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Abstract

Purpose: To validate the clinical applicability of knowledge‐based (KB) planning in

single‐isocenter volumetric‐modulated arc therapy (VMAT) for multiple brain metas-

tases using the k‐fold cross‐validation (CV) method.

Methods: This study comprised 60 consecutive patients with multiple brain metas-

tases treated with single‐isocenter VMAT (28 Gy in five fractions). The patients were

divided randomly into five groups (Groups 1–5). The data of Groups 1–4 were used

as the training and validation dataset and those of Group 5 were used as the testing

dataset. Four KB models were created from three of the training and validation

datasets and then applied to the remaining Groups as the fourfold CV phase. As the

testing phase, the final KB model was applied to Group 5 and the dose distributions

were calculated with a single optimization process. The dose‐volume indices (DVIs),

modified Ian Paddick Conformity Index (mIPCI), modulation complexity scores for

VMAT plans (MCSv), and the total number of monitor units (MUs) of the final KB

plan were compared to those of the clinical plan (CL) using a paired Wilcoxon

signed‐rank test.

Results: In the fourfold CV phase, no significant differences were observed in the DVIs

among the four KB plans (KBPs). In the testing phase, the final KB plan was statistically

equivalent to the CL, except for planning target volumes (PTVs) D2% and D50%. The dif-

ferences between the CL and KBP in terms of the PTV D99.5%, normal brain, and Dmax

to all organs at risk (OARs) were not significant. The KBP achieved a lower total num-

ber of MUs and higher MCSv than the CL with no significant difference.

Conclusions: We demonstrated that a KB model in a single‐isocenter VMAT for

multiple brain metastases was equivalent in dose distribution, MCSv, and total num-

ber of MUs to a CL with a single optimization.

K E Y WORD S

k‐fold cross‐validation, knowledge‐based planning, multiple brain metastases, single‐isocenter
VMAT

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.

Received: 27 November 2019 | Revised: 1 June 2020 | Accepted: 7 August 2020

DOI: 10.1002/acm2.13022

J Appl Clin Med Phys 2020; 21:10:141–150 wileyonlinelibrary.com/journal/jacmp | 141

mailto:
http://creativecommons.org/licenses/by/4.0/
http://www.wileyonlinelibrary.com/journal/JACMP


1 | INTRODUCTION

Brain metastases are the most common intracranial tumors, which

are present in approximately 2% of cancer patients at the time of

the primary diagnosis, with a prevalence ranging from 15% (small cell

lung cancer) to < 0.1% (prostate cancer) and a median overall sur-

vival of less than 1 yr.1 The incidence of brain metastases is

observed to increase because of the prevalence of magnetic reso-

nance imaging (MRI), which has improved the rates of detection.

Moreover, the development of systemic therapy has improved the

survival after the primary diagnosis of brain metastases. The stan-

dard treatment strategy for multiple brain metastases is whole‐brain
radiotherapy (WBRT); however, WBRT leads to the deterioration of

neurocognitive function and patient quality of life.2

Stereotactic radiosurgery (SRS) is an irradiation technique that

requires the precise fixation of the patient, localization of the target,

and the application of highly biologically effective radiation doses.3

Using SRS, the irradiated dose to the normal brain can be reduced,

and re‐irradiation can be considered even in post‐SRS patients who

experience intracranial recurrence. In patients with 1–4 brain metas-

tases, SRS causes lesser neurocognitive deterioration compared to

SRS plus WBRT; additionally, there is no difference in the overall

survival between the SRS and SRS plus WBRT.4–6 Although the clini-

cal advantage of SRS over WBRT is controversial in patients with

more than four brain metastases, SRS is considered an effective and

safe treatment option, especially in patients with a favorable progno-

sis.7

Linac‐based single‐isocenter volumetric‐modulated arc therapy

(VMAT) can accomplish clinically equivalent dose distributions to

gamma knife radiosurgery, but with a reduced delivery time.8 How-

ever, the treatment planning of single‐isocenter VMAT for multiple

brain metastases is generally time‐ and resource‐intensive. When

performing the optimization, planners manually determine the opti-

mization parameters; nevertheless, it is cumbersome to identify the

optimization parameters due to the presence of multiple target vol-

umes with different sizes and characteristics. In addition, for one tar-

get located adjacent to another in the same plane, several

optimizations are required to minimize the dose spillage between the

target volumes; as there is no clearly defined goal, the process can

seem endless.

Recently, knowledge‐based (KB) planning has become available

for clinical use as a tool assisting inverse planning.9 KB planning uses

databases constructed according to the anatomical positions and

doses of previously treated patients and establishes a machine‐
learned model for dose‐volume histogram (DVH) estimation. The

model estimates DVHs to create treatment plans for new patients. A

recently published review paper showed that, generally, KB models

produce plans of comparable quality to those of expert planners,

while also reducing the time and effort required to generate plans

for various disease sites.9

When verifying machine‐learned models, the predictive perfor-

mance of the models should be evaluated on unseen data.10 The

hold‐out validation method is a simple approach for model

evaluation where the data are categorized into two subsamples:

training and testing. However, this method is prone to subsample

bias and is inadequate for small sample sizes. The k‐fold cross‐valida-
tion (CV) method is another technique for the evaluation and com-

parison of machine‐learned models. The k‐fold CV method splits the

data into k equal sized subgroups; one subgroup is used as a valida-

tion group and the remaining subgroups are used as a training data-

set. With k‐fold CV, the whole dataset can be used for both training

and validation, and this method is affected by pessimistic bias in a

lesser manner, compared to the hold‐out method. In general, k‐fold
CV is usually considered as the preferred method because it allows

the model to train via multiple train‐test splits providing a better

indication of how well the model will perform on unseen data. Most

studies on KB planning employed the hold‐out method for prostate/

uterine cancer, head and neck cancer, and lung, liver, and primary

brain tumors.11–15 To date, however, there has been insufficient lit-

erature comparing the performance of KB models through k‐fold CV,

or on the application of KB planning to multiple brain metastases.

The purpose of this study was to validate the clinical applicability

of KB planning in single‐isocenter VMAT for multiple brain metas-

tases using the k‐fold CV method.

2 | METHODS

2.A | Patients

This study included 60 consecutive patients with multiple brain

metastases treated using single‐isocenter VMAT (28 Gy in five frac-

tions) in our institute from October 2015 to December 2018. The

study participants included 29 men and 31 women, with a median

age of 64 yr (range: 26–88 yr). In total, there were 317 multiple

brain metastases. The patients were divided equally and randomly

into five groups (Groups 1–5) using Python scripts (Python version

3.7).

This study was performed in accordance with the Declaration of

Helsinki (1975, as revised in 2013). Written informed consent was

obtained from all patients before initiating radiotherapy and the

Institutional Review Board of the Kyoto University Hospital

approved this study (R1446).

2.B | Treatment planning

On the day of CT, the patient’s head was immobilized with a ther-

moplastic mask in the supine position. Contrast‐enhanced computed

tomography (CECT) scans were acquired with the following imaging

parameters: a slice thickness of 1 or 1.25 mm (depending on the CT

scanner; SOMATOM Definition AS; Siemens Medical Systems, Erlan-

gen, Germany, and LightSpeed RT16; General Electric Medical Sys-

tems, Waukesha, WI, USA, respectively), a pixel matrix of

512 × 512 pixels, and a field of view of 400 mm. CECT was com-

bined with gadolinium‐enhanced T1‐weighted MRI with the images

obtained within 1 month prior to the CT simulation. The gross tumor

volume (GTV) was defined as the visible lesion on both the CT and
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MRI; no clinical target volume was defined. Planning target volumes

(PTVs) were defined by adding a margin of 1–2 mm to the GTV. The

median number of PTVs present in any plan was 4 (range: 2–18).
The organs at risk (OARs) included the normal brain (whole brain

minus the PTVs), brainstem, eyes, lens, optic nerves, chiasm, and skin

(defined as a structure cropped 5 mm from the body).

The isocenter was located at the center of all the PTVs. The

VMAT plans were created using 3–5 arcs, including 1 full coplanar

arc and 2–4 non‐coplanar partial arcs with a couch angle of ± 60°.

The collimator angle was manually selected depending on the size

and location of the target. Photon beam energies of six flattening fil-

ter‐free (FFF) and 10 FFF MV photon beams were used. All the

treatment plans were generated the Eclipse planning system (version

13; Varian Medical Systems, Palo Alto, CA, USA), delivered from a

TrueBeam STx instrument with a high‐definition 120‐leaf multileaf

collimator (MLC) (Varian Medical Systems). Dose calculations were

performed using Acuros XB (version 13.7; Varian Medical Systems)

with heterogeneity correction and a 1‐mm grid resolution.

Plan normalization was performed in a manner such that at least

99.5% of the prescribed dose (D99.5%) of 28 Gy (five fractions) was

generally delivered to each PTV. Plan optimization was performed so

that the near‐maximum dose (D2%) to all PTVs was around 40 Gy

(Per protocol, 135–150%) and the irradiated dose to the OARs was

as low as possible.

2.C | Model creation, evaluation, and selection

The fourfold CV method was used for model creation, evaluation,

and selection (Fig. 1). First, the dataset was split into two; Groups 1–
4 were used as the training and validation dataset and Group 5 as

the testing dataset (Table 1). Next, the model configuration and

hyperparameter setting were conducted using RapidPlanTM (version

13.7; Varian Medical Systems).16 RapidPlanTM is a machine learning

system based on the geometric relation of the structures and DVH.

As part of the model‐creating process, the dosimetric and geometric

data were extracted from the database to establish DVH estimation

models using regression techniques. In RapidPlanTM, there are mainly

two types of optimization objectives; a fixed objective and a line

objective. The former manually adds a fixed upper or lower dose or

volume, with a fixed priority or with a generated priority created by

the DVH estimation algorithm. Fixed objectives can be used for both

OARs and target structures. On the other hand, the latter generates

an estimated DVH range only for the OARs, which is also created by

the DVH estimation algorithm automatically. Using a line objective,

the optimization is performed so that the OAR will receive a dose as

low as the estimated DVH range. Therefore, the volumes, doses, and

priorities are automatically generated in a line objective.

Subsequently, four DVH estimation models were created from

the training and validation dataset with the determined hyperparam-

eter setting shown in Table 2: Model A (MA; Groups 2–4), Model B

(MB; Groups 1, 3, and 4), Model C (MC; Groups 1, 2, and 4), and

Model D (MD; Groups 1–3). MA, MB, MC, and MD were applied to

the remaining of the training and validation dataset. In the validation

phase, the generalization ability was assessed, which means that the

model from training data can reproduce an acceptable outcome

when applied to unseen data. The dose‐volume indices (DVIs) were

compared among four KB‐generated plans (KBP‐A1: MA applied to

Group 1; KBP‐B2: MB applied to Group 2; KBP‐C3: MC applied to

Group 3; and KBP‐D4: MD applied to Group 4). A lack of any statis-

tical difference among the DVIs of the four KB plans (KBPs) and a

D2% for all PTVs ranging from 130% to 155% of the prescribed dose

(clinically acceptable variation), was taken to indicate that the models

were not overfitted and had a good generalization performance.

Finally, in the testing phase, the accuracy of the created models

was focused upon. Model E (ME; Groups 1–4) was constructed using

all the training and validation datasets and the same hyperparameter

settings as shown in Table 2. ME was applied to Group 5 (indepen-

dent testing dataset), and a KBP (KBP‐E5) was then generated. A

lack of statistical difference between the DVIs extracted from the

KBP‐E5 and the CL of each corresponding PTV and each OAR in the

same patient was regarded to indicate that the KB models yielded

clinically acceptable plans.

2.D | KB‐generated plan optimization and dose
calculation

One optimization cycle was performed for each model without the

modification of the KB‐generated optimization objectives. Thereafter,

the dose distribution was calculated with the same beam arrange-

ment used in the CL and plan normalization was performed.

2.E | Evaluation indices

In the validation phase, the DVIs for the PTV (D2%, D50%, and

D99.5%), normal brain (V5 Gy, V10 Gy, V14 Gy, V20 Gy, and V28 Gy), and

the maximum dose (Dmax) to all OARs were compared among plans.

In the testing phase, in addition to the DVIs above, the Ian Pad-

dick Conformity Index (IPCI) was also employed to evaluate the dose

distributions.17 The definition of the IPCI is [TVPIV]
2/ [TV × PIV],

where the TVPIV is the target volume covered by the prescription

dose, TV is the target volume, and PIV is the prescription isodose

volume. For multiple targets, the modified IPCI (mIPCI) was defined

as ([TVPIV_sum]
2/ [TVsum × PIVsum]), where TVPIV_sum is the summed

target volumes enclosed by an isodose line of the prescription dose,

TVsum is the summed volume of all PTVs, and PIVsum is the summed

prescription isodose volume. The mIPCI had values in the range 0–1,
with the scores approaching 1 when PTVs were conformally covered

with isodoses of the prescription dose. The modulation complexity

scores for the VMAT plans (MCSv) and the total number of monitor

units (MUs) were used as additional metrics. The MCSv was calcu-

lated based on the leaf sequence variability (LSV) parameter and

aperture area variability.18 The LSV was defined for each control

point considering in each bank the differences in position between

adjacent MLC leaves. The MCSv demonstrated values in the range

0–1; additionally, the scores decreased when the modulation

increased.
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2.F | Statistical analysis

In the validation phase, the Friedman test was performed on the

DVIs of all the PTVs and OARs to determine if there is any differ-

ence between the KBP‐A1, B2, C3, and D4, followed by the

unpaired Wilcoxon signed‐rank test with Bonferroni correction for

multiple comparisons as a post hoc test. Meanwhile, in the testing

phase, a paired Wilcoxon signed‐rank test was used to evaluate the

significant differences between the CL and KBP‐E5 for each corre-

sponding PTVs and OAR in the same patient. The statistical signifi-

cance was set at P < 0.05. All statistical analyses were performed

using R software (version 3.5.1; R Development Core Team, Vienna,

Austria).

3 | RESULTS

3.A | Validation phase

In the fourfold CV phase, no significant difference was observed in

any DVI among the four KBPs. The details of the DVIs for all the

PTVs, normal brain, and other OARs between the four KB models

are shown in Fig. 2. The PTV D2% values ranged from 130.8% to

153.9% of the prescribed dose, within clinically acceptable varia-

tions; thus, it was confirmed that the KB model was not overfitted

and had a good generalization performance.

3.B | Testing phase

In the testing phase, the D2% of each PTV in KBP‐E5 (median,

137.2% [interquartile range (IQR), 2.4%]) was significantly higher

than that of the corresponding PTVs in the CL (median, 136.3%

[IQR, 9.6%]) (P = 0.005). The D50% of each PTV in KBP‐E5 was sig-

nificantly lower than that of the corresponding PTVs in the CL (me-

dian, 118.8% vs. 120.7% [IQR, 3.2% vs.4.6%]) (P = 0.02). The

differences of each PTV D99.5%, normal brain (V5 Gy, V10 Gy, V14 Gy,

V20 Gy, and V28 Gy), and Dmax to all OARs, were not significant in

terms of the CL and KBP‐E5 (P > 0.05). Figure 3 shows the scatter

plots of the DVIs of the PTV, normal brain, and other OARs for CL

and KBP‐E5.
The representative dose distributions of the CL and KBP‐E5 are

shown in Fig. 4. KBP‐E5 minimized the dose spillage between the

target volumes. The representative DVHs of the CL and KBP‐E5 are

shown in Fig. 5; the irradiated dose to the OARs was decreased and

the DVHs for each PTV was more uniform for KBP‐E5 than for the

CL.

Figure 6 shows the scatter plots of the mIPCI, MCSv, and the

total number of MUs for the CL and KBP‐E5. The scatter plots of

mIPCI and MCSv were above the diagonal line (y = x), indicating that

KBP‐E5 improved dose conformality and decreased modulation com-

plexity compared to the CL [Figs. 6(a) and 6(b)]; however, the differ-

ences were not significant (P > 0.05). The median values of mIPCI

F I G . 1 . Schematic of the fourfold cross‐
validation (CV) method; (a) dataset
splitting, (b) hyperparameter setting of
dose‐volume histogram (DVH) estimation
models created from three subgroups
(Models A ~ D) and model application to
the remaining subgroup, and (c) model
created based on all training and validation
datasets (Model E), and application thereof
to the testing dataset. Broken arrows
denote model creation and solid arrows
denote model application in (b) and (c).

TAB L E 1 Summary of each Group. The patients were divided randomly into five groups (Groups 1–5). The data of Groups 1–4 were used as
the training and validation dataset and those of Group 5 were used as the testing dataset.

Group Role Total number of PTVs
Number of PTVs per patient
[Median (min–max)]

Size (cm3)
[Median (min–max)]

1 Training/Validation 70 6 (2–12) 0.6 (0.1–12.3)

2 Training/Validation 57 3 (2–13) 0.6 (0.1–16.9)

3 Training/Validation 60 5 (2–14) 0.4 (0.1–12.9)

4 Training/Validation 62 4 (2–12) 0.5 (0.1–10.2)

5 Testing 68 4 (2–18) 0.5 (0.2–13.5)

Abbreviation: PTV, planning target volume.
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for KBP‐E5 and the CL were 0.808 (range: 0.561–0.916) and 0.774

(range: 0.550–0.876), respectively. The median values of MCSv for

KBP‐E5 and the CL were 0.078 (range: 0.040–0.204) and 0.071

(range: 0.042–0.176), respectively. Additionally, KBP‐E5 achieved a

lower total number of MUs (median, 2,428.5 MUs [range: 1,836.4–
4,054.7 MU]) than the CL (median, 2,532.3 MUs [range: 1,672.5–
4,292.9 MU]) [Fig. 6(c)], although the difference was not significant

(P > 0.05).

4 | DISCUSSION

To the best of our knowledge, this is the first study to assess the

performance of KBPs in single‐isocenter VMAT for multiple brain

metastases using the k‐fold CV method. The number of test samples

was almost equivalent to previous reports on KB planning.11–15,19 As

shown in Table 3, most previous studies employed the hold‐out
method; however, as described above, one disadvantage of this

method is that the performance evaluation is subject to a higher

variance given the smaller dataset, whereas multiple validations can

be performed using the k‐fold CV method to conclusively determine

the model overfitting. Using the k‐fold CV method, all of our KB

models yielded clinically acceptable plans with a single optimization.

KB planning, a machine‐learning tool for determining the best

practice based on past successful treatment plans, creates KB mod-

els for improving the treatment plans for future patients. It is impor-

tant to compare the performance of KB models in terms of

generalization. In this study, k‐fold CV was applied for model evalua-

tion and comparison. MA to MD were created with fixed parameters

and applied to different patients’ groups for performance evaluation.

The KB models were statistically equivalent after the adjustment of

learned and fixed optimization parameters, although the interquartile

ranges of the DVIs varied among them (Fig. 2). In the testing phase,

the DVIs for ME were compared to the CL. We found that the ME

generated statistically equivalent plans to the CL with a single opti-

mization, except for PTV D2%. For hyperparameter tuning, which is

equivalent to determining both mathematically learned objectives

and fixed optimization objectives using RapidPlanTM, there is no clear

rule that ensures the best performance. When comparing algorithms,

statistical tests such as the McNemar test and Cochran’s Q test are

commonly employed; however, it is impossible to obtain the “best”

treatment planning algorithm because the definition of “best” varies

according to clinical factors, such as the patient’s condition and

treatment preferences. Therefore, we used the DVIs of the CL as

the “best” outcome measures; the DVIs were compared between the

KBPs and the CL for model evaluation.

According to a review paper on KB planning, several researchers

achieved comparable, and often improved, VMAT plans using KBPs,

while also reducing the planning time and variation in the plan qual-

ity.9 We demonstrated that the PTV D2% for the KBP was signifi-

cantly higher than that for the CL, while achieving the same dose

conformality, and also that the radiation dose to the normal brain for

the KBP was similarly low to that of the CL in patients with 2–18
PTVs, with a single optimization. In brain SRS, a higher Dmax of the

PTVs is associated with an improved local control of the dose, and a

lower irradiated dose to the OARs with higher mIPCI values could

decrease the radiation necrosis. According to previous research, a

normal brain V14 Gy is a good indicator of radiation necrosis in

patients with large metastases after five‐fraction CyberKnife radio-

therapy (Accuray, Sunnyvale, CA, USA)20; however, such dose‐vol-
ume constraints would not always be applicable, depending on the

fractionation, target sizes, and the number of target volumes. During

the manual inverse planning of single‐isocenter VMAT SRS for multi-

ple brain metastases, it is difficult to set definitive clinical goals

because of such variations. With KB planning, the realistically achiev-

able dose distribution can be predicted and patients can receive

high‐quality treatment even with limited time and human resources.

Numerous parameters reveal the plan complexity, such as MCSv,

a modulation index, and the plan‐averaged modulation.18,21,22 The

MCSv was employed in this study as it allows for an effortless com-

parison to other studies. In the study by Masi et al.,19 the MCSv val-

ues were in the range 0.25–0.50 for the conventional VMAT plans.

TAB L E 2 Optimization objectives used in the model.

Structure Type Volume (%) Dose (cGy) Priority

Brain‐PTVs Line Generated Generated Generated

Brainstem Upper Generated 1000 Generated

Line Generated Generated Generated

Eyes Upper Generated 150 Generated

Line Generated Generated Generated

Lens Upper Generated 100 Generated

Optic nerves Upper Generated 200 Generated

Line Generated Generated Generated

Skin Line Generated Generated Generated

PTV Upper 0 3950 300

Upper 10 3850 Generated

Upper 30 3650 Generated

Upper 50 3450 Generated

Upper 70 3300 Generated

Upper 90 3050 200

Lower 0.5 3900 200

Lower 10 3800 Generated

Lower 30 3600 Generated

Lower 50 3400 Generated

Lower 70 3250 Generated

Lower 90 3000 Generated

Lower 99.5 2900 Generated

Lower 100 2850 Generated

Note: The line objective is a type of optimization objective and the val-

ues of volume, dose, and priority are automatically generated by Rapid-

PlanTM. Priorities are also generated in this study with respect to some

upper or lower objectives.

Abbreviations: Line, line objective; Lower, lower objective; PTV, planning

target volume; Upper, upper objective.
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Compared to this, our MCSv values for multiple brain metastases for

the CL were extremely low (range: 0.042–0.176), indicating more

complex MLC patterns compared to conventional VMAT plans. We

found that the MCSv values were slightly higher for the KBP than in

the CL [Fig. 6(b)] and fewer MUs were required [Fig. 6(c)]; thus, the

KB models provided plans that are less intensity‐modulated than

CLs.

Recently, the HyperArc (Varian Medical Systems) has been used

clinically for multiple brain metastases. HyperArc plans consist of a

maximum of three non‐coplanar arcs, based on four of five possible

fixed angular couch positions to be selected between (0°, ±45°,

+90°) and (0°, ±45°, −90°), with each arc having a fixed length of

180° and an automatically selected collimator angle. Several studies

have demonstrated the superiority of the HyperArc to single‐

F I G . 2 . The box‐and‐whisker plots of the
dose‐volume indices (DVIs) of (a) the
planning target volume (PTV), (b) normal
brain, and (c) other organs at risk (OARs):
comparison of KBP‐A1, B2, C3, and D4 in
the fourfold CV phase. The boxes
represent the interquartile range (IQR).
Low outliers are below the first quartile
minus 1.5 × IQR and high outliers are
above the third quartile plus 1.5 × IQR.
DXX% = the dose to XX% of the target
volume, VXXGy = the volume receiving XX
Gy, Dmax = the maximum dose to the
volume.
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F I G . 3 . The scatter plots and box‐and‐whisker plots of the DVIs of (a) the PTV, (b) normal brain, and (c) other OARs for clinical plan (CL) and
KBP‐E5 in the testing phase can be observed. The variation of the PTV in the KBP‐E5 was smaller than that of PTV in the CL. The plots of all
the OARs were along or below the diagonal line (y = x). Abbreviations are the same as in Fig. 2.
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isocenter VMAT in terms of the conformity and dose falloff.23,24 In

this study, the same beam parameters (beam gantry, couch, and colli-

mator angles) used in an approved CL were employed during the

testing phase; however, in a clinical situation, the beam arrangement

is determined through a process of trial and error, which is time con-

suming and affects the plan quality. As shown in the present and

previous studies,23,24 both KB planning and HyperArc are effective

in reducing doses to OARs while maintaining the target coverage for

F I G . 4 . The representative dose distributions of the CL and the knowledge‐based plan (KBP) for a patient with 16 PTVs. The modified Ian
Paddick Conformity Index (mIPCI) is shown in parentheses. The high‐dose spillage between the target volumes was minimized, as shown by
yellow arrows.

F I G . 5 . The representative DVHs of (a)
the CL and (b) KBP‐E5 for a patient with
16 PTVs; the brain PTVs are shown in
brown. The dose to the OARs was
decreased and the DVHs for each PTV
were more uniform for KBP‐E5 than for
the CL.
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multiple brain metastases. Both methods have advantages and disad-

vantages with respect to the optimization of parameters including

the number of arcs, collimator angle, couch angle, and arc lengths;

therefore, an approach combining the advantages of KB planning

and HyperArc would provide more conformal dose distributions in a

shorter planning time.

There were some notable limitations to this study. First, this

study was conducted retrospectively, and the KB models employed

were derived from the data of a single institution. To assess the

applicability of our model, the clinical data of other institutions, or of

different cohorts and beam arrangements, should be used prospec-

tively for external validation. Second, eligible patients can be treated

safely without any special effort to decrease the irradiated dose to

OARs other than the brain. Patients with a large target volume, prior

history of cranial irradiation, or a lesion located in or close to brain-

stem are treated with other fractionations in our institute; such

cases were not included in this study.

5 | CONCLUSIONS

We employed fourfold CV for the evaluation and selection of KB

models. Statistically equivalent models (between the CL and final KB

TAB L E 3 Summary of previous reports on knowledge‐based
planning. Most of the previous studies employed the hold‐out
method.

Disease
Training
samples

Testing
samples Validation

Chang et al.12 Nasopharynx 79 20 Hold‐out

Hussein et al.11 Prostate 40 10 Hold‐out

Uterus 37 10 Hold‐out

Chatterjee et al.13 Brain 82 21 (GBM) Hold‐out

24 (Others) Hold‐out

Faught et al.14 Lung 30 20 Hold‐out

Yu et al.15 Liver 30 and

60*
13 Hold‐out

Babier et al.19 Oropharynx 216 1 LOOCV

This study Multiple brain

metastases

48 12 4‐fold CV

Abbreviations: CV, cross‐validation; LOOCV, leave‐one‐out cross‐valida-
tion, GBM = Glioblastoma.
*Note: two models were constructed.

F I G . 6 . The scatter plots and box‐and‐whisker plots of (a) the
mIPCI, (b) modulation complexity scores for VMAT plans (MCSv) and
(c) monitor units (MUs) in the testing group. The scatter plots of
mIPCI and MCSv were above the diagonal line (y = x).
mIPCI = modified Ian Paddick Conformity Index. Note: The mIPCI
was defined as ([TVPIV_sum]

2/ [TVsum × PIVsum]); TVPIV_sum = the sum
of target volumes enclosed by an isodose line of the prescription
dose, TVsum = the sum of volume of all PTVs, PIVsum = the sum of
prescription isodose volume. The mIPCI approaching 1 means that
PTVs were conformally covered with the prescribed dose.

KISHI ET AL. | 149



model) were generated after the adjustment of learned and fixed

optimization parameters. After confirming the generalization perfor-

mance of the models, the final KB model was applied to the test

group. We demonstrated that the KB model in the single‐isocenter
VMAT for multiple brain metastases was equivalent in dose distribu-

tion, MCSv, and the total number of MUs to the CL with a single

optimization.
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