test p-value comparing the counts to the other two
frames. (C) Frame preference values for each gene converted to 2D space in a triangle plot, where each point is a gene and its distance from the triangle
vertex is inversely proportional to respective frame preference. (D) Genome-wide frame preferences for a positive control, a CHX-treated sample and a
randomly fragmented negative control (3).

highlighted or hidden. We also summarize that informa-
tion in a heatmap to facilitate the comparison across codons
within a sample (Figure 3A). To ease comparison of trans-
lational features between samples, we also generate differ-
ential heatmaps for each sample pair, where the normal-
ized difference between counts at every position from each
codon is displayed (Figure 3B and C). As certain combina-
tions of codons or amino acids can also affect ribosome dy-
namics (35,36), we additionally analyzed the ribosome pro-
tection associated with the presence of two and three codon
combinations (and di/tripeptide) (Figure 3D and E).

Finally, as in some cases particular groups of genes dis-
play differential translational features, we allow for specifi-

cation of particular gene sets for detailed analysis using a
simple text input. This allows for easy comparison of ribo-
some protection signatures across gene sets and samples.

Global and gene-specific ribosome protection patterns upon
eIF5A depletion

Having developed the fivepseq program, we decided to
demonstrate its utility by re-analyzing our recent 5PSeq
data targeting the translation elongation factor eIF5A in S.
cerevisiae (7). eIF5A is thought to act in translation elon-
gation by binding the ribosome exit site (E-site) and pro-
moting peptide bond formation (37). In addition, the lack
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of eIF5A is known to increase ribosome stalling at proline
and stop codons (37–39). We analyzed 5PSeq data obtained
from thermosensitive yeast strains carrying one (tif1A-1)
or two (tif5A1–3) point mutations in the eIF5A gene (7).
As expected, we clearly see a 5′P peak 17 nt upstream from
the stop codon, indicating RNA decay fragments protected
by ribosomes stalled at termination (Figure 2A). This pro-
tection at termination was enhanced for both mutants and
led also to an increased protection 47 and 50 nt upstream
from the stop codon, indicating disomes stalled at the stop
codon. We also detected a clear protection pattern 14 nt up-
stream from the start codon for the tif5A1–3 mutant that
corresponds to ribosome stalling in the P site at the start
codon, in agreement with our previous finding (7). In addi-
tion to start and stop peaks, we also investigated the varia-
tion of 3-nt periodicity across strains, as it can provide in-
formation regarding translation elongation speed and co-
translational mRNA degradation sensitivity (3). To expand
our prior work, we quantitatively assess the presence and
compare the strength of genome-wide 3-nt periodicity ap-
plying FFT analysis. As seen in Figure 2B, the presence of
3-nt periodicity is apparent in all the three strains and in-
creases in the eIF5A mutants. Additionally, we can easily see
that the 5′ counts are accumulated in the second nucleotide
of each codon (F1), with counts significantly greater than
those in frames F0 and F2, and this effect was more appar-
ent in the eIF5A mutants (F1 FPI: 0.59 and 0.67 versus 0.55
in the wild type). This frame preference observed at meta-
gene level is not driven only by a few genes, as we can see
that gene-specific frame protection is generally skewed to-
ward F1 (Figure 2C). To demonstrate the general applicabil-
ity of these analyses, we also analyzed 5′P degradome after
stalling ribosomes with cycloheximide and using randomly
fragmented RNA as a negative control, where no apparent
3-nt periodicity was observed (Figure 2D).

Codon-specific ribosome protection patterns upon eIF5A de-
pletion

The role of eIF5A in translation elongation was initially
restricted to its ability to contribute to releasing ribosome
stalls at polyproline motifs (39). However, recent data show
that this role is not limited to polyproline motifs, but
also combinations of other amino acids, including proline,
glycine and charged amino acids (7,38). To investigate elon-
gation stalls in more detail, we first analyzed codon- and
amino acid-specific ribosome protection. To facilitate the
comparison of protection patterns for the same codon be-
tween different conditions, fivepseq generates differential
heatmaps, where only the difference of scaled counts be-
tween each pair of conditions is shown. For example, the
differential heatmap between the tif5A1–3 eIF5A mutant
(which displays a stronger phenotype compared to tif5A1–
1) and the wild type clearly reveals increased protection
not only at termination, but also at −17 and −14 nt from
proline (Figure 3B). Given the side chain structure of pro-
line, it induces ribosome stalls during peptide bond forma-
tion, which normally get alleviated by eIF5A (40), while the
pause at −11 nt could be explained by differential interac-
tion with the ribosome exit tunnel (7). Similar changes in

protection were also observed for glycine at position −14,
for arginine at −11, etc. These pauses suggest alleviation
of ribosome stalling by eIF5A when the amino acid has al-
ready been incorporated into the peptide chain and inter-
acts with the exit tunnel. To demonstrate the robustness of
this analysis, we also analyzed ribosome protection after
3AT treatment (3), which inhibits the histidine biosynthe-
sis pathway and induces drastic ribosome stalls at histidine
codons (Figure 3C). The heatmaps in Figure 3B and C also
show that it is easy to distinguish between different treat-
ments.

In addition to single amino acids, specific arrangement
of consecutive amino acids can also lead to ribosome stalls,
as the neighboring amino acids affect peptide bond forma-
tion or modulate interactions in the ribosome exit tunnel
(35). In other cases, specific codon motifs can change the
mRNA conformation, interfering with the decoding pro-
cess (36). To facilitate the exploration of this phenomenon,
we generate an automatic report investigating two or three
codon (or amino acid) combinations able to produce ribo-
some stalls. This analysis shows, for example, that the dipep-
tide GP (glycine–proline) induces pausing in the tif5A1–3
eIF5A mutant (Figure 3D). More pauses are observed at
tripeptide motifs both in the mutants and in the wild type.
For example, DNP (Asp–Asn–Pro) shows the strongest stall
in the tif5A1–3 mutant (Figure 3E). Notably, the tripeptides
were enriched in prolines in the E and A sites, but other
amino acids such as aspartic acid and arginine were also
enriched in these positions. To further expand our analysis
and for more systematic characterization of the tripeptides,
we focused on those motifs for which >3-fold increase in
−11 counts was observed. Seven motifs were common in all
the samples, while the majority were specific to the mutants.
Interestingly, there were also motifs that showed 3-fold in-
crease only in the wild type (Figure 3F and Supplementary
Figure S1). Motif analysis showed enrichment of proline,
glycine and charged amino acids arginine and lysine in the
E and A sites in the eIF5A mutants, while in the wild-type
strain lysine and arginine were frequently observed in the E,
P and A sites, and glycine and glutamic acid mainly in the
A site (7).

Contribution of ribosome stalling and eIF5A depletion to ri-
bosome frameshifts

Having confirmed our ability to identify and expand known
eIF5A biology, we decided to use fivepseq to investigate
gene-specific regulation of ribosome protection patterns.
We wondered whether the changes in frame protection pat-
terns observed at global level (Figure 2B and C) could
also be detected at single-gene resolution, and whether mR-
NAs undergoing co-translational degradation presented
condition-specific changes in their frame preference. Tak-
ing the gene-specific frame preference statistics output of
fivepseq, we compared frame preference patterns between
the wild-type and the tif5A1–3 eIF5A mutant strains, re-
stricting ourselves to high-coverage genes (>50 reads dis-
tributed along at least 30 different nucleotides). In the wild-
type strain, we identified 32 genes with 5′P counts predomi-
nantly in the frame F0, and 13 genes in the frame F2. Inter-
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estingly, those same genes had the expected canonical pref-
erence for the frame F1 in the tif5A1–3 mutant (Supple-
mentary Table S1). In tif5A1–3, we identified fewer genes
with preference for F0 (six genes) and F2 (six genes), while
these same genes had F1 preference in the wild type (Sup-
plementary Table S1). To understand whether the observed
changes in frame preference could partially be explained by
ribosome frameshifts, we explored the line charts represent-
ing frame-specific counts along the bodies of these genes
and manually picked those that consistently changed the
frame of preference in the same position in all the replicates
for each strain. This resulted in 13 genes where mRNA co-
translational decay intermediates present likely ribosomal
frameshifts (RFs) in the wild type in the directions −1 (7
genes, Figure 4A) and +1 (6 genes, Figure 4B) (Supplemen-
tary Table S2).

As the orthologs or family members of some of these
genes were previously reported to experience ribosome
frameshifts (e.g. RPS11A in Schizosaccharomyces pombe;
see Supplementary Table S2), we decided to check for the
presence of known ‘slippery’ sequences that commonly pro-
mote RFs. First, we checked for six- and seven-nucleotide
motifs in the RNA sequences, and found enrichment for ly-
sine and arginine, in particular for the dicodon AAG-AAG
(P-value <10e−4, MEME suite; see the ‘Materials and
Methods’ section). Interestingly, di- and tripeptide motifs
enriched in Lys, Arg and Glu showed preferential stalling
specifically in the wild-type strains, with drastic stalling at
poly-lysines (Figure 3F and Supplementary Figure S1), sug-
gesting possible lack of these amino acids or respective tR-
NAs. The observed ribosome stalling in the wild-type strain
for those genes would lead to ribosome queuing and poten-
tially facilitate frameshifting around ‘slippery’ sequences,
as has recently been proposed in bacteria (41). Indeed, 8 out
of the 13 explored genes had slippery sites (C-TTC-AAG
and GCC-AAG-C) that are commonly inducing frameshifts
at ‘hungry’ lysine codons (42). The fact that stalling at poly-
lysines is preferentially occurring in the wild type [and not
the tif5A1–3 mutant (7)] suggests that the general decrease
in relative ribosome load in those genes in the eIF5A mu-
tant strain (7) reduces frequencies of ribosome collisions
and suppresses frameshifts. This observation might provide
functional relevance to the environmentally regulated stall
at SKE motifs (Ser–Lys–Glu) that we described previously
in the wild-type strains (7). Additionally, the observed en-
richment for Arg–Arg sequence AAG-AAG is also known
to induce frameshifting in E. coli, when the cognate tRNAs
are sparse (42,43) (Figure 4). Interestingly, all, except for
one, of the identified 13 genes code for ribosomal proteins
or regulate translation (Supplementary Table S2), suggest-
ing a possible regulatory role (44). Contrary to our expec-
tations, even if the eIF5A depletion leads to massive ribo-
some stalling at polyproline sequence, we were only able
to find a few examples where frameshift was induced by
eIF5A depletion (Supplementary Table S1). It is important
to note that here we focus on ribosome stalls associated with
mRNA degradation. Addition of cycloheximide in a wild-
type strain leading to massive accumulation of 5′P degrada-
tion intermediates masked the observed frameshifts. This
suggests that frameshifted transcripts are enriched in the
population of mRNA undergoing co-translational decay

(degradation frameshifts) and it does not necessarily mean
that the bulk of ribosomes in the cell experience the ob-
served frameshifts.

5′P degradome reveals codon-specific ribosome protection
patterns in plants

Having demonstrated the ability of fivepseq to identify
codon- and gene-specific ribosome protection patterns in
budding yeast, we decided to apply it to investigate 5′P de-
gradome in A. thaliana, an organism of higher complexity.
In plants, the cytoplasmic exonuclease XRN4 (ortholog of
the yeast XRN1) is responsible for the 5′–3′ co-translational
mRNA decay and can also be used to investigate ribo-
some protection (4,9). For this purpose, we decided to use
a rich GMUCT 2.0 dataset of developmental transitions in
A. thaliana (Poethig, Meyers, Willmann and McCormick,
GSE72505). This dataset was originally generated to study
miRNA regulation, and thus was never used to investigate
ribosome dynamics. In addition to this, we also explored the
PARE data from A. thaliana with fivepseq (9). However, the
use of MmeI during library generation introduces an ad-
ditional bias that complicates the investigation of codon-
specific patterns in these datasets (Supplementary Figure
S2).

We observed clear accumulation of 5′P endpoints 16 nt
upstream from the stop codons of all protein coding genes
indicating ribosome protection at termination (Figure 5A)
and a clear 3-nt periodicity (4,9). Interestingly, the protec-
tion at codons different from the stop is extended by an
additional nucleotide (17 nt, as observed in yeast) suggest-
ing that ribosomes stalled at termination level in A. thaliana
protect a region 1 nt shorter than in budding yeast. Glob-
ally, we observed a protection preference for the second nu-
cleotide of each codon (F1) (Figure 5B). The 3-nt patterns
were subtler compared to those observed in budding yeast,
which may be attributed to more complex biology in plants,
longer mRNA half-life [as we hypothesized for S. pombe
(3,8)] or differences in 5′P degradome library preparation.
Interestingly, we observed a clear regulation of 5′P accumu-
lation associated with the stop codon across developmental
stages, which suggests an increase of ribosome termination
stall with age (from day 6 to day 33 of growth). This effect
was not dependent on genotype (early flowering, flc-3, or
late flowering, FLC) or the tissue under study (cotyledons
from day 6, apices from days 9 and 11, and leaves from days
14, 23, 32 and 33) (Figure 5A). Increased termination stall
during A. thaliana development is in line with previously ob-
served reduction in polysome-associated mRNAs (45), and
the increased ribosome termination stalls that we previously
described in budding yeast during limited nutrient condi-
tions or stationary phase (3,8). Interestingly, apices showed
subtle preference for 5′P counts 17 nt upstream from the
stop codon, as opposed to the general −16 nt preference
in the other samples (Figure 5A and Supplementary Fig-
ure S3E). Contrary to previous findings suggesting differ-
ential protection for TAA and TAG stop codons (16 and
17 nt, respectively) (4), we observe similar preference for all
stop codons (TGA, TAG and TAA) (Supplementary Fig-
ure S3E). The coverage surrounding the start codon was
relatively low and thus limited our ability to study ribo-
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some protection patterns associated with translation initi-
ation (Figure 5A). This is likely the result of the poly(A) se-
lection strategy used to generate GMUCT 2.0 libraries that
biases read coverage toward 3′ ends of the genes (4,6,8).

Having investigated differential co-translational decay
associated with translation termination, we moved on to
explore differential ribosome protection during translation
elongation. Notably, for some amino acids, such as valine,
abundances of upstream 5′P reads and protection patterns
were similar across all the samples, whereas for others, such
as aspartic acid, a difference in 5′P read abundances was
present between leaves and apices (Figure 5C). This suggests
differential codon composition on mRNAs expressed at dif-
ferent stages as previously shown (46). At single amino acid
level, proline did not induce noticeable ribosome stalling.
However, the motifs of two or three codons/amino acids
associated with ribosome pausing showed enrichment for
proline, arginine and glycine, similar to what was observed
in yeast (Figure 5D and E, and Supplementary Figure S3A–
D). We confirmed accumulation of 5′P reads 14 nt upstream

of known inhibitory codon pairs, such as Arg–Arg and Arg–
Pro (Supplementary Figure S3A–C). In addition, we found
the Pro–Ala (CCC-GCC) and Asp–Pro–Ala (GAT-CCC-
GCC) motifs to be strongly associated with ribosome paus-
ing specifically in A. thaliana (Figure 5D and E). This paus-
ing was observed in all the samples and was codon depen-
dent. We also identified particular motifs where pausing was
associated with age. Specifically, the tripeptides Trp–Pro–
Gly (WPG) and Ile–Phe–Cys (IFC) (Figure 5F and G), and
the dicodon Gln–Leu (CAA-CTG) (Supplementary Fig-
ure S3D) showed increased stalling in earlier developmental
stages.

DISCUSSION

Here, we have presented the development of a repro-
ducible computational pipeline for 5′P degradome analy-
sis. Fivepseq performs comprehensive analyses of 5′P de-
gradome data in respect to translational features in a sin-
gle command line and allows for easy exploration of global
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Figure 5. Ribosome protection patterns in A. thaliana. (A) Metagene level protection patterns at start and stop. The stop peak at −17 nt is highlighted to
underline the increase in protection associated with growth. (B) Top: FFT analysis showing the strength (y-axis) and periodicity (x-axis) values. Bottom:
Histograms displaying the global frame preference for the first (F0), the second (F1) and the third (F2) nucleotide of each codon. The FPI shows the
strength of preference for each frame along with a t-test p-value comparing the counts to the other two frames. (C) Top: Uniform protection patterns at
valine across the samples. Bottom: Differential usage of aspartic acid in apices compared to leaves. (D) Pro–Ala codon pair leading to increased protection
at −14 nt in all the samples. (E) Asp–Pro–Ala tricodon motif leading to increased protection at −11 nt in all the samples. (F) The tripeptide Trp–Pro–Gly
leading to increased pausing at −11 nt in younger samples (days 6, 9, 11 and 14). (G) The Ile–Phe–Cys tripeptide causes ribosome pausing at −11 nt in all
the samples except for those grown until day 33.

and gene-specific translational frame preference and codon-
specific ribosome protection patterns. To facilitate its use by
scientists with limited bioinformatics expertise, we have ap-
plied interactive features provided by the bokeh package in
the visualization reports, which enable smooth exploratory
analysis, such as zooming and hovering over features of in-
terest or easy comparison between samples. In addition, we
have also implemented a rich variety of text output files de-
scribing count distributions and statistics that can be used
by more experienced computational biologists for advanced
downstream analysis. Fivepseq requires minimal data pre-
processing, and also provides a single command line option
to convert raw reads to alignment files before main analysis.

To demonstrate robustness and applicability of fivepseq,
we first re-analyzed previous data from our group focused
on the 5′P degradome sequencing in budding yeast after
eIF5A depletion (7). We could identify increased ribosome
protection at termination level and codon-specific ribosome
pauses such as DNP (Asp–Asn–Pro) and PPP (Pro–Pro–
Pro) associated with eIF5A depletion (7,38). In addition
to known eIF5A biology, our new single gene analysis is
able to identify novel features from the original dataset. We
identified 57 genes with anomalous frame protection pat-
terns in both the wild-type and the mutant strains. Analysis
of those data revealed evidence for degradation frameshift-
ing in 13 genes in the wild-type strain associated with the
ribosome and translational process. Interestingly, the ob-
served frameshifts were associated with combinatorial pres-

ence of arginine- and lysine-rich ‘slippery’ sequences and
KKK and RKK motifs that in the wild-type strain may in-
duce ribosome pausing (42,43). This result is in agreement
with recent reports showing how ribosome stalling can fa-
cilitate frameshifting events (41). Particularly interesting is
the case of the gene TMA46 that is associated with the reso-
lution of arginine and lysine stalls (14) and for which we also
identify a stall-dependent frameshift, thus suggesting a po-
tential cross-regulation between both processes. However,
it is important to note that 5′P degradome analysis focuses
on those molecules undergoing co-translational degrada-
tion that represent a subset of the mRNA molecules under-
going active translation. More detailed molecular analysis
will be required to investigate the potential functional role
of the observed frameshifts and to confirm whether this pro-
cess affects the bulk of the translating ribosomes or it is only
enriched in those molecules targeted for mRNA decay.

Finally, we demonstrate the flexibility of our computa-
tional pipeline by analyzing A. thaliana GMUCT 2.0 de-
gradome data, originally developed to investigate miRNA
regulation during development. In addition to previously
described general ribosome protection features (4,9), we
found both similarities and differences in respect to our
work in budding yeast. Even though in vivo 5′P codon-
specific ribosome footprints have a similar size between
yeast and A. thaliana, in the latter ribosome protection at
translation termination level is one nucleotide shorter (16
nt in plants in comparison to the 17 nt observed in yeast).
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Interestingly, we found that increased ribosome protection
at translation termination level increases with developmen-
tal stage. This phenomenon resembles our observation that
in budding yeast limited nutrition or stationary phase also
leads to an accumulation of ribosomes stalled at termina-
tion level (3,8). All this is in agreement with an expected
decrease in overall translation with age and suggests that
translation termination is often regulated (45). In addition
to this general regulation, we also identified codon-specific
ribosome pausing associated with specific developmental
stages.

In summary, our work shows how the development
of improved computational tools for the analysis of 5′P
degradome datasets is critical to derive novel biological
insights regarding the crosstalk between translation and
mRNA decay. We expect that fivepseq will facilitate the
analysis of 5′P degradome sequencing data across multiple
organisms and support its reproducible investigation.
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