Open access Review

BMJ Open Sport & Exercise Medicine

Incidence of injury in adult elite women's football: a systematic review and meta-analysis

Lawrence Mayhew , ¹ Mark I Johnson , ² Peter Francis , ³ Christoph Lutter , ^{1,4} Ali Alali, Gareth Jones , ¹

To cite: Mayhew L, Johnson MI, Francis P, *et al.* Incidence of injury in adult elite women's football: a systematic review and meta-analysis. *BMJ Open Sport & Exercise Medicine* 2021;**7**:e001094. doi:10.1136/bmjsem-2021-001094

▶ Additional online supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/bmjsem-2021-001094).

Accepted 24 June 2021

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

¹Musculoskeletal Health Research Group, School of Clinical and Applied Science, Leeds Beckett University, Leeds,

²Centre for Pain Research, School of Clinical and Applied Science, Leeds Beckett University, Leeds, UK ³Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland ⁴Department of Orthopedics, Rostock University Medical Center, Rostock, Germany

Correspondence to

Lawrence Mayhew; I.mayhew@leedsbeckett.ac.uk

ABSTRACT

Aim To estimate the incidence of injury in adult elite women's football and to characterise the nature and anatomical location of injuries.

Design Systematic review and meta-analysis. **Data sources** Combinations of the key terms were entered into the following electronic databases (PubMed, SPORTDiscus, Science Direct and Discover) from inception to May 2021.

Eligibility criteria for selecting studies (1) Used a prospective cohort design; (2) captured data on elite adult women players; (3) reported injury incidence by anatomical site; (4) captured data of at least one season or national team tournament; (5) included a definition of injury; and (6) written in English.

Results The search identified 1378 records. Twelve studies published between 1991 and 2018 were included in our review and sampled 129 teams. In domestic club football, injury incidence rate was estimated to be 5.7/1000 hours (total), 19.5/1000 hours (match) and 3.1/1000 hours (training). In tournament, football match incidence was estimated to be 55.7/1000 hours. The knee (22.8%; 368/1822) was the most common site of injury in domestic club football. The ankle (23.7%, 105/443) was the most common site of injury in tournament football. Ligament sprains were the most common type of injury (27.8%), followed by muscle strains (19.1%). Severn studies (58%) had a high risk of bias associated with exposure definition and measurement and considerable heterogeneity exists between the included studies $(1^2=49.7\%-95\%)$.

Summary/conclusion Ligament sprains occur more frequently in adult elite women football players. We advise caution in interpretating point estimates of the incidence of injury due to high statistical heterogeneity. Standardising injury reporting and the accurate recording of match and training exposure will overcome such limitations.

PROSPERO registration number CRD42019130407.

INTRODUCTION

Women's football is played in more than 100 countries and the Fédération Internationale de Football Association 2019 Women's Football Strategy aspires to double participation rates to 60 million by 2026. A recent scoping

Summary box

What is already known?

- ➤ The expansion of domestic leagues and tournament competitions allows players the opportunity to train and compete within an elite environment.
- Elevated levels of fitness, training intensity and regular competitive matches inherently increases the risk of injury.
- A recent meta-analysis including amateur and collegiate level female players estimated the injury incidence rate to be 6.1 injuries/1000 hours of exposure.

What are the new findings?

- ➤ The estimated incidence rate for adult elite women players in domestic club football is 5.7/1000 hours (total), 19.5/1000 hours (match) and 3.1/1000 hours (training).
- ► The estimated match incidence rate in tournament football is 55.7/1000 hours.
- ➤ Seven studies (58%) had a high risk of bias associated with exposure definition and measurement.
- ➤ Significant heterogeneity exists between the studies available (1²= 49.7 to 95%).
- Standardising injury and illness definitions, medical reporting of injuries and accurate recording of match and training exposure in women's football is needed.

review in 2021 revealed that sports medicine research including studies relating to injury (451 studies) and illness (29 studies) was the most common theme in women's football research to date.² A recent meta-analysis including amateur and collegiate level female players estimated the injury incidence rate to be 6.1 injuries/1000 hours of exposure.³

In 2017, it was estimated that there were 1790 professional and 1782 semiprofessional registered adult women players in Europe. Up-to-date participation rates are difficult to obtain as they rely on retrospective survey data collated from participating football associations from the preceding season. A useful proxy measure of increased participation is the expansion of elite domestic leagues and international competitions which allows

players the opportunity to train and compete within an elite environment. ⁵⁶

An initial search of published literature did not find any systematic reviews with meta-analyses of pooled observational cohort data estimating the incidence of injury in adult elite women's domestic league football and tournament football. The primary aim of our systematic review was to estimate the incidence of injury (overall, match and training) in elite adult women's football. A secondary aim was to characterise the nature and anatomical location of injuries.

METHOD

This review was prepared and conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.⁷ The Condition, Context, Population framework⁸ for reviews addressing a question relevant to incidence or prevalence was considered when eligibility criteria was established and agreed on by authors.

Inclusion and exclusion criteria

Inclusion criteria were reports of studies that: (1) used a prospective cohort design; (2) captured data on elite level or national team female/women players; (3) reported injury incidence by anatomical site; (4) captured data of at least one season or team tournament; (5) included a definition of injury and (6) were written in English. Elitelevel participation was considered as the two highest national football league divisions within the country of publication, providing the level of participation (of participants) included in the review.

The following articles were excluded: (1) expert opinions, case reports/series, case-control studies, cross-sectional studies, self-report or retrospective studies; (2) studies conducted in male football only; (3) studies conducted on samples aged <18 years; (4) studies conducted on amateur players only and (5) studies conducted on alternative versions of football including; five-a-side, futsal, indoor football (six-a-side), Paralympic football, powerchair football, beach football, street football, three-sided football or walking football.

Literature search

Two authors (LM and AA) carried out a search of the electronic databases (from inception to May 2021 PubMed, SPORTDiscus, Science Direct and Discover). For full-text publications of cohort studies that reported incidence of injury in adult elite women's football (online supplemental appendix S1: Search string). All citations were imported to EndNote X7 (Thomson Reuters, USA) and duplicates were removed by LM.

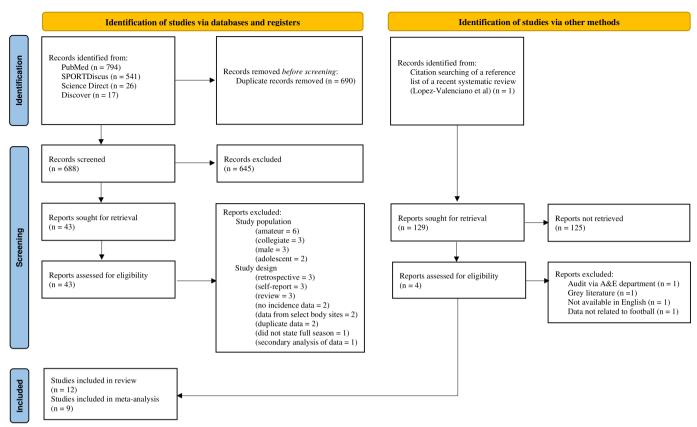
Literature screening

Two reviewers (LM and AA) independently screened title and abstracts of records and obtained full texts of potentially eligible studies. Full texts were screened independently (LM and AA) against the inclusion criteria

and any disagreements were resolved via consensus with a third reviewer (GJ) acting as arbiter. Handsearching the reference list of a recent systematic review³ was conducted. No handsearch of specific sports medicine journals was performed.

Quality and risk of bias assessment

Two authors (LM and AA) independently assessed the methodological quality of included studies using a modified version of the Newcastle-Ottawa Scale (NOS). The version replicated the scale used in a previous systematic review and meta-analysis of injury in women's football.³ The criteria descriptors were adjusted for the purpose of this review (online supplemental appendix S2). One star could be awarded for each criterion if methodological detail was clearly reported. Eight stars could be awarded for a given study and were categorised into low-quality '≤3 stars', moderate-quality '≥4 to ≤6 stars' and highquality studies '≥7 stars'. 10 Reporting quality was assessed using a tool adapted from Strengthening The Reporting of Observational Studies in Epidemiology statement (STROBE)¹¹ that had been used in a previous systematic review of injury epidemiology in football. 12 The tool had five items: (1) study setting, location and study period; (2) eligibility criteria and sources and methods of participant selection; (3) exposure definition and measurement; (4) study outcome definition and measurement and (5) main result and precision. Summary of the quality of evidence were presented with items judged as low risk of bias were awarded 1 point, high-risk items were awarded 0 points, resulting in a possible range of 0-5 in total for every included study (online supplemental appendix S3, S6 and S7).


Data extraction

The following study information was extracted and recorded on a data extraction proforma by one reviewer (LM) and checked for accuracy by a second reviewer (GJ): study characteristics (authors, publication year, country of origin); characteristics of the study population; study design; injury definition and football exposure (study period, number of teams and seasons, total, match and training exposure), (1) incidence of injuries/1000 hours, (2) total, training and match exposure, (3) injury tally counts and percentages of injuries, (4) injury severity and (5) sites and types of injuries. Where it was not possible to extract elite player data from studies containing amateur data, contact with authors was made and the extracted data forwarded to LM.

Data management and analysis

Injury count data, exposure time and injury incidence rates per 1000 hours were extracted from the included studies with the reported 95% CI. Where an incidence rate was presented with a SD, it was transformed to a 95% CI using a standardised equation. ¹³

No attempts were made to artificially generate an injury incidence rate by estimating team level exposure

Figure 1 PRIMSA 2020 flow chart of study selection. Adpated from Page *et al.*⁷ A&E, Accident and Emergency; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

to avoid overestimating or underestimating exposure time. ¹⁴ Data were being extracted from a series of studies that were conducted independently of each other, it is unlikely that studies would be functionally equivalent (eg, difference in exposure hours, number of matches played and training sessions completed, total number of injuries) and this could introduce unobserved heterogeneity. Therefore, a random effects model was used to provide a pooled estimate of the total incidence of injury and for match and training incidence. ¹⁵

Visual inspection of results and forest plots was performed and heterogeneity was quantified using the I^2 statistic, which represents the percentage of total variation across all studies due to between-study heterogeneity. Thresholds for heterogeneity (low, 0%-40%; moderate, 30%-60%; substantial, 50%-90%; considerable heterogeneity, 75%-100%), recommended by Cochrane were used. ¹⁶ Data analysis was conducted using Comprehensive Meta Analysis (V.3.0) software package. ¹⁷

RESULTS

The search identified 1378 records of which 690 records were removed as duplicates and a further 645 records were excluded for not meeting our eligibility criteria on screening of title and abstract (figure 1). The reference list of a recent systematic review³ was screened which revealed four reports that required full text screening. Thus, full-text reports were obtained for 47 records of

which 14 were excluded due to the population not being described as adult elite women football players. Twenty-one records were excluded because they did not meet our criteria for either prospective medical reporting of injuries, were review articles, where data were reported via secondary analysis or was not available in English. There were 12 studies included in our review and we were able to extract and pool data from nine studies for meta-analysis. A description of the excluded studies is available in online supplemental appendix S4.

Characteristics of included studies

There were 12 studies included for review which were published between 1991 and 2018 sampling a total of 129 teams. Ten studies sampled teams from domestic club football (71 teams) which took place between 1988 to 2015 (table 1) $^{18-27}$ and two studies sampled teams from five national team tournaments (58 teams) taking place between 1999 and 2005 (table 2). 28 29

Studies using samples from club football

Of the 10 studies that included participants sampled from domestic football leagues, four were conducted using multiple teams from Sweden, ¹⁹ ²³ ²⁴ ²⁶ two from Germany ²⁰ ²¹ and one from each of the following countries: Netherlands, ¹⁸ Norway, ²⁷ Spain ²⁵ and USA. ²² Eight (80%) studies reported data from multiple teams over one season, ^{18–21} ²³ ²⁴ ²⁶ ²⁷ one study reported data from

Table 1 Chara	cteristics of inclu	Characteristics of included studies related to club football	ootball						
Publication	Country	Setting	Age (mean±SD)	Teams	Players	Players Injury recorder	Injury Severity Classifications	STROBE/5 (Reporting quality)	NOS/8(Methodological qualityNOS/8(Methodological quality
Blokland et al ¹⁸	The Netherlands	Club Football, Division I one season '2014/2015; August– June*	22.4±3.3	φ	114	Physician or Physical Therapist	ಬ	Ω	4
Engström <i>et al</i> ¹⁹	Sweden	Club Football, Division I-II, 1 season, '1988/1999; November- October*	21†	2	14	Medical students	3!!!	-	9
Faude et al ²⁰	Germany	Club Football, Division I one season, '2003/2004; August-June*‡	22.4±5.0	o o	165	Physician or Physical Therapist	ïE	2	7
Gaulrapp <i>et al^e1</i>	Germany	Club Football, Division I one season, '2004/2005; August-June*‡	22.8†	12	254	Team Physician	э.	೮	7
Giza et al ²²	NSA	Club Football, Division I two seasons, '2001 and '2002; February-August*	Not reported	ω	202	Team trainer verified by Physician	Not reported	2	Q
Hägglund e <i>t al²³</i>	Sweden	Club Football, Division I one season, '2005; January- October*	23±4	12	228	Team Physician	4	2	7
Jacobson and Tegner ²⁴	Sweden	Club Football, Division I one season, '00; January- October*	23±4	o o	159	Team Physiotherapist	4	೮	വ
Larruskain e <i>t al²⁵</i>	Spain	Club Football, Division I five seasons, 2010–2015; July– June*	25±5	-	35	Multiple	4	5	9
Östenberg and Roos ²⁶	Sweden	Club Football, Division I-II, 1 season, 96 season	24.1±6.1§ 21.7±4.2§	28	32§	Physical Therapist	3111	-	ø
Tegnander <i>et al²⁷</i>	Norway	Club Football, Division I one season, '01; April-October	23±4	10	181	Team Physiotherapist	3ii	4	8

Severity classification key:

3i — minor (0–7 days), moderate (8–30 days), major (+30 days).

3ii — minor (1–7 days), moderate (8–21 days), major (+21 days).

3iii — minor (7 days or less), moderate (7 days to 1 month), major (more than 1 month).

4 — minimal (1–3 days), mild (4–7 days), moderate (8–28 days), severe (+28 days).

5 — minimal (0 days), slight (1–3 days), minor (4–7 days), moderate (8–28 days), major (+28 days).

†No SD reported.

#Mid-season break Decmber-January. §Data from elite level players only provided by author. NOS, Newcastle-Ottawa Scale; STROBE, Strengthening The Reporting of Observational Studies in Epidemiology statement.

 Table 2
 Characteristics of included studies related to tournament football

Publication	Country	Setting	Age (mean±SD)	Teams	Players	Injury definition	Injury recorder	Injury Severity Classification	(Reporting quality)	NOS/8 (Methodological quality)
Junge and Dvorak ²⁸	USA	WC, 1999	Not reported	16	176 [*]	Medical attention	National Team Physician	6ii	4	7
	USA	WC, 2003		16	176 [*]	Medical attention	National Team Physician	6ii		
	Australia	OG, 2000		8	88*	Medical attention	National Team Physician	6ii		
	Greece	OG, 2004		10 [*]	110 [*]	Medical attention	National Team Physician	6ii		
Waldén et al ²⁹	England	EC, 2005	Not reported	8	160	Time-loss	National Team Physician	6i	5	7

Injury Severity classification:

multiple teams over two seasons²² and a further study captured data from one team over five seasons.²⁵ The total number of participants from all study samples was 1411. The maximum number of participants in a study was 254²¹ and the minimum number of participants in a study was 35.²⁵ The maximum duration of data collection (including preseason) was 12 months, and the minimum duration was 7 months (table 1).

A time loss injury definition was used in all studies in domestic club football and more frequently used than a medical attention injury definition. Illnesses were not reported in any studies (online supplemental appendix table S5).

There was inconsistency in how studies classified injury severity. Five studies ^{19–21 26 27} applied 'minor, moderate, major' time-loss (days lost) categories, three studies ^{23–25} reported 'minimal, mild, moderate and severe' categories and one study¹⁸ applied 'minimal, slight, mild, moderate and major' time-loss injury categories. Only two studies ^{28 29} reported a 'career ending' time-loss category. While all studies assigned a temporal measure of time (days lost) within each time-loss category, these were inconsistent across studies.

Studies using samples from tournament football

Two studies sampled five national team football tournaments; two Olympic Games, two World Cups²⁸ and one European championship.²⁹ There was a total of 58 national teams included in the two studies. The maximum number of national teams in a tournament was 16²⁸ and the minimum number of teams in a tournament was 8.²⁹ A medical attention injury definition was applied in one study²⁸ (Olympic Games and World Cups), with a further study²⁹ (one European championship) applying a time-loss definition. These studies utilised similar injury severity categories (table 2).

Quality assessment and risk of bias

The average number of stars awarded for study quality (NOS) was 6 (range: 5–8 stars). All studies provided a definition of injury (criteria 2). All studies provided details on assessment outcome (criteria 6) where injuries were recorded via a Diagnostic Coding System (eg, Orchard Sports Injury Illness Classification System. All studies provided sufficient detail that met criteria 7 as the injury surveillance period lasted for at least one football season and/or complete football tournament.

Three studies ¹⁹²⁵²⁶ (25%) provided insufficient evidence that participants were representative of the average football player at the time the study was conducted (criteria 3). Nine studies $(75\%)^{18\ 19\ 21-25\ 28\ 29}$ provided insufficient evidence that participants were injury free at the start of the study (criteria 5) and two studies $(17\%)^{20.24}$ reported participant loss to follow-up of greater than 20% (criteria 8) (online supplemental appendix S6). The STROBE assessment revealed 11 studies (92%) were assessed as having a low risk of bias for study setting, location and study period (item 1) and 10 studies (83%) had low risk of bias for unclear or biased selection of participants (item 2). Four studies 18 23 25 29 (33%) had a low risk of bias across all five items and three studies 21 27 28 had a low risk of bias across four items (online supplemental appendix S7). It was noteworthy that seven studies 19-22 24 26 28 (58%) had a high risk of bias associated with exposure definition and measurement (item 3) where exposure was not clearly reported or was approximated through a team-level estimate calculation (eg, number of players on the field, multiplied by the number of games and by the factor 1.5 (equivalent to a 90 min match)). There were seven studies 19-22 24 26 27 (58%) that had a high risk of bias associated with imprecision of results (item 5) where incidence data were presented without an SD or 95% CI. Any discrepancies between the reviewers during the process of assessing risk of bias were resolved via

⁶i-slight (0 day), minimal (1-3 days), mild (4-7 days), moderate (8-28 days), severe (>28 days), career ending.

⁶ii-0=0 days, 1=1 day, 2=2 days, 7=1 week, 14=2 weeks, >30=more than 4 weeks.

^{*}Sample size based on the authors incidence calculation; 11 players/team.

EC, European Championship; NOS, Newcastle-Ottawa Scale; OG, Olympic Games; STROBE, Strengthening The Reporting of Observational Studies in Epidemiology statement; WC, Women's World Cup.

consensus discussion with an arbitrator (online supplemental appendix S8). Table 5 displays the summary of findings obtained.

Incidence rate of injury in domestic Club football

The highest total injury incidence rate was 8.4 injuries/1000 hours, and the lowest rate was 1.93 injuries/1000 hours (table 3). Match injury incidence rate was 30.3/1000 hours (highest) and 12.6/1000 hours (lowest) of exposure. Training incidence rate was 5.2/1000 hours (highest) and 1.2/1000 hours (lowest) of exposure.

Incidence rate of injury in tournament football

The total injury incidence rate was 70.0/1000 hours (highest) and 39.0/1000 hours of exposure (lowest) when a medical attention injury definition was utilised. The total injury incidence rate was 11.6/1000 hours when a time-loss injury definition was used (table 4).

Site of injury

In domestic club football, lower limb injuries accounted for 85% of all injuries (1373/1615). The knee (23%; 368/1615) was the most common site of injury; the thigh region (21%, 333/1615) was the second most common site of injury; and the ankle (18%, 290/1615) was the third most common site of injury where discrete injury tallies (by injury site) in studies were available. ^{18–26} (online supplemental appendix S9).

In football tournaments, ²⁸ using a medical attention injury definition, lower limb injuries accounted for 66% (248/380) of all injuries. The ankle (24%, 93/380) was the most common site of injury; the head, face and neck (grouped as one anatomical site) (17%, 68/380) was the second most common site of injury; and the thigh region (13%, 50/380) was the third most common site of injury. One study²⁹ of tournament football utilised a time-loss injury definition where lower limb injuries accounted for 89% (16/18) of all injuries (knee; 22%, 4/16, lower leg; 22%, 4/16, thigh; 17%, 3/16, ankle; 17%, 3/16) (online supplemental appendix S9).

Type of injury

Ligament sprains were the most common type of injury in elite adult women's football (34%, 617/1810), followed by muscle strains (27%, 482/1810) and blunt soft tissue trauma (contusions & haematomas) (21%, 387/1810). In domestic club football, ligament sprains (37%, 517/1413) were the most common type of injury, followed by muscle strains (31%, 441/1413) and blunt soft tissue trauma (contusions and haematomas) (15%, 214/1413). (online supplemental appendix S9).

In football tournaments, using a medical attention injury definition, ²⁸ blunt soft tissue trauma (contusions and haematomas) was the most common type of injury (44%, 165/378) followed by ligament sprains (25%, 96/378) and muscle strains (10%, 38/378) (online supplemental appendix S9). Blunt soft tissue trauma (42%, 8/19), ligament sprains (21%, 4/19) and muscle strains (16%, 3/19) were the most common types of

injury in tournament football utilising a time-loss injury definition.²⁹

Ankle ligament sprains (43%, 131/308) was the most common injury diagnosis, followed by quadriceps muscle strains (16%, 48/308) and knee ligament sprains (12%, 38/308) where available injury diagnosis data was gleaned from the following studies. ²⁰ ²² ²⁵ ²⁸

Severity of injury

In domestic club football, ^{18–21} ^{23–27} moderate time loss injuries were most common (8–28 days, 34%, 559/1645), followed by mild injuries (3–7 days, 33%, 544/1645); severe injuries (>28 days, 18%, 298/1645); minimal injuries (1–3 days, 12%, 204/1645); slight injuries (zero days, 2%, 28/1645) and career ending injuries (0.7%, 12/1645) (online supplemental appendix S9).

In tournament football using a medical attention injury definition, ²⁸ 78% (116/149) of injuries prevented participation in match or training for up to 1 week, followed by moderate injuries (8–28 days; 10%, 15/149) and severe injuries (>28 days; 6%, 9/149). Tournament football utilising a time-loss injury definition, ²⁹ minimal injuries (1–3 days; 10/18, 56%) were most common, followed by moderate injuries (>7, <28 days, 4/18, 22%) and slight (0 days, 3/18, 17%) and severe injuries (>28 days; 3/18, 22%). (online supplemental appendix S9)

Incidence proportion (first injury)

Eight studies 18-21 23 24 27 30 related to domestic club football reported the number of players sustaining at least one injury. The incidence proportion ranged between 0.32 and 0.81. Thus, the estimated risk of sustaining at least one injury in a season ranged from 32% to 81%. Incidence proportion data for repeat, multiple injuries or injuries sustained during tournament football were not available within studies.

Meta-analysis

Incidence of injury: total, match and training

In domestic club football, the total incidence was estimated to be 5.7 injuries/1000 hours of exposure (95% CI 4.3 to 7.2, I²=95%) (figure 2), $^{18\ 20\ 21\ 23-25}$ match incidence was 19.5 injuries/1000 hours (95% CI 16.2 to 22.8, I²=72%) (figure 3) $^{18\ 20\ 21\ 23-25}$ and training incidence was 3.2 injuries/1000 hours of exposure (95% CI 2.1 to 4.3, I²=95%) (figure 4) $^{18\ 20\ 21\ 23-25}$

In football tournaments using a medical attention injury definition the match incidence was estimated to be 55.7 injuries/1000 hours of exposure (95% CI 42.8 to 68.6, I²=49.7%) (figure 5).²⁸ There was insufficient data to provide a pooled estimate of match incidence from studies in tournament football utilising a time loss injury definition²⁹ (table 5).

Incidence proportion (first injury)

The average probability of any player sustaining at least one injury in a domestic club football season (incidence proportion) was 55% (95% CI 47% to 63%, $I^2=89\%$). $^{18-2427}$

Table 3 Injury incidence data: domestic club football	incidence dat	a: domestic	club foot	ball							
					Injury tally n (%)	u (%)		. Players injured	Players injured Total incidence/1000	Match incidence/1000 hours	Training incidence/1000
Study	Country	Setting	Teams	Players	Total	Match	Training	(%)	hours (95% CI)	(95% CI)	hours (95% CI)
Blokland et al ¹⁸	Netherlands Division	Division I	9	114	179	87 (49)	92 (51)	82 (45)	8.4±9.2 (6.4 to 10.3)*	30.3±60.5 (19.3 to 41.2)*	5.2 ± 7.3 (4.2 to 6.3)*
Engström et al ¹⁹	Sweden	Division I-II	7	41	78†	36 (46)	23 (30)	33 (80)	12‡	24‡	7‡
Faude et al ²⁰	Germany	Division I	0	165	241§	115 (48)	126 (52)	115 (70)	6.8 (5.9 to 7.7)	23.3 (19.1 to 27.5)	2.8 (2.2 to 3.4)
Gaulrapp et al ²¹	Germany	Division I	12	254	246	155 (63)	91 (37)	144 (57)	3.3 (2.9 to 3.7)	18.5 (15.7 to 21.3)	1.40 (1.1 to 1.7)
Giza et a/ ²²	NSA	Division I	œ	202	173	Not reported	Not reported	110 (55)	1.9†	12.6†	1.2†
Hägglund e <i>t al²³</i>	Sweden	Division I	12	228	299	124 (41)	175 (59)	150 (66)	5.5 (4.9 to 6.2)	16.1 (13.5 to 19.2)	3.8 (3.2 to 4.4)
Jacobson and Tegner ²⁴	Sweden	Division I	-	269	237	116 (49)	121 (51)	129 (48)	4.6 (3.4 to 5.8)	13.9 (8.2 to 18.5)	2.7 (1.8 to 3.6)
Larruskain et al ²⁵	Spain	Division I	-	35	160¶	80 (50)	75 (47)	Not reported	6.3 (5.4 to 7.4)	22.6 (18.1 to 28.1)	3.4 (2.7 to 4.3)
Östenberg and Roos ²⁶	Sweden	Division I-II	**	32**	20**	13 (65)**	7 (35)**	Not reported	4.9†	16.4†	2.1†
Tegnander <i>et al²⁷</i>	Norway	Division I	10	181	189	89 (47)	100 (53)	93 (52)	Not reported	23.6††† and 0.8†‡‡	3.1† †† and 0.7†‡‡

Rate data quoted to one decimal place.

All studies in this table utilised a time-loss injury definition.
*95% CI calculated by the authors of this review based on injury data and the SD presented in the study.
119 injuries (24%) were classified as 'gradual onset' and not recorded as occurring in training or match.
‡No SD or CI reported.
§Authors state unclear circumstances for three injuries. Some injuries were multiple injuries and the total number of diagnoses n=276 exceeded the number of injuries.

filMissing data on five injuries (training or match).

**Data from elite-level players provided by author.

††Only acute injury incidence reported.

‡‡Only overuse injury incidence reported.

Table 4 Injury incidence data: tournament football	ncidence	data: touri	namer	nt footbe	all							
Study details							Medical attention (i	Medical attention (injury definition) data		Time-loss (injury definition) data	definition) data	
Study	Country	Tournament	Teams	Players	Matches	Injury Tally	Total injuries/1000 Country Tournament Teams Players Matches Injury Tally hours (95% CI)	Injuries/1000 hours (with Total injuries/1000 expected time loss) hours (95% CI) (95% CI	Injuries/1000 hours (with Injuries/1000 hours (with expected time loss) expected time loss) a expected time loss/match) Total injuries 1000 Match injuries 1000 1000 hours (95% C) hours (95% C) hours (95% C) C) C)	Total injuries 1000 Match injuries 1 hours (95% CI) hours (95% CI)	Match injuries 1000 hours (95% CI)	Training injuries 1000 hours (95% CI)
Junge and Dvorak ²⁸ USA	USA	WC, 1999 16	16	176*	32	42	39 (15 to 53)					
	NSA	WC, 2003	16	176*	32	54	52 (38 to 66)	27 (17 to 37)	0.9 (0.6 to 1.2)			
	Australia	Australia OG, 2000	œ	*88	16	34	65 (43 to 87)	24 (10 to 38)	0.8 (0.3 to 1.3			
	Greece	Greece OG, 2004	10	110*	20	45	70 (50 to 90)	30 (16 to 43)	1.0 (0.5 to 1.4)			
Waldén e <i>t al</i> ²⁹	England	England EC, 2005 ²⁰	∞	160	15	18				11.6±11.4 (9.8 to 13.4)†	36±39 (30 to 42)†	2.5±3.6 (1.9 to 3.1)†

*Sample based on authors incidence calculation; 11 players/team.
195% CI calculated by the authors of this review based on injury data and the SD presented in individual studies. EC, European Championship; OG, Olympic Games; WC, Women's World Cup.

There were insufficient data to provide incidence proportion estimates for repeat injuries, multiple injuries or injuries sustained during tournament football.

DISCUSSION

This aim of our review was to provide a pooled estimate of the incidence of injury (overall, match and training) across adult elite women's club football and tournament football and ascribe the nature and anatomical location of these injuries.

Injury incidence rate

In domestic club football, the total incidence rate found in our review $(5.7/1000 \text{ hours}, 95\% \text{ CI } 4.3 \text{ to } 7.2, I^2=95\%)$ implies that elite adult women players have a rate of injury lower than that found in elite adult male football players $(8.1/1000 \text{ hours}, 95\% \text{ CI } 7.2 \text{ to } 9.0, I^2=99.1\%)$. However, we remain cautious of point estimates presented due to high heterogeneity values found in both reviews. Furthermore, our review and a recent publication have not performed a direct comparison of pooled data extracted for men vs women, to prove the existence or otherwise, that any difference exists.

The injury incidence rate during tournament matches $(55.7/1000 \text{ hours}, 95\% \text{ CI } 42.8 \text{ to } 68.6, \text{ } I^2=49.7\%)$ was higher than that found in domestic club football matches $(19.5/1000 \text{ hours}, 16.2 \text{ to } 22.8, I^2=72\%),$ followed by domestic club football training injury incidence $(3.2/1000 \text{ hours}, 95\% \text{ CI } 2.1 \text{ to } 4.3, \text{ } \text{I}^2=95\%).$ This descending injury incidence order reflects the same trend found in male elite football and reaffirms that in line with team sports (football, ^{3 31} basketball, ³² male handball, ³³ rugby ³⁴) match injury incidence rates are higher than training injury incidence rates in adult elite women's football. Fatigue, physical demands and frequency of contact and collisions experienced during a competitive match are suggested to contribute towards the higher incidence found in male players. 35-37 However, this might also be due to normal variation in the number of injuries reported due to chance and further investigations into how such variables affect the incidence of injury and illness in elite women's players is warranted.

Our pooled incidence rate and 95% CI's overlap with estimated rates found in a recent systematic review of injury profiling in women's football (total, 6.1, 95% CI 4.6 to 7.7, I²=98.8%; training, 3.5, 95% CI 2.4 to 7.7, I² 97.7%; match, 19.2 95% CI 16.0 to 22.4, $I^2=94.2\%$). Differences in point estimates may be due to the sampling methods used in both reviews. For example, we contacted authors where data in studies was known to contain both amateur and elite-level data so we could exclude amateur rates and injuries tallies from our analysis. We excluded university and amateur level cohorts as well as grey literature (online supplemental appendix S4) while a previous review³ included them. The reference list of the review³ revealed two further studies; citation 55³ was excluded as it was conducted via an accident and emergency hospital audit, and citation 57³ was excluded as the incidence rate

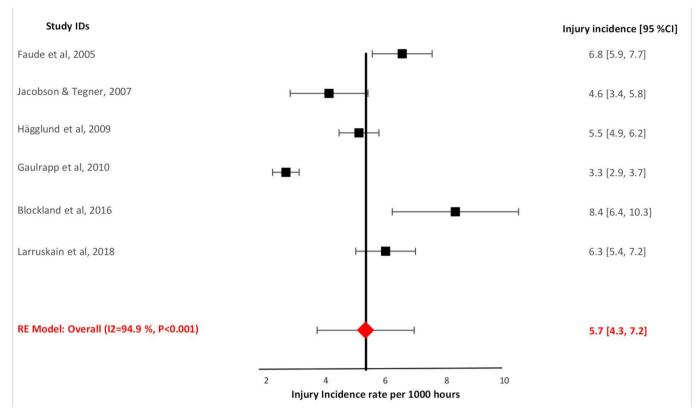


Figure 2 Overall injury incidence rate: domestic club football.

cited in the study referred to a non-footballing amateur cohort.

Recurrent injuries in sport are common and it is widely accepted that subsequent injury is strongly associated with previous injury occurrence. Our estimate of injury risk (incidence proportion) revealed that 55% of players sustained at least one injury in a season. However, it was unclear in studies whether injuries were specifically first injuries and how many were categorised as reinjuries or multiple reinjuries of the same or different anatomical site.

In domestic club football, the majority of injuries were of moderate severity (34%) (8–28 days), followed by mild (33%) (3–7 days), whereas in a recent systematic review and meta-analysis in elite male football players, ³¹ minimal injuries (1–3 days) were most frequent, followed by mild injuries (3–7 days). A recent single site cohort study²⁵ found elite women players experienced a greater number of moderate and severe injuries than their male counterparts with 21% more days lost in women than men. However, reinjury and multiple reinjury data were either not clearly presented or not available from studies

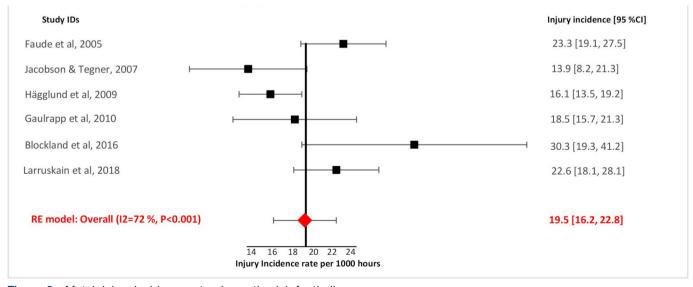


Figure 3 Match injury incidence rate: domestic club football.

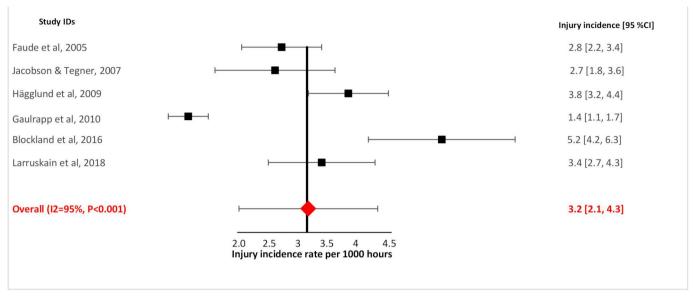


Figure 4 Training injury incidence rate: domestic club football.

to extract which limits the extent to which injury burden and injury severity (including the specific types of injuries) can be currently presented in adult elite women's football.

I² values exceeded 75% in our review and in a recent review of women's football injury profiling³ and thus significant heterogeneity exists between the studies available. Consequently, in our review no further meta analytical pooling of data was conducted.³8 ³9 Climatic playing conditions (cooler and warmer climates),⁴0 match fixture congestion,⁴¹ ²² frequency of matches played, mid-season breaks⁴³ and levels of professionalism⁴⁴ are factors that have been reported as potential sources of methodological heterogeneity found in male elite football literature. Whether incidence rates are moderated by these factors through meta-analysis currently remains unknown as this data was not readily extractable from

the studies available. We wish to be judicious in interpreting the results from this review and highlight areas of inconsistencies in injury terminology, data collection procedures and calculations of exposure which might explain the high heterogeneity found and furthermore, make recommendations for future work.

Evaluating injury terminology

In our review studies applied either a time loss definition, an 'any physical complaint' or medical attention injury definition (online supplemental table S5), where the choice of vocabulary used in these injury definition statements varied. Differences might stem from the specific context from which statements were developed or, is a result of the diverse vocabulary and/or grammatical variation that exists. Adopting illness and injury definitions that embrace a broad array of injury-related and

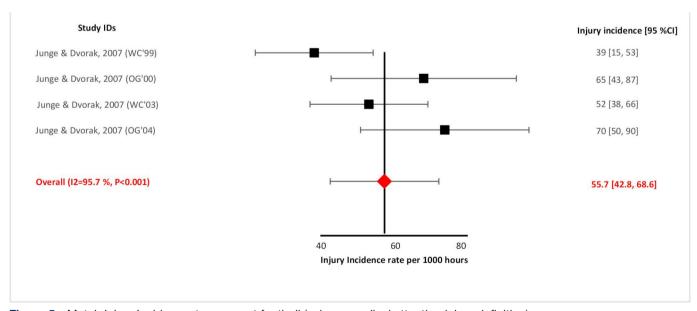


Figure 5 Match Injury Incidence: tournament football (using a medical attention injury definition).

Table 5 Summary of findings table	of findings table				
	Certainty level of evidence	ence			Summary effect
No of studies	Study design	STROBE Reporting quality	NOS Inc Methodological quality (l²)	Inconsistency (f ²)	Incidence rate (95% CI)
Overall injury incide	Overall injury incidence rate for adult elite women in domesti	nen in domestic club football	otball		
18 20 21 23–25	Observational cohort	Moderate	Moderate	Considerable (95%)	5.7 (4.3 to 7.2) injuries/1000 hours of exposure
Training injury incid€	Training injury incidence rate for adult elite women in domestic club football	men in domestic club for	ootball		
18 20 21 23–25	Observational cohort	Moderate	Moderate	Considerable (95%)	3.2 (2.1 to 4.3) injuries/1000 hours of exposure
Match injury incider	Match injury incidence rate for adult elite women in domestic	en in domestic club football	otball		
18 20 21 23–25	Observational cohort	Moderate	Moderate	Substantial (72%)	19.5 (16.2 to 22.8) injuries/1000 hours of exposure
Match injury incider	Match injury incidence rate in tournament football utilising a		medical attention injury definition		
28	Observational cohort	Low	High	Moderate (49.7%)	55.7 (42.8 to 68.6) injuries/1000 hours of exposure
Match injury incider	Match injury incidence rate in tournament football utilising a		time loss injury definition		
29	Observational cohort	Low	High	None*	36 (30 to 42) injuries/1000 hours of exposure
Training injury incide	Training injury incidence rate in tournament football utilising a time loss injury definition	otball utilising a time los	ss injury definition		
29	Observational cohort	Low	High	None*	2.5 (1.9 to 3.1) injuries/1000 hours of exposure

*Inconsistency described as per Cochrane guidance for a single cohort. NOS, Newcastle Ottawa Scale; STROBE, Strengthening The Reporting of Observational Studies in Epidemiology statement.

illness related health problems⁴⁵ that may affect a player is worthy of consideration in future epidemiological research in women's football.

An update on the consensus statement of injury and illness definitions currently used in football⁴⁷ is required so that it can acknowledge specific urogenital/gynae-cological female/women injury and illness symptom clusters. Specifically, these might include; loss of normal menstruation, irregular or infrequent menstruation, menstrual cramps/pain and excessively long periods recently highlighted in the 2020 International Olympic Committee Consensus Statement⁴⁵ as required women-specific medical issues for recording and reporting of epidemiological data on injury and illness in sport.

Previous meta-analyses³⁴ 48 have attributed heteroge-

Previous meta-analyses³⁴ ⁴⁸ have attributed heterogeneous estimates of injury incidence to the inconsistencies in injury definitions and severity descriptors applied within studies. Studies in this review used inconsistent injury severity classification descriptors. Some studies^{19–21 26 27} applied three severity categories (mild, moderate, severe) and others applied four^{23–25} (minimal, mild, moderate, severe) or five¹⁸ severity categories (minimal, slight, mild, moderate, major). Subgroup meta-analyses on injury site and injury type data was not possible in adult elite women cohorts (without threating contaminating data) as the temporal measure assigned (time/days lost) within each descriptor was inconsistent across studies.

It is recommended that future studies adopt a consistent and clear categorisation of a first injury, reinjury and multiple reinjury of the same or different type, identify the underlying mechanisms as well as ensuring consistent terminology is used before subsequent estimates of injury burden can be made.

Data collection and evaluating data processing

To provide estimates of the extent of injury burden, capturing and evaluating training and match exposure consistently and accurately within sport is fundament to quantifying injury risk. The athletes at risk (AAR) method has been recommended within injury consensus statements (football, rugby union have when individual level exposure is not possible or is deemed to be over cumbersome. Has AAR method recommends the multiplication of the number of players on the field (football=11 players) by the number of games or gamehours the team has played (football=90 min=1.5 hours), divided by the number of injuries sustained in a given period (match / season).

Recent systematic reviews and meta-analyses³ 31 34 48 50 have employed this method to provide estimates of injury incidence (prior to meta-analysis) when rates and precision estimates are not reported within individual studies. It is recommended that when estimating injury incidence using this method, events which reduce the number of players on a team (eg, red card) for part of a game (this would over-estimate exposure time), and, events which would underestimate exposure time if games exceeded

90 min (eg, injury time, extratime, penalty kicks) are taken into account.¹⁴

While the findings of these reviews^{3 31 34 48 50} provide current estimates of injury burden, they do not provide an explanation or the methodological steps taken to mitigate against errors in reporting of exposure using this approach. This method only replicates results of individual-level exposure time calculations when training and games are played with a consistent number of players under consistent exposure conditions. ¹⁴ Injury rate estimates that have been calculated in this way, without due consideration or notification of such exposure-time reporting errors lead to bias in incidence reporting.⁵¹ The International Olympic Committee consensus statement on reporting epidemiological data on illness and injury in sport currently recommend injury rates to calculated by using individual level data for injuries and exposure rather than team-level estimates. 45

Limitations

The full extent of injury burden could not be obtained from our meta-analysis which we feel was due to several methodological inconsistencies of available studies. We chose not to undertake subgroup meta-analyses of incidence of injury by anatomical site or tissue and so the findings (to this degree) cannot be compared with findings from a meta-analysis in male elite football.³¹ Some studies reported multiple seasons or tournaments and while we were prudent in removing duplicate data sets to avoid double counts, we could only extract the incidence data that was available. If studies have not reported or accounted for all individual injury counts, double counting of injuries may have occurred. Our aim was to retrieve data from adult elite players aged eighteen years and older and while we were diligent in data extraction, there is a small risk that players under eighteen may have been sampled. We amended our PROSPERO registration to include a definition of 'elite' football, replacing the term 'soccer' with 'football' and the addition of the NOS for risk of bias assessment.

We chose not to employ ARR methods to estimate injury incidence at a team level. This may have resulted in us not capturing all available data sets and studies. This limits the ability for us to provide full evaluations of injury burden. However, we feel this decision was justifiable as we wanted to remain cautious of limiting the ecological fallacy that arises when aggregate or team-level data fails to properly reflect individual level exposure data. Furthermore, due to the considerable heterogeneity, recommendations are that further pooling of data should be avoided and definitive conclusions drawn when more studies become available. ³⁹

Conclusions

This meta-analysis found that the rate of injury in adult elite women's football is lower to that found in elite male football. Caution is needed when interpreting these estimates due to the high heterogeneity values. We have

greater confidence in the findings relating to injury site and type, where the lower extremities including the knee, thigh and ankle were commonly injured. Our injury tallies identify ligament injuries occur more frequently in adult elite women football players, followed by muscle injuries. Future studies must make a concerted effort to standardise injury and illness definitions, medical reporting and clear and accurate recording of match and training exposure in women's football is needed.

Twitter Lawrence Mayhew @mayhewlawrence

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests In the previous 5 years MIJ's institution has received research and consultancy funding for work that he has undertaken for GlaxoSmithKline, Medi-Direct International and TENScare.

Patient consent for publication Not required.

Ethics approval Research Ethics Committee of Leeds Beckett University.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Lawrence Mayhew http://orcid.org/0000-0002-1230-4461
Mark I Johnson http://orcid.org/0000-0002-9421-9622
Peter Francis http://orcid.org/0000-0002-9720-6253
Christoph Lutter http://orcid.org/0000-0001-6349-7817
Gareth Jones http://orcid.org/0000-0002-0313-0092

REFERENCES

- 1 FIFA. Women's Football Strategy, 2016. Available: https://img.fifa.com/image/upload/z7w21ghir8jb9tguvbcq.pdf [Accessed 23 Feb 2021].
- 2 Okholm Kryger K, Wang A, Mehta R, et al. Research on women's football: a scoping review. Sci Med Footb 2021:1–10.
- 3 López-Valenciano A, Raya-González J, Garcia-Gómez JA, et al. Injury Profile in Women's Football: A Systematic Review and Meta-Analysis. Sports Med 2021;51:423–42.
- 4 UEFA. Womens football across the National associations, 2017. Available: https://www.uefa.com/MultimediaFiles/.https://www.uefa.com/MultimediaFiles/Download/OfficialDocument/uefaorg/Women'sfootball/02/43/13/56/2431356_DOWNLOAD.pdf [Accessed 23 Feb 2021].
- 5 Bell B, Euro Women's. Women's Euro 2005 a 'watershed' for women's football in England and a new era for the game? Sport Hist 2019;39:445–61.
- 6 Martínez-Lagunas V, Niessen M, Hartmann U. Women's football: Player characteristics and demands of the game. J Sport Health Sci 2014;3:258–72.
- 7 Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71.
- 8 Munn Z, Moola S, Lisy K, et al. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc 2015;13:147–53.
- 9 Ekstrand J, Timpka T, Hägglund M. Risk of injury in elite football played on artificial turf versus natural grass: a prospective twocohort study. Br J Sports Med 2006;40:975–80.
- 10 Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in metaanalyses. Eur J Epidemiol 2010;25:603–5.
- 11 von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE)

- statement: guidelines for reporting observational studies. *Int J Surg* 2014;12:1495–9.
- 12 Waldén M, Hägglund M, Ekstrand J. The epidemiology of groin injury in senior football: a systematic review of prospective studies. Br J Sports Med 2015;49:792–7.
- 13 Hazra A. Using the confidence interval confidently. J Thorac Dis 2017;9:4124–9.
- 14 Stovitz SD, Shrier I. Injury rates in team sport events: tackling challenges in assessing exposure time. Br J Sports Med 2012;46:960–3.
- 15 Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
- 16 Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for systematic reviews of interventions. Cochrane Database Syst Rev 2019:10:ED000142.
- 17 Borenstein M, Hedges L, Higgins J. Comprehensive meta-analysis [computer software]. version 3.3.070. 2014.
- 18 Blokland D, Thijs KM, Backx FJG, et al. No effect of generalized joint hypermobility on injury risk in elite female soccer players: a prospective cohort study. Am J Sports Med 2017;45:286–93.
- 19 Engström B, Johansson C, Törnkvist H. Soccer injuries among elite female players. Am J Sports Med 1991;19:372–5.
- 20 Faude O, Junge A, Kindermann W, et al. Injuries in female soccer players: a prospective study in the German national League. Am J Sports Med 2005;33:1694–700.
- 21 Gaulrapp H, Hartmut G, Becker A, et al. Injuries in women's soccer: a 1-year all players prospective field study of the women's Bundesliga (German premier League). Clin J Sport Med 2010:20:264–71
- 22 Giza E, Mithöfer K, Farrell L, et al. Injuries in women's professional soccer. Br J Sports Med 2005;39:212–6. discussion 212-6.
- 23 Hägglund M, Waldén M, Ekstrand J. Injuries among male and female elite football players. Scand J Med Sci Sports 2009;19:819–27.
- 24 Jacobson I, Tegner Y. Injuries among Swedish female elite football players: a prospective population study. Scand J Med Sci Sports 2007:17:84–91.
- 25 Larruskain J, Lekue JA, Diaz N, et al. A comparison of injuries in elite male and female football players: a five-season prospective study. Scand J Med Sci Sports 2018;28:237–45.
- 26 Ostenberg A, Roos H. Injury risk factors in female European football. A prospective study of 123 players during one season. Scand J Med Sci Sports 2000;10:279–85.
- 27 Tegnander A, Olsen OE, Moholdt TT, et al. Injuries in Norwegian female elite soccer: a prospective one-season cohort study. Knee Surg Sports Traumatol Arthrosc 2008;16:194–8.
- 28 Junge A, Dvorak J. Injuries in female football players in top-level international tournaments. *Br J Sports Med* 2007;41(Suppl 1):i3–7.
- 29 Waldén M, Hägglund M, Ekstrand J. Football injuries during European Championships 2004-2005. Knee Surg Sports Traumatol Arthrosc 2007;15:1155–62.
- 30 Giza E, Micheli LJ. Soccer injuries. *Med Sport Sci* 2005;49:140-69.
- 31 López-Valenciano A, Ruiz-Pérez I, Garcia-Gómez A, et al. Epidemiology of injuries in professional football: a systematic review and meta-analysis. *Br J Sports Med* 2020;54:711–8.
- 32 Podlog L, Buhler CF, Pollack H, et al. Time trends for injuries and illness, and their relation to performance in the National Basketball association. J Sci Med Sport 2015;18:278–82.
- 33 Moller M, Attermann J, Myklebust G, et al. Injury risk in Danish youth and senior elite handball using a new SMS text messages approach. Br J Sports Med 2012;46:531–7.
- 34 Williams S, Trewartha G, Kemp S, et al. A meta-analysis of injuries in senior men's professional Rugby Union. Sports Med 2013;43:1043–55.
- 35 Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci 2006;24:665–74.
- 36 Ekstrand J, Hägglund M, Waldén M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med 2011;45:553–8.
- 37 Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 2011;39:1226–32.
- 38 Higgins JPT, Collaboration C. Cochrane Handbook for systematic reviews of interventions. 2nd edn. Hoboken, NJ: Wiley-Blackwell, 2019.
- 39 Greco T, Zangrillo A, Biondi-Zoccai G, et al. Meta-analysis: pitfalls and hints. Heart Lung Vessel 2013;5:219–25.

- 40 Bayne H, Schwellnus M, van Rensburg DJ, et al. Incidence of injury and illness in South African professional male soccer players: a prospective cohort study. J Sports Med Phys Fitness 2018;58:875–9.
- 41 Carling C, Orhant E, LeGall F. Match injuries in professional soccer: inter-seasonal variation and effects of competition type, match congestion and positional role. *Int J Sports Med* 2010;31:271–6.
- 42 Dupont G, Nedelec M, McCall A, et al. Effect of 2 soccer matches in a week on physical performance and injury rate. Am J Sports Med 2010;38:1752–8.
- 43 aus der Fünten K, Faude O, Lensch J, et al. Injury characteristics in the German professional male soccer leagues after a shortened winter break. J Athl Train 2014;49:786–93.
- 44 Hägglund M, Waldén M, Ekstrand J. Injury recurrence is lower at the highest professional football level than at national and amateur levels: does sports medicine and sports physiotherapy deliver? Br J Sports Med 2016;50:751–8.
- 45 Bahr R, Clarsen B, Derman W, et al. International Olympic Committee consensus statement: methods for recording and reporting of epidemiological data on injury and illness in sport 2020 (including STROBE extension for sport injury and illness surveillance (STROBE-SIIS)). Br J Sports Med 2020;54:372–89.

- 46 Hammarström H. Linguistic diversity and language evolution. *J Lang Evol* 2016:1:19–29.
- 47 Fuller CWet al. Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries. Br J Sports Med 2006;40:193–201.
- 48 Lystad RP, Gregory K, Wilson J. The epidemiology of injuries in mixed martial arts: a systematic review and meta-analysis. Orthop J Sports Med 2014;2:2325967113518492.
- 49 Fuller CW, Molloy MG, Bagate C, et al. Consensus statement on injury definitions and data collection procedures for studies of injuries in rugby Union. Clin J Sport Med 2007;17:177–81.
- 50 Crossley KM, Patterson BE, Culvenor AG, et al. Making football safer for women: a systematic review and meta-analysis of injury prevention programmes in 11 773 female football (soccer) players. Br J Sports Med 2020;54:1089–98.
- 51 Shrier I, Steele RJ, Hanley J, et al. Analyses of injury count data: some do's and don'ts. Am J Epidemiol 2009;170:1307–15.
- 52 Greenland S, Morgenstern H. Ecological bias, confounding, and effect modification. *Int J Epidemiol* 1989;18:269–74.