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Objective: Ischemic moyamoya (MMD) disease could alter the cerebral structure, but
little is known about the topological organization of the structural covariance network
(SCN). This study employed structural magnetic resonance imaging and graph theory
to evaluate SCN reorganization in ischemic MMD patients.

Method: Forty-nine stroke-free ischemic MMD patients and 49 well-matched healthy
controls (HCs) were examined by T1-MPRAGE imaging. Structural images were pre-
processed using the Computational Anatomy Toolbox 12 (CAT 12) based on the
diffeomorphic anatomical registration through exponentiated lie (DARTEL) algorithm and
both the global and regional SCN parameters were calculated and compared using the
Graph Analysis Toolbox (GAT).

Results: Most of the important metrics of global network organization, including
characteristic path length (Lp), clustering coefficient (Cp), assortativity, local efficiency,
and transitivity, were significantly reduced in MMD patients compared with HCs.
In addition, the regional betweenness centrality (BC) values of the bilateral medial
orbitofrontal cortices were significantly lower in MMD patients than in HCs after false
discovery rate (FDR) correction for multiple comparisons. The BC was also reduced in
the left medial superior frontal gyrus and hippocampus, and increased in the bilateral
middle cingulate gyri of patients, but these differences were not significant after FDR
correlation. No differences in network resilience were detected by targeted attack
analysis or random failure analysis.
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Conclusions: Both global and regional properties of the SCN are altered in MMD,
even in the absence of major stroke or hemorrhagic damage. Patients exhibit a less
optimal and more randomized SCN than HCs, and the nodal BC of the bilateral medial
orbitofrontal cortices is severely reduced. These changes may account for the cognitive
impairments in MMD patients.

Keywords: moyamoya disease, structural covariance network, graph theory, cerebral gray matter, voxel-based
morphometry

INTRODUCTION

Moyamoya disease (MMD) is a chronic cerebrovascular disorder
characterized by the progressive occlusion of terminal internal
carotid arteries and/or other large intracranial arteries, resulting
in the formation of collateral artery networks that manifest
as “puffs of smoke” on digital subtraction angiography (DSA)
(Suzuki and Takaku, 1969; Kuroda and Houkin, 2008; Scott and
Smith, 2009). The heterogeneous loci of these ischemic events
can result in a variety of distinct clinical symptoms, and these
often include various cognitive impairments that can increase
the difficulty of independent living (Festa et al., 2010; Gorelick
et al., 2011). Moreover, MMD can impair cognition even before
detectable ischemic events (Kazumata et al., 2015; Li et al., 2019).
The mechanisms contributing to these deficits remain to be
understood.

Over the last two decades, a multidisciplinary approach,
known as complex network analysis, has been applied
to demonstrate the important properties of connecting
patterns among these brain regions based on graph theory.
In this approach, nodes represent brain regions, while
edges/connections among nodes are defined by temporal
correlations on functional magnetic resonance imaging
(functional MRI, fMRI), morphological correlations on
structural MRI (sMRI), or tracing fibers on diffusion tensor
imaging (DTI) (Friston, 1994; Rubinov and Sporns, 2010).
Individual brain regions are connected according to network
topology rules that ideally optimize “small-worldness,” a
network property that maintains optimal balance between
local processing and global interaction, thereby facilitating
rapid synchronization and efficient information transfer
while minimizing wiring costs (Stam and Reijneveld, 2007;
Rubinov and Sporns, 2010). Maintaining this specific network
organization is crucial for higher-level cognitive function
requiring the integration of multimodal information and can
be altered by neural system diseases (Achard and Bullmore,
2007). Graphical analysis of brain structural covariance networks
(SCNs) (networks constructed based on statistical correlations of
the morphological indices among cerebral regions) can provide
comprehensive information at network level and provide clues
to neuropathological mechanisms. However, previous brain
morphological analyses of MMD mainly focused on the changes
in cortical volume/thickness and characteristics of atrophy (Qiao
et al., 2017; Su et al., 2019), leaving SCN unexplored.

In this study, we examined SCN changes in ischemic
MMD, focusing on patients without ischemic or hemorrhagic
stroke because the resulting cortical hemosiderosis and tissue
damage may complicate image analysis. We hypothesized that

ischemic MMD could alter and reorganize the intrinsic properties
of SCN, and that the disturbed connectivity among cortical
regions may be a potential mechanism of cognitive impairments
in MMD patients. To test these postulates, we used voxel-
based morphometry (VBM) based on diffeomorphic anatomical
registration through exponentiated lie (DARTEL) algorithm to
obtain precise gray matter (GM) images of ischemic MMD
patients and matched controls, and then used the Graph Analysis
Toolbox (GAT) (Hosseini et al., 2012) to construct SCNs and
identify differences in topological properties specific to MMD.

MATERIALS AND METHODS

Participants
This study was approved by the ethics committee of Beijing
Tiantan Hospital, Capital Medical University. All MMD patients
and healthy control participants were volunteers and provided
informed consent. Basic demographic information, such as age,
sex, and educational background, was obtained by interview.
The Suzuki stages (Suzuki and Takaku, 1969) and the Fazekas
scales (Fazekas et al., 1987) were quantified by radiologists based
on DSA/MRA and FLAIR images, respectively. From November
2018 to January 2021, 49 stroke-free ischemic MMD patients
were enrolled according to the following inclusion criteria: (1)
diagnosed with bilateral MMD according to the criteria of the
Research Committee on Spontaneous Occlusion of the Circle of
Willis; (2) over 18 years of age; (3) no evidence of intracerebral
hemorrhage or infarct larger than 8 mm on structural images;
(4) no cranial surgery prior to recruitment; (5) no history
of any other cognitive impairment diseases or drug use that
may alter cognitive function; (6) no MRI contraindications.
Forty-nine healthy controls (HCs) strictly matched for age, sex,
and educational background were recruited using the following
criteria: (1) no history of neurological, psychiatric, or cognitive
diseases; (2) no history of drug use that could alter cognitive
function; (3) no MRI contraindications.

Magnetic Resonance Imaging
Acquisition
Structural brain images were acquired at Beijing Tiantan Hospital
using an Ingenia 3.0 Tesla scanner (Philip Medical Systems,
Best, Netherlands) equipped with a 32-channel head coil. A T1-
weighted MPRAGE sequence with the following parameters was
used for all scans: TR 6.84 ms, TE 3.09 ms, flip angle 8◦, FOV
240 × 240 mm2, matrix 240×240, slice thickness 1.0 mm and
voxel size 1.0 × 1.0 × 1.0 mm3.
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Magnetic Resonance Imaging Image
Processing
T1-MPRAGE images were processed automatically using
the Computational Anatomy Toolbox 12 (CAT12) extension
of Statistical Parametric Mapping 12 (SPM12) running in
MATLAB (2018b, MathWorks, Natick, MA, United States).
Image processing steps included bias field correction, skull
dissection, alignment with the Montreal Neurological Institute
standard space (MNI-152 template), and segmentation into GM,
white matter (WM), and cerebrospinal fluid (CSF). A group-
specific template was generated using the DARTEL algorithm
(Ashburner, 2007). Segmented images in native space were
then subjected to non-linear warping and normalized to match
the DARTEL templates. During this procedure, images were
modulated to ensure preservation of relative GM and WM
volumes. Finally, the modulated and normalized images were
smoothed using an 8-mm full-width at half-maximum isotropic
Gaussian kernel.

Structural Covariance Network
Construction
Structural covariance networks were constructed using the Graph
Analysis Toolbox (GAT) (Hosseini et al., 2012). Images were first
parcellated using the Automated Anatomical Labelling (AAL)
template, and the 90 cortical and subcortical regions defined
by AAL were set as regions of interest (ROIs) for VBM. For
each group, regional GM volumes of the 90 ROIs were extracted
and a 90×90 association matrix was constructed by calculating
Pearson’s correlation coefficients between all ROI volumes. Total
intracranial volume (TIV) was set as a nuisance covariate and its
influence was removed by linear regression. The minimum edge
density was set at 0.27 (Dmin = 0.27) to ensure that the SCNs of
both groups were fully connected, while the maximum density
was set at 0.5 as greater density is considered non-biological
(Kaiser and Hilgetag, 2006; Hosseini et al., 2012). The SCN binary
matrix was then thresholded within this range of densities (from
0.27 to 0.5 at an interval of 0.01).

Two crucial network metrics, the clustering coefficient (Cp)
and the characteristic path length (Lp), were then calculated.
The Cp is a measure of functional segmentation obtained by
first counting the Cp of each node—the ratio of the existing
edges between its neighboring nodes to the maximal possible
number of edges between them—and then calculating the average
across all nodes (Watts and Strogatz, 1998; Rubinov and Sporns,
2010). The Lp is the most commonly used measure of functional
integration and is calculated as the average of the shortest path
length between all pairs of nodes in the network (Watts and
Strogatz, 1998; Rubinov and Sporns, 2010). These two metrics
were then divided by the Cp and Lp values of 20 random
null networks, termed Cprand and Lprand, respectively, to
obtain the normalized Cp (γ = Cp/Cprand) and normalized Lp
(λ = Lp/Lprand). The small-world index (σ = γ/λ) was then
calculated (Watts and Strogatz, 1998). A brain network with
γ > 1, and λ ≈ 1 or σ > 1, is deemed to possess small-world
properties (Rubinov and Sporns, 2010).

For global SCN analysis, the following additional network
metrics were also calculated: global efficiency, local efficiency,

assortativity, transitivity, and modularity. Global efficiency is
the average of the inverse of the shortest path length between
all nodes in the network (Latora and Marchiori, 2001). Local
efficiency is the average of the inverse of shortest path length
between adjacent nodes of each given node (Latora and
Marchiori, 2001; Vragovic et al., 2005). Assortativity reflects the
likelihood of node attachment to other network nodes with the
same degree (Newman, 2002), while transitivity, a variant of
the clustering coefficient, is a measure of network segregation
(Newman and Park, 2003). Modularity reflects the degree to
which the whole network can be divided into cliques, where a
clique is a cluster of densely interconnected nodes that are less
well-connected to other nodes and clusters (Girvan and Newman,
2002; Newman, 2006). Then, for regional SCN analysis, we
focused mainly on the normalized nodal betweenness coefficient
(BC), defined as the fraction of all shortest paths passing through
a given node normalized to the average BC of the entire network
(Freeman, 1977), as this metric reflects the importance of a
given node in controlling information flow. Finally, network
resilience reflects the tolerance to random failure and targeted
attack. It is measured by the change in the relative size of
the remaining connected components after removing individual
nodes randomly or in descending order of BC until all nodes are
removed (Achard et al., 2006).

Statistical Analysis
All basic variables (age, sex, and educational level) were
compared between groups using SPSS (Windows version 23.0,
IBM). Continuous variables are expressed as mean ± standard
deviation and categorical values as numbers (percentages).
Categorical variables were compared between groups by the
chi-square test, continuous variables by the Student’s t-test and
ranked data by the rank-sum test. A P < 0.05 was considered
significant for all SPSS tests.

Network measures were compared between groups
using GAT. Non-parametric permutation tests, each with
1,000 repetitions, were performed to test the statistical
significance of between-group differences in global and
regional network measures, with P < 0.05 (two-tailed)
considered significant. Permutation analysis was also
performed to assess between-group differences in network
resilience against random failure and targeted attack, with
statistical significance set at P < 0.05. To reduce the impact
of thresholding, we also compared the areas under the
curves (AUCs) generated from density variation between
groups. In addition, the false discovery rate (FDR) was
applied to correct for multiple comparisons in the regional
BC analysis, with P < 0.05 (FDR-corrected) considered
statistically significant.

RESULTS

Demographics and Group Matching
Table 1 summarizes the baseline demographic data of MMD
patients and HCs. Two groups were well-matched for age, sex
ratio, and educational background (all P > 0.05).
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TABLE 1 | Basic information of MMD patients and healthy controls.

MMD patients Healthy
controls

P-value

Number 49 49 –

Age/years 44.67 ± 11.06 44.67 ± 11.06 1.000

Sex/male 22 (44.9%) 22 (44.9%) 1.000

TIV 1471.76 ± 129.68 1483.26 ± 118.10 0.459

Educational level 1.000

Primary school 3 (6.1%) 3 (6.1%)

Junior high school 15 (30.6%) 15 (30.6%)

Senior high school 15 (30.6%) 15 (30.6%)

College/above 16 (32.7%) 16 (32.7%)

Symptoms –

TIA 33 (67.3%) –

Headache/dizziness 15 (30.6%) –

Non-symptom 1 (2.1%)

Suzuki stage (left/right) –

I 2 (4.1%)/2
(4.1%)

–

II 1 (2.0%)/0 (0%) –

III 32 (65.3%)/34
(69.4%)

–

IV 14 (28.6%)/13
(26.5%)

–

Fazekas scale –

0 13 (26.5%) –

1 30 (61.2%) –

2 6 (12.3%) –

3 0 (0%) –

Lacunar infarction 30 (61.2%) – –

TIV, total intracranial volume.

Global Structural Covariance Network
Measures
The binary matrices of two groups are shown in Figure 1. The
SCNs in both groups exhibited small-worldness as indicated by all
γ > 1 with λ ≈ 1 or σ > 1 across the density range (0.27:0.01:0.5).
The small-word indices were significantly higher in the MMD
group than in the control group at several points along the density
range (0.27:0.01:0.5) (all P < 0.05). Compared to the SCNs of
HCs, the SCNs of MMD patients also exhibited significantly
lower Lp, Cp, assortativity, local efficiency, and transitivity values
at several densities across the range (all P < 0.05) (Figure 2).

In addition to comparing SCN measures at each density
across the range, we also compared the AUCs for global SCN
measures between groups across the density range (0.27:0.01:0.5).
Consistent with the above results, the AUC comparisons
indicated significantly lower Lp (P = 0.030), Cp (P = 0.023),
assortativity (P = 0.009), local efficiency (P = 0.023), and
transitivity (P = 0.009) in MMD group, whereas modularity
(P = 0.211) and small-world index (P = 0.100) did not reach the
statistical significance.

Regional Betweenness Centrality
We also compared the BC of each region between MMD patients
and HCs. Uncorrected analysis showed significantly reduced BC
values among MMD patients in the bilateral medial orbitofrontal

cortices (left: P = 0.001, right: P = 0.005), left medial superior
frontal gyrus (P = 0.019) and left hippocampus (P = 0.026),
and significantly increased BC in the bilateral middle cingulate
gyri (left: P = 0.008, right: P = 0.006). Further, the regional
BC values of the bilateral medial orbitofrontal cortices were still
significantly lower in the MMD group after FDR correction for
multiple comparisons (left: P = 0.045, right: P = 0.045) (Figure 3).

Network Resilience
The SCNs of MMD patients were as robust to targeted attack and
random failure as those of HCs in both permutation analysis (all
P > 0.05) and AUC analysis (all P > 0. 05) (Figure 4).

DISCUSSION

Structural covariance networks including 90 brain regions
differed markedly in topological properties between stroke-free
MMD patients and well-matched controls at both the global
and local levels. Further, many of these differences in SCN
organization involved frontal and limbic regions implicated in
higher-level cognition, possibly explaining the cognitive deficits
observed in MMD even prior to major ischemic and hemorrhagic
events. Nonetheless, the whole brain network of patients retained
small-worldness and resilience to perturbation, suggesting that
some of these changes serve as compensatory mechanisms.

Altered Global Structural Covariance
Network Measures
Networks with small-world topography exhibit both high
efficiency for specialized information processing in local regions
(functional segregation) and rapid integration of information
over the entire network (functional integration) (Stam and
Reijneveld, 2007; Rubinov and Sporns, 2010). However, several
global measures of SCN (Lp, Cp, assortativity, local efficiency,
and transitivity) were significantly reduced in the MMD group,
indicating a suboptimal balance between functional integration
and segmentation. The significant decreases in Cp and Lp
among MMD patients are indicative of a more randomized
SCN, in accord with previous functional network studies
using rs-fMRI and DTI (Kazumata et al., 2016; Lei et al.,
2020). Furthermore, the significantly decreased Cp indicates
reduced interconnections among neighboring regions (nodes)
and decreased local cliquishness (activity among clusters of
local nodes) (Watts and Strogatz, 1998; Fleischer et al., 2019b).
Transitivity is a variant of Cp with similar meaning, but is more
robust as it is less influenced by nodes with small numbers of
connections. This decreased transitivity provides further support
for the notion that MMD results in aberrant cluster organization
and less efficient modular processing by neighboring nodes
(Newman and Park, 2003; Fleischer et al., 2019b). Indeed,
local efficiency was also reduced significantly in MMD patients,
further suggesting a reduced capacity for information transfer
among neighboring nodes (Latora and Marchiori, 2001; Vragovic
et al., 2005). These changes are also in line with decrease
assortativity in the MMD group, which indicates reduced
communication efficiency (Murakami et al., 2018). Collectively,
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FIGURE 1 | The binary matrices of patients with Ischemic MMD patients (A) and healthy controls (B) at Dmin. The X/Y axes represent the 90 cerebral regions from
the AAL atlas and the specific order of regions is listed in Supplementary Table 1.

lower Cp, transitivity, and local efficiency indicate reduced
functional segregation and thus weaker local information
processing in MMD.

However, we also found significantly reduced Lp in the MMD
group, implying a shorter distance between all node pairs and
thus enhanced information transfer capacity between remote
regions of the brain (Watts and Strogatz, 1998). In addition,
Lp is believed to reflect functional integration capacity from
widespread regions, so functional integration of certain types
of information may be enhanced, possible as a compensatory
mechanism for reduced local information processing.

Previous studies of healthy volunteers have found associations
between higher intelligence quotient and more integrated
topological brain networks (Li et al., 2009; van den Heuvel
et al., 2009), which have an advantage in difficult cognitive tasks
(Kitzbichler et al., 2011; Crossley et al., 2013). However, MMD
patients with reduced Lp suffer from cognitive impairments,
even in the absence of major infarcts from strokes or
hemorrhages. Similarly, patients with schizophrenia (Lo et al.,
2015) or major depressive disorder (Li et al., 2017; Zhang
et al., 2018) present increased functional integration, but
suffer from cognitive impairments. One possible explanation
is that increased functional integration is formed as a type
of pathologic change or compensatory neuroplastic mechanism
during disease process, which does nothing with higher-order
cognitive processes. For schizophrenia and major depressive
disorder, a more randomized brain network organization
with higher integration has been proposed as a biomarker,
which may serve as a kind of pathologic change (Lo et al.,
2015; Li et al., 2017; Zhang et al., 2018). For MMD,
we speculated that decreased Lp in MMD could reflect
compensatory neuroplastic mechanisms against the inefficient
information processing. Similarly, the brain can form new
connections during recovery after ischemic attack (Lee et al.,
2015), while enhancing the strength of conserved pathways or

recruit other systems via neural circuit plasticity after trauma
(Nishimura and Isa, 2009).

Altered Regional Structural Covariance
Network Measures
Regional BC values of bilateral medial orbitofrontal cortices
were also significantly decreased in the MMD group after
FDR correlation for multiple comparisons, which implies less
efficient communications and longer paths of information
transfer between these structures and other regions (Barthélemy,
2004). This finding is also consistent with a previous study
reporting dysfunction of medial orbitofrontal cortex in adult
MMD patients (Lei et al., 2017). Three cognitive processes may
be especially disturbed by orbitofrontal cortex dysfunction. The
orbitofrontal cortex contributes to reinforcing emotional stimuli
during stimulus–reinforcer association learning, especially
emotion-related learning (Rolls, 2019). Thus, stimulus-reinforcer
association learning may be impaired in MMD. Second, damage
to the orbitofrontal cortex limits cognitive flexibility for learning
and adapting to changing reinforcement contingencies (Zald
and Andreotti, 2010). Third, medial orbitofrontal cortex
damage can interfere with optimal decision-making (Rolls
and Grabenhorst, 2008). In addition, the medial orbitofrontal
cortex is a key node of the default mode network (DMN)
(Buckner et al., 2008) implicated in internally focused thoughts.
Sakamoto et al. (2018) found that working memory and
performance speed were inversely correlated with the degree
of DMN disruption in MMD patients. Studies probing the
associations between brain network reorganization involving
the bilateral medial orbitofrontal cortices and specific cognitive
impairments are needed.

The BC values of the left medial superior frontal gyrus and
left hippocampus were also significantly reduced in the MMD
group before FDR correction. The dorsomedial prefrontal cortex
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FIGURE 2 | Between-group differences in global measures across density range. MMD patients exhibit significantly lower clustering coefficient (Cp) (A),
characteristic path length (Lp) (B), local efficiency (C), assortativity (D), transitivity (E) at several densities across the range, while showing significantly higher Sigma
(F), and modularity (G) at some density points. Cp, clustering coefficient; Lp, characteristic path length.

(approximating Brodmann Area 10), as a part of the medial
superior frontal gyrus, is crucial for prospective memory (Burgess
et al., 2003) and attention (Burgess et al., 2007), while the
hippocampus is involved in encoding and storage of associative

memory (Lisman et al., 2017). Furthermore, several studies have
reported impaired memory and attention function in MMD
patients (Fang et al., 2016; Shi et al., 2020). We also found
increased BC in the bilateral middle cingulate gyri, indicating
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FIGURE 3 | Between-group differences in reginal betweenness centrality (BC). (A) 3D images. (B) Data of between-group differences. Red color identifies the
regions with significantly higher BC in MMD without false discovery rate (FDR) correction, while red and pink color identify regions with significantly higher BC in HCs
with and without FDR correction, respectively. DCG.L, left middle cingulate gyrus; DCG.R, right middle cingulate gyrus; ORBmed.L, left medial orbitofrontal cortex;
ORBmed.R, right medial orbitofrontal cortex; SFGmed.L, left medial superior frontal gyrus; HIP.L, left hippocampus.

FIGURE 4 | Between-group differences in network resilience. No difference is found between MMD and HCs in network resilience. (A) Targeted attack; (B) random
failure.

higher influences in network and shorter paths to reach other
regions (Barthélemy, 2004), in accord with previous results
(Kazumata et al., 2016; Lei et al., 2020). The middle cingulate
gyrus is often considered a bridge connecting different regions
(Dosenbach et al., 2007, 2008), so increased BC may again reflect
compensatory network reorganization to maintain efficient
information transfer in MMD patients. However, none of these
network changes (except reduced connectivity of bilateral medial
orbitofrontal cortices) was significant after FDR correlation.
Thus, larger study cohorts are required to confirm these results
and determine if these changes are heterogeneous across patient

subgroups or consistent but small in magnitude among stroke-
free MMD patients.

Network Resilience
Surprisingly, the SCN of the MMD group was as resilient to
targeted attack and random failure as that of the HC group. We
suggested three potential reasons for the conserved robustness
of otherwise reorganized SCNs in MMD. First, the SCN of the
MMD group showed significantly lower clustering efficiency and
lower characteristic path length, which indicates more random
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topology, and previous studies have shown that random networks
can remain robust even after a large proportion of the nodes
has been removed by random failure or targeted attack (Albert
et al., 2000; Li et al., 2017; Zhang et al., 2018). The randomized
feature of the SCN in MMD patients may thus enhance resilience.
Second, all MMD patients enrolled were stroke-free, so there
were no large ischemic lesions resulting in broad disruption of
nodal connections. Third, false negatives are possible given the
relatively small patient sample. Further studies are required to
gauge the resilience of the SCN in MMD patients with and
without major ischemic events.

Applications of Structural Covariance
Network
Structural covariance network analyses have been widely used in
diseases, such as depression (Mak et al., 2016), multiple sclerosis
(Fleischer et al., 2019a) and AD (Phillips et al., 2015), and
physiological processes, such as maturation (Woodburn et al.,
2021) and aging (Aboud et al., 2019). SCN provides a whole
new approach to exploring the disruption and reorganization of
complex brain networks. Moreover, several SCN studies found
that the global efficiency increases as children grow and mature
(Woodburn et al., 2021), and the degree of change/reorganization
of the SCN is correlated with the severity of schizophrenia
(Kim et al., 2020) and cognitive impairment in multiple sclerosis
patients (Hawkins et al., 2020). Therefore, the SCN indices could
be promising biomarkers in further studies. This study is the first
attempt to explore the reorganization of SCN in MMD patients,
providing a new perspective and some useful information on the
mechanisms of cognitive impairments in MMD patients.

Limitations
First, because this study only examined SCN changes based on
measures of GM volume, findings could not reflect functional
network reorganization or changes in WM tracts. SCN studies
of MMD patient could provide additional information on the
reorganization of brain network based on morphological features.
Second, no cognitive examinations were conducted to establish
correlations with network measures. Third, atlases with finer
parcellation than the AAL atlas may provide more information
about SCN reorganization in MMD patients.

CONCLUSION

The SCNs of stroke-free ischemic MMD patients are reorganized
at both the global and regional levels. Patients with MMD exhibit

a less optimal and more randomized SCN compared with well-
matched controls, while the nodal BC of the bilateral medial
orbitofrontal cortices is severely reduced. However, the SCNs of
MMD patients are as robust as those of HCs against targeted
attack and random failure.
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