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Introduction
Colorectal cancer (CRC) is one of the most prevalent cancers, 
ranking as the third most commonly diagnosed cancer 

worldwide and the fourth leading cause of cancer-related 
deaths.1 Globocan 2020 data reported 1.9 million new cases of 
CRC globally, resulting in 935 000 CRC-related deaths.2 By 
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ABSTRACT

Background: This review article aims to investigate the prevalence and spectrum of rat sarcoma (RAS) and V-Raf Murine Sarcoma Viral 
Oncogene Homolog B (BRAF) mutations, and their connection with geographical location, clinicopathological features, and other relevant fac-
tors in colorectal cancer (CRC) patients in the Middle East.

Methods: A systematic literature review, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
framework, was conducted to investigate the association between the frequency of relevant mutations and the descriptive clinicopathologi-
cal characteristics of CRC patients. Multiple electronic databases, including PubMed, Science Direct, Web of Science, Scopus, and Google 
Scholar, were searched to analyze the relevant literature.

Results: A total of 19 eligible studies comprising 2960 patients with CRC were included in this review. A comprehensive analysis of the collected 
literature data as well as descriptive and methodological insights is provided. Men were predominant in reviewed studies for the region, account-
ing for 58.6%. Overall, RAS mutation prevalence was 38.1%. Kirsten RAS Viral Oncogene Homolog (KRAS) mutations were the most common, 
accounting for 37.1% of cases and distributed among different exons, with the G12D mutation being the most frequent in exon 2 (23.2%) followed 
by G12V (13.7%), G13D (10.1%), G12C (5.1%), G12A (5.04%), and G12S (3.6%). Neuroblastoma RAS Viral Oncogene Homolog (NRAS) mutations 
were identified in 3.3% of tumor samples, with the most common mutation site located in exons 2, 3, and 4, and codon 61 being the most common 
location for the region. The total mutation frequency in the BRAF gene was 2.6%, with the V600E mutation being the most common.

Conclusion: The distribution patterns of RAS and BRAF mutations among CRC patients exhibit notable variations across diverse ethnic 
groups. Our study sheds light on this phenomenon by demonstrating a higher prevalence of KRAS mutations in CRC patients from the Middle 
East, as compared with those from other regions. The identification of these mutations and geographical differences is important for personal-
ized treatment planning and could potentially aid in the development of novel targeted therapies. The distinct distribution patterns of RAS and 
BRAF mutations among CRC patients across different ethnic groups, as well as the regional variability in mutation prevalence, highlight the need 
for further research in this area.
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2040, these numbers are expected to increase significantly, with 
annual global CRC cases predicted to reach 3.2 million.3 
Colorectal cancer incidence rates are rising worldwide in the 
Middle East and other regions, affecting individuals of all ages 
and sexes.4,5 It is important to note that most countries with 
high or very high human development index (HDI) have 
higher CRC incidence rates than countries with lower HDI,6 
showing the effect of lifestyle factors.

RAS genes are pivotal in CRC due to their frequent muta-
tion in this malignancy. These genes, proto-oncogenes, encode 
small GTPase proteins that regulate cell division and prolifera-
tion. Mutations in RAS lead to constitutively active forms, 
driving unchecked cell growth. KRAS and NRAS are RAS 
gene variants, with KRAS located on chromosome 12 and 
NRAS on chromosome at position 13.1.7 KRAS mutations are 
more prevalent than NRAS mutations, with approximately 
40% of colorectal tumors bearing KRAS mutations.8 The most 
common KRAS mutations occur at codon 12 (>90%), fol-
lowed by codons 13, 61, 146, and 117. NRAS mutations, shar-
ing similar codon mutations with KRAS, are found in 5% to 
10% of CRC cases.9 BRAF, a downstream effector of RAS 
located on chromosome 7 (7q34), is a serine/threonine kinase. 
BRAF mutations, identified in approximately 8% to 12% of 
CRC patients,10 activate the Mitogen-activated protein kinase 
(MAPK) pathway, governing cell proliferation and differentia-
tion.11 The most common BRAF mutation, observed in 90% of 
cases, is a T1799A transversion in exon 15, resulting in a valine 
amino acid substitution (V600E).10 RAS and BRAF muta-
tions correlate with aggressive tumor behavior and resistance to 
targeted therapy in CRC, contributing to a poorer prognosis. 
Recent studies12,13 suggest that advanced-stage CRC and 
tumors on the right side of the colon are more likely to have 
RAS and BRAF mutations. Hence, detecting these mutations 
is crucial for assessing treatment response and tailoring treat-
ment strategies for CRC patients.

Colorectal cancer is a highly heterogeneous disease with 
various tumor phenotypes that are distinguished by specific 
molecular and morphological features. Colorectal cancer is a 
highly heterogeneous disease with various tumor phenotypes 
that are distinguished by specific molecular and morphological 
features. Colorectal cancer is caused by various genetic altera-
tions that affect tumor suppressor genes, oncogenes, and genes 
involved in DNA repair mechanisms. Three major pathways 
have been identified in CRC: chromosomal instability (CIN), 
microsatellite instability (MSI), and CpG island methylation 
phenotype (CIMP). These 3 groups have involved pathologi-
cal, genetic, and clinical characteristics.14

Chromosomal instability is the most common genetic mech-
anism in CRC (85% of all CRCs). Furthermore, CIN tumors 
have been linked to the accumulation of mutations in several 
oncogenes and tumor suppressor genes including KRAS, BRAF, 
adenomatous polyposis coli (APC), and TP53.15 Colorectal can-
cer development is primarily driven by these genetic mutations 
and defective cell regulation.16 The accumulation of these 

mutations activates multiple signaling pathways, including the 
RAS-RAF-MAPK pathway, which plays critical roles in essential 
cellular processes such as angiogenesis, cell proliferation, and 
motility. Mutations in specific genes, such as KRAS, NRAS, and 
BRAF, contribute to the dysregulation of this pathway and are 
frequently observed in CRC.17-19

Microsatellite instability is another significant pathway 
found in approximately 15% of all CRC cases; however, in 
metastatic CRC (mCRC), the prevalence of MSI decreases to 
approximately 4% to 5%.20 This highlights the crucial role of 
BRAF mutation status and microsatellite stability (MSS) in 
CRC. The interaction between these 2 factors has significant 
implications for disease aggressiveness and clinical manage-
ment. BRAF mutation is associated with MSI through its 
relationship with high-level CpG island methylator pheno-
type (CIMP) and MLH1 promoter methylation.21 This inter-
action serves as a biomarker in CRC.22 Importantly, the 
combined MSI/BRAF status can serve as a prognostic molec-
ular biomarker. For instance, compared with most subtype of 
microsatellite stable (MSS)/BRAF-wild-type, MSS/BRAF-
mutant, microsatellite instability-high (MSI-H)/BRAF-
mutant, and MSI-H/BRAF-wild-type subtypes showed 
different CRC-specific mortality hazard ratios.21 Furthermore, 
it is noteworthy that BRAF mutant MSS CRCs are particu-
larly aggressive, and in some cases, the MSS status seems to 
override the BRAF status. Therefore, understanding the inter-
action between BRAF mutation status and MS, as well as the 
broader role of MSI status in CRC, can help to stratify prog-
nostic risk, guide clinical management in CRC, and determine 
eligibility for certain treatments like immunotherapy.

The importance of detecting CRC early cannot be overstated. 
Early-stage CRC carries a good prognosis, boasting a 5-year sur-
vival rate of 91% for colon cancer and 90% for rectal cancer.23 
However, these rates drop to 13% and 18%,23 respectively, indi-
cating a poor prognosis, when the cancer metastasizes to distant 
organs such as the liver, lungs, lymph nodes, and peritoneum.24,25 
The tumor stage at diagnosis emerges as a crucial survival deter-
minant, with rates dropping to 14% for cases with distant metas-
tasis.26 Despite medical advancements, the prevalence of 
advanced-stage CRC diagnoses underscores the urgent need for 
enhanced screening strategies and early detection methods.

In mCRC with an unmutated RAS gene, anti-epidermal 
growth factor receptor (EGFR) antibodies such as cetuximab 
and panitumumab are commonly employed. These antibodies 
prolong progression-free survival (PFS) and overall survival 
(OS) while also enhancing the overall response rate (ORR) by 
inhibiting the EGFR pathway.27 Encorafenib, a BRAF inhibi-
tor, has demonstrated efficacy in treating mCRC with the 
BRAF V600E mutation, particularly when combined with 
cetuximab. This underscores the significance of assessing the 
RAS/BRAF status in mCRC patients undergoing EGFR 
inhibition.28 Despite the promising outcomes associated with 
these treatments, it is essential to consider potential side effects 
or limitations.
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Ethnic disparities in cancer biology, including CRC, are a 
significant area of research. These disparities, observed among 
different population groups globally, are influenced by various 
factors such as socioeconomic status, culture, diet, stress, envi-
ronment, and biology.29 For instance, Black/African American 
individuals often face higher death rates for many cancer types, 
including CRC, despite similar rates of breast cancer.30 Focusing 
on the Middle Eastern and North African context, unique 
genetic profiles and environmental exposures also contribute to 
differential patterns of CRC incidence and treatment responses, 
with distinct susceptibilities to CRC influenced by genetic pre-
dispositions, lifestyle factors, and socio-cultural determinants.31 
These disparities highlight the need for health care policies and 
practices that ensure equitable access to CRC prevention, detec-
tion, and treatment services across different ethnic groups. 
Therefore, this study builds on a prior review conducted by 
Jafari et al32 in 2022 based on CRC in North Africa to expand 
the scope of the examination, by investigating the Middle East 
region. By incorporating this additional geographical area, our 
objective is to comprehensively understand the prevalence and 
patterns of RAS and BRAF mutations in the Middle East. This 
extension contributes to advancing knowledge in the field and 
facilitates the development of targeted strategies for CRC pre-
vention and management across neighborhood regions. The 
aim of this study is to systematically review the available litera-
ture and determine the prevalence of RAS and BRAF muta-
tions among CRC patients in the Middle East, while also 
examining their clinicopathological characteristics through 
descriptive outputs of the studies. The organization of the study 
is as follows. The next section provides the applied method in 
this study whereas the “Review Results” section provides a com-
prehensive analysis of the collected literature data and provides 
descriptive and methodological insights. “Discussion” section 
discusses the outputs more in-depth whereas the last section 
shows a fundamental gain of this study.

Methods
In this systematic review, we conducted a comprehensive 
examination of the literature to assess the prevalence of RAS 
mutations and their correlation with geographical location, 
clinicopathological features, and other relevant factors in CRC 
patients in the Middle East. To achieve this goal, we employed 
a Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) mechanism relying on a rigorous search 
strategy that encompassed multiple databases, including 
PubMed, Science Direct, Web of Science, Scopus, and Google 
Scholar. Only case-control studies published between 2002 
and 2022 are considered in this review study. Figure 1 summa-
rizes the flowchart of PRISMA process. The search terms used 
in this study were carefully selected to capture a wide range of 
relevant keywords related to CRC and the Middle East region.

Our search terms specifically included variations of “colo-
rectal cancer” or “CRC,” combined with terms related to RAS 

mutations such as “RAS mutation,” “KRAS mutation,” “NRAS 
mutation,” “BRAF mutation,” “Chromosomal Instability” (or 
CIN), and “Microsatellite Instability” (or MSI).” In addition, 
we included terms specifying the Middle East region such as 
“Middle East,” “Middle Eastern,” and specific country names 
within the area. This comprehensive approach ensured that we 
captured relevant studies exploring the prevalence and charac-
teristics of RAS mutations, BRAF mutations, and the status of 
CRC patients across the Middle Eastern region.

To ensure the quality and relevance of the studies included 
in this review, we established specific inclusion criteria. 
Specifically, studies must have focused on the role of the RAS 
gene and/or BRAF gene in CRC, analyzed also mutations in 
exons 2, 3, and 4 of the RAS gene, as well as exon 15 of the 
BRAF gene, provided sufficient information on the clinico-
pathological characteristics of included CRC patients, and 
included at least 100 CRC patients analyzed for RAS muta-
tions. Studies that reported on MSI status were also included, 
even although they were limited.

After conducting an initial literature search in multiple data-
bases, a total of 80 publications were identified. Following the 
removal of unrelated and duplicated records, 51 records 
remained, which were then screened using the title and abstract. 
Of these, 25 records did not meet the inclusion criteria and were 
subsequently excluded. The full text of the remaining 26 records 
was thoroughly reviewed, and 7 records were excluded due to 
the study status (such as unpublished study or report) provided 
in Figure 1. Ultimately, 19 studies met the desired criteria and 
were included in the review analysis. The studies were all case-
control studies published between 2002 and 2022. Of the 19 
included studies, 12 focused on KRAS mutations,33-44 3 on 
KRAS and NRAS mutations,45-47 1 on KRAS and BRAF 
mutations,48 and 3 on KRAS, NRAS, and BRAF mutations.49-51 
Notably, 3 of these studies provided insight into MSI status, 
contributing to a more comprehensive understanding of the 
genetic landscape of CRC.33,37,49 The original articles included 
in the present review were identified from various Middle 
Eastern countries, including Bahrain,49 Iran,33-38,45,48 Iraq,39 
Israel,40 Jordan,41,46 Lebanon,50 and Saudi Arabia.42-44,47,51 After 
reviewing the relevant literature, we present the descriptive pat-
terns between RAS mutation status and the descriptive clinico-
pathological characteristics of CRC patients in the collected 
studies which are explained below.

Review Results
This section presents a comprehensive examination of the col-
lected literature data and provides descriptive and methodo-
logical insights into the findings of the studies.

Description of sample sizes and included regions

The characteristics of RAS and BRAF mutation studies have 
been summarized in Tables 1 and 2, respectively. The sample 
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sizes of the studies analyzing RAS and BRAF mutations ranged 
from 33 to 1000 patients. Most analyzed patients, 92.6% (2742 
of 2960), were derived from studies conducted in the Middle 
Eastern region, including Iran (8 studies, 1647 patients),33-38,45,48 
Iraq (1 study, 50 patients),39 Israel (1 study, 105 patients),40 
Jordan (2 studies, 290 patients),41,46 Lebanon (1 study, 273 
patients),50 and Saudi Arabia (5 studies, 423 patients).42-44,47,51 
Especially, 2 studies, 1 from Bahrain (172 patients)49 and 1 
from Saudi Arabia (46 patients),43 did not provide information 
on the distribution of RAS mutations.

Specimens and methods used in the RAS and BRAF 
mutation identif ication

In most studies investigating mutations in KRAS, NRAS, and 
BRAF genes within Middle Eastern populations, formalin-
fixed paraffin-embedded (FFPE) tissues were used as speci-
mens. These specimens included both biopsies and resection 

materials. DNA extraction was performed on tissue samples 
utilizing paraffin block DNA extraction kits. Among Middle 
Eastern series, exon 2, 3, and 4 mutations of KRAS and NRAS 
genes were analyzed in 15.7% (3 of 19).45-47 In 12 studies 
(15.7%, 3 of 19),33-44 exon 2, 3, and 4 mutations of the KRAS 
gene were evaluated and whereas NRAS exons 2 and/or 3 were 
evaluated in 26.3% of studies.45-47,50,51 Most studies (94.7%, 18 
of 19)33-48,50,51 assessed KRAS mutations in exon 2 codons 12 
and 13. BRAF gene mutations were analyzed in 21.1% (4 of 19) 
studies.48-51 Microsatellite instability was examined in a subset 
of these studies (15.7%, 3 of 19), whereas the remaining studies 
did not report on MSI.33,37,49 One study from Bahrain (172 
patients) did not mention specific exons genotyped.49 Various 
molecular methods were employed for mutation screening, with 
sequencing assays being the most widely used method (21.1% 
of studies).33,37,40,48 Other methodologies described in the con-
sidered studies included Pyrosequencing,35,36,45,49 Sanger 
sequencing,34,38,41 array-based techniques such as ARRAY43 

Figure 1.  Flowchart of PRISMA process.
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Table 1.  Details of studies investigating KRAS, NRAS, and BRAF genes in the Middle East (+, including genetic analysis;−, not including genetic 
analysis).

Country Materials KRAS NRAS BRAF Detection 
method

Author 
(Reference)

Exon 2 Exon 3 Exon 4 Exon 2 Exon 3 Exon 4 Exon 15

Bahrain

 � Al Shaikh and 
Shubbar49

FFPE − − − − − − + PCR/
Pyrosequencing

Iran

  Shemirani et al33 Fresh 
tissue

+ − − − − − − PCR/Sequencing

  Omidifar et al34 FFPE + − − − − − − PCR/Sanger 
sequencing

  Yari et al48 FFPE + + − − − − + PCR/Sequencing

  Amirifard et al35 FFPE + − − − − − − PCR/
Pyrosequencing

  Naseri et al45 FFPE + − − − − + − PCR/
Pyrosequencing

  Niya et al36 FFPE + − − − − − − HRM/
Pyrosequencing

  Bishehsari et al37 FFPE + + − − − − − PCR/Sequencing

 � Hamzehzadeh 
et al38

Fresh 
tissue

+ − − − − − − HRM/Sanger 
sequencing

Iraq

  Al-Allawi et al39 FFPE + − − − − − − PCR/Hybridization 
StripAssay

Israel

  Kislitsin et al40 Frozen 
tissue

+ − − − − − − PCR/Sequencing

Jordan

  Elbjeirami et al41 FFPE + − − − − − − PCR/Sanger 
sequencing

  Awidi et al46 FFPE + + + + + − − PCR/Hybridization 
StripAssay

Lebanon

  Baba et al50 FFPE + + + + + − + PCR/Hybridization 
StripAssay

Saudi Arabia

  Bader et al42 FFPE + − − − − − − PCR/LCD Array

  Zekri et al43 FFPE + − − − − − − PCR/Array

  Zahrani et al44 FFPE + − − − − − − PCR/LCD Array

  Mulla et al47 FFPE + − − + + − − PCR/Next-
generation 
sequencing

  Saharti51 FFPE + + + − + − + PCR/Next-
generation 
sequencing

Abbreviation: HRM, high-resolution melting.
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Table 2.  Characteristics and clinicopathologic features of studies included in this review.

Country author 
(reference)

Sample 
size

Mean years 
(±SD)

Women/
men, No (%)

Tumor site, No (%)
Stages, 
No (%)

Tumor 
grade

  Colon Rectum  

  Right Left  

Bahrain

 � Al Shaikh and 
Shubbar49

172 60 79 (46%)/93 
(54%)

NA NA 38 (22%) I: 6 (4%)
II: 17 
(10%)
III: 47 
(27%)
IV: 21 
(12%)

Well: 5 
(3%)
Moderate: 
145 (83%)
Poor: 10 
(6%)

Iran

 � Shemirani et al33 95 49 22 (23%)/73 
(76%)

NA NA NA NA NA

  Omidifar et al34 100 59.08 (±15.55) 45 (45%)/55 
(55%)

NA NA NA NA NA

  Yari et al48 100 59.60 (±15.24) 36 (36%)/64 
(64%)

29 (29%) 30 (30%) 41 (41%) I: 11 
(11%)
II: 17 
(17%)
III: 59 
(59%)
IV: 13 
(13%)

W: 8 (8%)
M: 78 
(78%)
P: 14 
(14%)

  Amirifard et al35 33 51.48 (±12.6) 7 (21%)/26 
(79%)

NA NA 15 (45%) NA W: 22 
(66.7%)
M: 7 
(21.2%)
P: 3 
(9.1%)

  Naseri et al45 50 61.3 (±13) 15 (30%)/35 
(70%)

26 (52%) NA 13 (26%) II: 2 (4%)
III: 11 
(22%)

W: 15 
(30%)
M: 18 
(36%)

  Niya et al36 1000 NA 427 
(42.7%)/573 
(57.3%)

NA NA NA NA W: 439 
(43.9%)
M: 384 
(38.4%)
P: 164 
(16.4%)

 � Bishehsari et al37 182 NA 79 
(43.3%)/103 
(56.6%)

58 (32%) 65 (35.7%) 53 (29%) NA NA

 �� Hamzehzadeh 
et al38

87 NA 36 
(41.3%)/51 
(58.6)

76 (87.3%) NA 11 (12.6%) NA W: 16 
(18.3%)
M: 67 
(77%)
P: 4 
(4.6%)

Iraq

  Al-Allawi et al39 50 59 ± 15.25 23 (46%)/27 
(54%)

10 (20%) 12 (24%) 28 (56%) I: 12 
(24%)
II: 13 
(26%)
III: 23 
(46%)
IV: 2 (4%)

W: 10 
(20%)
M: 31 
(62%)
P: 9 (18%)

 (Continued)
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and LCD Array,42,44 next-generation sequencing,47,51 and 
hybridization StripAssay.39,46,50 A summary of the details of 
these studies is presented in Table 1.

Statistical analysis in most studies performed using the chi-
squared test and SPSS software, and a P value less than .05 was 
considered to indicate statistical significance. The chi-squared 

Country author 
(reference)

Sample 
size

Mean years 
(±SD)

Women/
men, No (%)

Tumor site, No (%)
Stages, 
No (%)

Tumor 
grade

  Colon Rectum  

  Right Left  

Israel

  Kislitsin et al40 105 NA NA NA NA 33 (31%) NA W: 7 (7%)
M: 37 
(35%)
P: 2 (2%)

Jordan

 � Elbjeirami et al41 100 55 45 (45%)/55 
(55%)

58 (58%) NA 22 (22%) I: 0 (0%)
II: 5 (5%)
III: 8 (8%)
IV: 87 
(87%)

NA

  Awidi et al46 190 58 76 (40%)/114 
(60%)

62 
(32.63%)

107 (56.32%) 5 (2.63%) NA NA

Lebanon

  Baba et al50 273 58 112 
(41%)/160 
(59%)

41 (15%) 163 (60%) NA NA NA

S. Arabia

  Bader et al42 83 55 35 
(42.2%)/48 
(57.8%)

63 (76%) NA 20 (24%) I: 3 
(3.6%)
II: 8 
(9.63%)
III: 15 
(18.07%)
IV: 57 
(68.67%)

W: 7 
(8.43%)
M: 68 
(81.92%)
P: 8 
(9.63%)

  Zekri et al43 46 61 16 (34%)/30 
(65%)

17 (37%) 4 (9%) 8 (17%) II: 14 
(30%)
III: 15 
(33%)
IV: 17 
(37%)

W: 1 (2%)
M: 38 
(83%)
P: 7 (15%)

  Zahrani et al44 150 56.7 NA 21 (18%) 123 (82%) 32 (21.3%) I: 2 (1%)
II: 22 
(14.6%)
III: 26 
(17.3%)
IV: 100 
(66.6)

NA

  Mulla et al47 51 60.2 25 (49%)/26 
(51%)

14 (27.5%) 37 (72.5%) NA I: 5 
(9.8%)
II: 13 
(25.5%)
III: 16 
(31.4%)
IV: 17 
(33.33%)

W: 6 
(11.8%)
M: 43 
(84.3%)
P: 2 
(3.9%)

  Saharti51 93 57.3 NA NA NA NA NA NA

Abbreviations: M, moderately differentiated; No (%), percentage of number of individuals (women/men); NA, not available; P, poorly differentiated; SD, standard deviation; 
W, well differentiated.

Table 2.  (Continued)
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test is a widely employed statistical analysis in research that 
aims to evaluate the independence or association between cat-
egorical variables. It proves especially valuable when dealing 
with data that involves frequencies or counts distributed across 
distinct categories. Through a comparison of observed and 
expected frequencies, the chi-square test calculates a test statis-
tic that adheres to the chi-square distribution. This test statistic 
quantifies the degree of deviation between the observed and 
expected frequencies, providing insights into whether a signifi-
cant association exists between the variables being examined.

Patients’ clinicopathological characteristics

A total of 2960 patients diagnosed with CRC were included in 
this analysis. The median age of patients was 57 years with a range 
of 49 to 74 years. Among the studies considered, men constituted 
the predominant proportion, accounting for 1533 (58.6%) of 
2612 patients. However, the men-to-women ratio was not avail-
able in 3 studies, 1 from Israel40 and 2 from Saudi Arabia.44,51

Tumor site information was available for a subset of the 
specimens. It was found that 23.6% (319 of 1348) of the tumors 
were located in the rectum,35,37-46,48,49 34.8% (475 of 1362) 
were located in the right colon,37-39,41-48,50 and 51.9% (541 of 
1042) were located in the left colon.37,39,43,44,46-48,50 Furthermore, 
the percentages of patients with well-differentiated, moder-
ately differentiated, and poorly differentiated histology  
were 30.1%,35,36,38-40,42,43,45,47-49 51.5%,35,36,38-40,42,43,45,47-49 and 
12.5%,35,36,38-40,42,43,47-49 respectively. Of the tumors, 41.7% 
(314 of 752) were reported to be in stage IV.39,41-44,47-49 
Formalin-fixed paraffin-embedded blocks were the primary 
source of specimens in 16 studies,34-37,39,41-51 whereas fresh tis-
sue was used in 2 studies33,38 and frozen tissue in 1 study.40 
Further details regarding the baseline characteristics and clin-
icopathologic features of the enrolled studies can be found in 
Table 2.

RAS and BRAF mutation prevalence

The prevalence of RAS mutations among CRC patients in the 
Middle East region was found to be 1128 (38.1%) of 2960 
based on analysis of available studies. Iran had the highest RAS 
mutation prevalence at 33.6% (336 of 1000),36 whereas the 
lowest prevalence also was observed in another study from Iran 
at 6.3% (6 of 95).33 The prevalence of BRAF mutations in the 
region was 2.6% (17 of 638),48-51 with the highest prevalence 
observed in Iran at 7%48 and the lowest in Saudi Arabia at 
2.2%.51 A summary of RAS and BRAF mutation prevalence in 
the Middle East is presented in Table 3.

RAS and BRAF mutation spectrum

The prevalence of KRAS, NRAS, and BRAF mutations has 
been reported in 19,33-51 6,45-47,49-51 and 448-51 of the 19 included 
studies, respectively. In total, KRAS mutations were most 

frequently detected among Middle East patients with CRC, 
accounting for 37.1% (1098 of 2960).33-51 Iran highlights a 
wide range of KRAS mutation rates, ranging from 6.3% (6 of 
95)33 to 33.6% (336 of 1000),36 as compared with other coun-
tries from the region. Overall, KRAS mutations were distrib-
uted among the different exons as follows: 97.9% (1030 of 
1052) exon 2,33-51 1.9% (7 of 361) exon 3,37,46,48,50,51 and 5.6% 
(15 of 264) exon 446,50,51 (Table 3). As seen in Table 4 (see 
Appendix), the G12D was the most frequently identified exon 
2 mutation (23.2%, 239 of 1030),33-42,44-48,50,51 followed by 
G12V (13.7%, 142 of 1030),35-42,44-48,50,51 G13D (10.1%, 105 of 
1030),34-42,44-46,48,50,51 G12C (5.1%, 53 of 1030),34-42,44,46-48,50,51 
G12A (5.0%, 52 of 1030),34,36,38,39,41,44,46-48,50,51 G12S (3.6%, 38 
of 1030).34-36,38-42,44,46,47,50,51 G12R, G13C, and G13R are less 
than 5%.33,34,36,41,44,50,51 However, there are important differ-
ences among Middle East countries. In Lebanon, there is a 
higher prevalence of G12D mutation 49.50 The most frequent 
mutation type in exon 3 was Q61H (85%, 6 of 7).46,48,50,51 In 
exon 4, the most common mutation was K117N (33.3%, 9 of 
15),46,48,50,51 followed by A146T (33%, 5 of 15)46,50,51 and 
A146V (6.6%, 1 of 15).50 One study from Saudi Arabia found 
a G138E mutation.51

NRAS total mutations were identified in 30 (3.3%) of  
89245-47,49-51 tumor samples. A higher prevalence of NRAS 
mutations has been reported in Lebanon (5.8%, 16 of 273).50 
Overall, the common mutation site of the NRAS gene was 
located in exons 2, 3, and 4 with 40% (12 of 30),46,47,50 40% (12 
of 30),46,47,50,51 and 3% (1 of 30)45 of CRC patient (Table 3). 
NRAS mutations were more common in codon 61, accounting 
for 40% (12 of 30)46,47,50,51 (Table 3). The most common muta-
tions were G12D in exon 2 and Q61L in exon 3 and accounted 
for 58% (7 of 12)47,50 and 41% (5 of 12)47,50,51 of patients with 
CRC, respectively (Table 4). The total mutation frequency in 
the BRAF gene was 2.6% (17 of 638) as reported in the litera-
ture.48-51 The highest frequency of BRAF mutations was found 
in Iran, where it was reported in 7% (7 of 100) of patients with 
CRC.48 Overall, the BRAF V600E mutation frequency was 
2.6% (17 of 638),48-51 as shown in Tables 3 and 4.

In addition to the mutation analysis, some studies also 
investigated MSI and microsatellite stability (MSS). In 
Bahrain, MSI was observed in 11% (19 of 172) of the cases, 
whereas 58% (100 of 172) were found to be MSS.49 In Iran, 2 
studies reported on MSI and MSS. One study reported MSI in 
17% of the cases, with the remaining 83% being MSS.33 The 
other study found a slightly higher rate of MSI at 24.5%, with 
MSS accounting for 80.6% of the cases.37 These findings on 
MSI and MSS add another layer of complexity to the genetic 
landscape of CRC in the Middle East, complementing the 
mutation data on KRAS, NRAS, and BRAF genes.

Discussion
This systematic review conducted on the prevalence of RAS 
and BRAF mutations in CRC patients in the Middle East 
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sheds light on significant disparities compared with other 
regions stated below, underscoring the complexity of genetic 
and environmental factors influencing RAS (KRAS and 
NRAS) and BRAF mutation occurrence. Understanding these 
differences is crucial for tailoring effective prevention and 
treatment strategies in the region.

The prevalence of KRAS gene mutation in CRC patients 
varies globally, ranging from 11% to 66.1% (mostly 30%-
45%).52 This diversity in findings may be attributed to factors 
such as ethnicity, geographical area, environmental differences, 
and lifestyle.53-56 KRAS mutation correlates with various clini-
cal and clinicopathological features in CRC populations, 
including sex,57-61 age at diagnosis (>50 years),58 tumor loca-
tion,56,57,61 tumor differentiation,56,61-63 and Tumor, Lymph-
node, Metastasis (TNM) stage.60 However, some studies did 
not find significant associations64,65 in this context. In our 
study, men constituted most (58.6%) of the cohort, with tumor 
sites predominantly in the left colon (51.9%). Tumor differen-
tiation varied, with 30.1%, 51.5%, and 12.5% classified as well-
differentiated, moderately differentiated, and poorly 
differentiated, respectively. Stage IV was reported for 41.7% of 
tumors. Although some studies suggest a higher likelihood of 
mutant KRAS in women,66,67 others indicate the opposite 
trend.43,68

This review shows a higher prevalence of KRAS mutations 
among Middle Eastern CRC patients compared with some 
other regions, suggesting unique genetic profiles within the 
region. The results showed that the frequency of KRAS muta-
tions in the Middle Eastern population was 37.1%, which is 
consistent with reported data from other Asian countries such 
as China (32%),69 Japan (33.5%),70 and Taiwan (33.5%),71 as 
well as from Western countries including the United States 
(35.7%, 35%, and 31%),72-74 France (33.8%),75 and the United 
Kingdom (36.9%).76 However, there were variations when com-
pared to some other regions such as Germany (41%),77 Italy 
(62.2%, 43%, 43%, and 52.2%),78-81 Turkey (44%),82 India 
(20.5% and 23%),52,83 Pakistan (13%),84 Morocco (24%),85 
Egypt (11% and 18.4%),86,87 Thailand (23%),88 and Korea 
(20.7%).89 Our study findings also align with prior research, 
indicating that most KRAS mutations in CRC patients occur 
in codons 12 and 13.90,91 For instance, Dobre et al92 found that 
79.3% of KRAS mutations were in codon 12 and 19.7% in 
codon 13. Similarly, in India, KRAS mutations were detected in 
87% and 13% of cases in codons 12 and 13, respectively.93 
Consistent results were reported in a large-scale study in Brazil, 
with KRAS mutations in codons 12 and 13 found in 87% and 
13% of patients, respectively.68 However, a study on the Greek 
population reported a lower frequency of KRAS mutations in 
codon 12, at 29.3%.94 Various genetic and environmental factors 
contribute to the frequency and distribution of KRAS muta-
tions, leading to variations across different ethnic populations. 
Notably, KRAS G12D and G12V mutations were the most 
common, followed by G12S, G12A, and G12C. In our study, 

the most prevalent KRAS mutations observed in CRC patients 
were G12D (23.2%) and G12V (13.8%), followed by G12C 
(5.2%), G12A (5.0%), and G12S (3.6%). In addition, we identi-
fied a p.G13D mutation in 10.1% of cases. Comparing our 
findings to North African populations, previous studies85,95-109 
reported variations in the frequency and distribution of KRAS 
mutations in CRC patients from this region. For example, in 
Morocco, the frequency ranged from 23.9% to 51%,85,95-99 while 
in Tunisia, it ranged from 23.1% to 68.2%.100-106 Algerian stud-
ies reported a KRAS mutation frequency of 31.4% to 50%,107,108 
whereas in Libya, it was 38.2%.109

Colorectal cancer in Arab patients also exhibits a distinct 
histological pattern, with a higher incidence of mucinous ade-
nocarcinoma (10.1%) compared with Western populations 
(6.0%).110 This suggests potential differences in tumor biology 
or genetic factors specific to the Middle East. However, com-
prehensive data on rarer subtypes such as signet ring cell carci-
noma or medullary carcinoma are limited in the Middle East, 
making direct comparisons challenging. The geographical vari-
ations in CRC subtype distribution could be attributed to fac-
tors such as genetic diversity, lifestyle habits, and health care 
accessibility. These findings highlight the importance of 
region-specific epidemiological studies for developing tailored 
prevention and management strategies.

In the context of the NRAS gene, mutations in NRAS 
codons 12, 13, 61, and 146 exhibit similar effects to KRAS 
activation. In our review, NRAS mutations were observed in 
3.3% of CRC tumor samples, predominantly in exons 2, 3, and 
4, representing 4%, 40%, and 3% of cases, respectively. 
Particularly, codon 61 was the most frequently mutated site, 
accounting for 40% of cases. The most prevalent mutations 
were G12D in exon 2 and Q61L in exon 3, found in 40% and 
41% of CRC patients, respectively. Other studies have also 
reported NRAS mutations in CRC patients, with mutation 
rates varying across different populations. For instance, Irahara 
et  al111 reported NRAS mutations in 2.2% of their patients, 
consistent with our findings. Similarly, Chinese and Greek/
Romanian patients had mutation rates of 4.2% and 9.6%, 
respectively.62,112 In Moroccan studies, Q61K and Q61R were 
the most common NRAS mutations, accounting for 2.6% and 
1.8% of cases, respectively.97 Focusing on BRAF gene, the most 
common mutation, V600E, results from a substitution at 
c.1799T > A. Our review identified a prevalence of 2.6% for 
BRAF V600E, which is lower than the reported global rates of 
5% to 15%.113-117 The incidence of BRAF mutations varies sig-
nificantly across populations, with Taiwan recording the lowest 
at 1% and the Netherlands and the United States reporting the 
highest at 19.8% and 21.8%, respectively.52-56,62,68,71-109,111-116 
Interestingly, Asian populations generally exhibit lower inci-
dences, with rates ranging from 3.8% to 7% in China and 4.7% 
to 6.7% in Japan.118

Microsatellite instability is a crucial factor in CRC, impact-
ing prognosis, treatment response, and disease management.119 
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Our systematic review assessed MSI status in a limited subset 
of studies, underlining its clinical significance. Microsatellite 
instability-high tumors, often linked with BRAF mutations, 
display different outcomes compared with microsatellite stable 
(MSS) tumors. The combined MSI/BRAF status serves as a 
valuable prognostic and predictive marker in CRC.21 One 
recent study120 indicates that both mismatch repair (MMR)-
deficient and MMR-proficient tumors, subsets of MSI-H and 
MSS tumors, can respond to neoadjuvant immunotherapy 
with ipilimumab, nivolumab, and celecoxib for mismatch repair 
proficient (pMMR). This treatment, which was well-tolerated 
by patients, resulted in pathological responses in all mismatch 
repair deficiency (dMMR) tumors and in 27% of pMMR 
tumors. These findings suggest the potential for this approach 
to become a standard of care for specific colon cancer patients. 
However, the presence of inconsistencies in MSI reporting 
underscores the need for standardized methodologies. Our 
findings enhance our understanding of CRC’s molecular land-
scape, promoting personalized treatment approaches.

These findings underscore the heterogeneity of CRC biol-
ogy and the importance of comprehensive molecular profiling 
for guiding treatment decisions. Such insights emphasize the 
significance of regional variations in understanding CRC 
pathogenesis and tailoring personalized treatment approaches 
that are touched on below.

Cancer development, including CRC, is influenced by a 
myriad of factors, ranging from genetic predisposition to envi-
ronmental exposures whereas multi-gene mutation signatures 
are used for providing diagnosis, pathological classification, 
staging, and prognosis.121 Environmental factors (eg, lifestyle 
related factors such as improper diets and alcohol consump-
tion, and exposure to pathogenic bacteria) are recognized as 
contributors to CRC development.122 Although environmen-
tal factors generally play a predominant role in most common 
cancers, it is important to note that a significant proportion of 
cancer-related mutations stem from random DNA replication 
errors, underscoring the combined influence of inherited and 
environmental factors.123 Some studies indicate that both 
genetic and environmental factors contribute to approximately 
92% of cancer risk variation across various tissues.124 
Encouraging a high-fiber diet, weight management, smoking 
cessation, and physical activity are lifestyle interventions aimed 
at addressing modifiable risk factors linked to CRC. Screening 
methods, such as colonoscopy and stool-based tests like fecal 
immunochemical tests (FITs), are pivotal for early detection, 
particularly in resource-limited settings where FIT is more 
preferred. National screening initiatives, like organized FIT 
programs in countries such as Israel and Qatar, target specific 
age groups.125 In addition, endoscopic procedures offer a direct 
visualization of the colon and rectum, enabling the detection 
and removal of precancerous lesions and early stage tumors 
before they progress. It is noteworthy that the incidence rates 
of CRC have seen a reduction of up to 50% in older age groups 
in the United States, coinciding with the widespread adoption 

of screening colonoscopy.126 This is despite the presence of 
adverse CRC risk factors and a rise in CRC incidence in 
younger age groups. Integrating both stool-based tests and 
endoscopic procedures offers a comprehensive approach to 
CRC management, enhancing the ability to identify high-risk 
individuals and facilitating personalized treatment strategies. 
Although lifestyle interventions and screening programs are 
crucial for CRC prevention, their effectiveness may vary across 
different cultural and resource contexts in the Middle East; 
therefore, tailored region-specific guidelines are essential to 
optimize participation and efficacy in prevention efforts.125

The current standard of treatment for CRC in Middle 
Eastern countries generally follows international guidelines 
and recommendations. Treatment approaches for CRC typi-
cally involve a multidisciplinary team of health care profes-
sionals and may include a combination of surgery, 
chemotherapy, radiation therapy, targeted therapy, and immu-
notherapy, depending on the stage and characteristics of the 
cancer. Surgical resection of the tumor is often the primary 
treatment for localized disease, whereas adjuvant chemother-
apy may be recommended for certain stages. For advanced or 
mCRC, systemic therapies such as chemotherapy, targeted 
therapy (eg, anti-EGFR or anti-Vascular Endothelial Growth 
Factor (anti-VEGF) agents), and immunotherapy (eg, check-
point inhibitors) are commonly used methods.127

Personalized medicine is transforming CRC treatment by 
tailoring strategies to each patient’s genetic profile, potentially 
enhancing therapy effectiveness and reducing side effects. This 
includes targeted therapies that precisely attack cancer cells 
with specific mutations. Studying ethnic differences in CRC 
tumor biology is crucial, as it can reveal significant variations in 
disease progression and response to treatment. For instance, 
research has shown that Black, White, and Asian/Pacific 
Islander patients with early onset CRC have different patterns 
of non-silent mutations.128 However, most large phase 2 to 3 
clinical trials predominantly recruit participants from Western 
countries, potentially leading to a lack of representation of 
Middle Eastern populations. This is a significant issue because 
drugs are approved based on the results of these trials, which 
may not fully account for the unique genetic and environmen-
tal factors influencing CRC tumor biology in the Middle 
East.129 Therefore, it is important to suggest for more inclusive 
clinical trials that adequately represent diverse populations, 
including those in the Middle East. This could lead to a better 
understanding of ethnic differences in CRC tumor biology and 
more effective, personalized treatment strategies. In the context 
of these personalized strategies, immunotherapy, which uses 
the body’s immune system to combat cancer, has shown prom-
ise, especially for CRC types with high microsatellite instabil-
ity (MSI-H) or dMMR.130 Liquid biopsy techniques further 
advance personalized medicine by enabling non-invasive mon-
itoring of disease progression and treatment response.131 In 
addition, the integration of artificial intelligence and machine 
learning in oncology can help predict outcomes, guide 
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treatment decisions, and identify new therapeutic targets. 
However, these approaches are still under investigation, and 
their clinical implementation requires further validation. The 
availability and accessibility of these treatments may also vary 
across regions due to health care resource disparities.132

The clinical implications of RAS and BRAF mutations in 
CRC patients in the Middle East are significant. These muta-
tions, including KRAS, NRAS, and BRAF, can influence disease 
progression and treatment effectiveness. Patients with these 
mutations face challenges in treatment selection due to their 
resistance to anti-EGFR therapies such as cetuximab and panitu-
mumab. For instance, KRAS and NRAS mutations necessitate a 
focus on chemotherapy-based treatments like FOLFOX or 
FOLFIRI. BRAF V600E mutations, linked to poor prognosis 
and anti-EGFR resistance, may benefit from combination thera-
pies such as FOLFOXIRI or targeted therapies such as BRAF 
and mitogene-activated protein kinase kinase (MEK) inhibi-
tors.133 Knowledge of a patient’s mutation status can guide per-
sonalized treatment plans, combining chemotherapy and targeted 
therapies to enhance treatment efficacy. Moreover, understanding 
the genetic landscape of CRC can inform targeted screening 
strategies for earlier detection and guide research efforts toward 
studying prevalent mutations. Participation in clinical trials 
exploring novel therapies is also crucial for advancing treatment 
options for these patients. Although genetic testing is crucial for 
individual patients, understanding the broader genetic landscape 
of CRC in different populations can inform treatment, screening, 
and research strategies, ultimately contributing to improved 
patient outcomes.134

In the rapidly evolving field of cancer genomics, it is crucial 
to consider the potential impact of a broader spectrum of 
genetic alterations in CRC. For instance, mutations in homol-
ogous recombination repair (HRR) genes such as breast cancer 
gene (BRCA) and ataxia-telangiectasia mutated (ATM) are 
gaining attention in the oncology community. These genes play 
a critical role in DNA repair, and their mutations can lead to 
genomic instability, a hallmark of cancer.135 Moreover, the 
prevalence of HRR mutations can vary across different geo-
graphical regions as stated along with the review. This geo-
graphical variation could be due to differences in genetic 
backgrounds, environmental factors, or a combination of both. 
Understanding these geographical differences in mutation 
prevalence could provide valuable insights into the regional 
variations in CRC pathogenesis and response to treatment. 
Importantly, these mutations can confer sensitivity to poly 
(adenosine diphosphate (ADP)-ribose) polymerase (PARP) 
inhibitors, a class of targeted cancer drugs. Poly (ADP-ribose) 
polymerase inhibitors work by trapping PARP proteins on 
damaged DNA, which leads to the formation of cytotoxic 
DNA lesions and ultimately results in cell death.136 Although 
PARP inhibitors have shown efficacy in treating cancers with 
BRCA1/2 mutations, they are also being investigated for other 
types of cancers with HRR gene mutations or deficiencies, as 

well as in tumors with high levels of replicative stress. It is 
important to note that PARP inhibitors are not effective in all 
patients with HRR gene mutations, and further research is 
needed to identify predictive biomarkers of response. 
Nonetheless, PARP inhibitors represent a promising avenue 
for targeted cancer therapy and have the potential to improve 
outcomes for patients with HRR-deficient tumors.136

Genetic testing plays a pivotal role in the early detection and 
intervention of diseases, particularly in the field of cancer dis-
ease. One of the key advantages of genetic testing in the context 
of CRC is its potential for early identification. Certain genetic 
mutations are known to significantly increase the risk of CRC. 
By identifying these mutations in individuals, we can classify 
them as high risk. Then, individuals can be monitored more 
closely for the early signs of CRC, allowing for earlier interven-
tion and potentially better outcomes.137 The detection of muta-
tions such as RAS and BRAF genes can significantly contribute 
to the early detection and management of CRC, demonstrating 
the transformative potential of the advanced diagnostic tools. 
This proactive approach to early identification is essential as it 
enables the implementation of preventive measures and early 
treatments, potentially altering the disease’s course.137

One recent study138 has shed light on a significant disrup-
tion in DNA repair processes in digestive system cancers, 
marked by the simultaneous loss of MLH1, PMS2, and MSH6 
immuno-expression. This disruption could have far-reaching 
effects on how we understand and treat a variety of cancers, 
including CRC. This study found that several MMR/HRR-
related genes were affected, including ATM, BARD1, BRCA1, 
CDK12, CHEK1, CHEK2, FANCA, MLH1, MSH6, 
PALB2, and TP53. These findings could have a direct impact 
on the efficacy of PARP inhibitors in the treatment of CRC.

This systematic review possesses a notable strength in its 
comprehensive examination of studies conducted across vari-
ous countries in the Middle East, encompassing diverse popu-
lations. By including a substantial number of studies while 
upholding statistical power, a thorough comprehension of the 
prevalence and range of RAS and BRAF mutations within the 
region were achieved. However, it is essential to acknowledge 
the limitations of the review, including data heterogeneity due 
to variations in specimen types and genotyping methods, as 
well as potential biases arising from limited accessibility to 
molecular testing. For example, some studies employed 
sequencing to confirm mutations, whereas others did not fol-
low this approach. Moreover, demographic diversity within the 
region may contribute to variability in study results, warranting 
cautious interpretation.

Conclusions
In essence, this systematic review provides valuable insights 
into the molecular landscape of CRC in the Middle East, 
highlighting the importance of region-specific considerations 
in both research and clinical practice. The distribution patterns 
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of RAS and BRAF mutations among CRC patients exhibit 
notable variations across diverse ethnic groups. Our study 
sheds light on this phenomenon by demonstrating a higher 
prevalence of KRAS mutations in CRC patients from the 
Middle East, as compared with those from several regions. The 
identification of these mutations and geographical differences 
is important for personalized treatment planning and could 
potentially aid in the development of novel targeted therapies. 
Further studies are needed to address the identified gaps and 
enhance our understanding of CRC pathogenesis and treat-
ment outcomes in the region. Also, more studies are needed to 
investigate histopathology, in addition to genetic alterations, as 
hematoxylin and eosin (H&E) histopathology remains the 
cornerstone of establishing cancer diagnosis.
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Table 4.  Frequency and distribution of KRAS, NRAS, and BRAF mutations.

Country author 
(reference)

Gene Exon Codon Amino acid Nucleotide Protein Frequency, No (%)

Bahrain

  Al Shaikh and Shubbar49 KRAS NA NA NA NA NA NA

NRAS NA NA NA NA NA NA

BRAF 15 600 V600E 1799T > A p.Val600Glu 6 (3.5%)

Iran

  Shemirani et al.33 KRAS 2 12 G12D c.35G > A p.Gly12Asp 5 (83%)

13 G13C c.37G > T p.Gly13Cys 1 (17%)

  Omidifar et al.34 KRAS 2 12 G12A c.35G > C p.Gly12Ala 12 (12%)

G12D c.35G > A p.Gly12Asp 9 (9%)

G12S c.34G > A p.Gly12Ser 1 (1%)

G12C c.34G > T p.Gly12Cys 1 (1%)

13 G13D c.38G > A p.Gly13Asp 6 (6%)

G13S c.38G > C p.Gly13Ser 1 (1%)

G13R c.37G > C p.Gly13Arg 1 (1%)

  Yari et al.48 KRAS 2 12 G12C c.34G > T p.Gly12Cys 1 (3.7%)

G12D c.35G > A p.Gly12Asp 13 (48.1%)

G12A c.35G > C p.Gly12Ala 1 (3.7%)

G12V c.35G > T p.Gly12Val 6 (22.2%)

13 G13D c.38G > A p.Gly13Asp 6 (22.2%)

3 61 Q61H c.183A > C p.Gln61His 2 (100%)

BRAF 15 600 V600E 1799T > A p.Val600Glu 7 (7%)
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Country author 
(reference)

Gene Exon Codon Amino acid Nucleotide Protein Frequency, No (%)

  Amirifard et al.35 KRAS 2 12 G12V c.35G > T p.Gly12Val 3 (25%)

G12D c.35G > A p.Gly12Asp 5 (41%)

G12S c.34G > A p.Gly12Ser 1 (8.3%)

G12C c.34G > T p.Gly12Cys 1 (8.3%)

13 G13D c.38G > A p.Gly13Asp 1 (8.3%)

  Naseri et al.45 KRAS 2 12 G12D c.35G > A p.Gly12Asp 5 (35%)

G12V c.35G > T p.Gly12Val 5 (35%)

13 G13D c.38G > A p.Gly13Asp 4 (28%)

NRAS 4 146 A146T c.436G > A p.A146T 1 (100%)

  Niya et al.36 KRAS 2 12 G12A c.35G > C p.Gly12Ala NA

G12C c.34G > T p.Gly12Cys NA

  G12D c.35G > A p.Gly12Asp NA

  G12F c.34_35GG > TT p.Gly12Phe NA

  G12R c.34G > C p.Gly12Arg NA

  G12S c.34G > A p.Gly12Ser NA

  G12V c.35G > T p.Gly12Val NA

  13 G13D c.38G > A p.Gly13Asp NA

  Bishehsari et al.37 KRAS 2 12 G12D c.35G > A p.Gly12Asp 16 (8.8%)

G12C c.34G > T p.Gly12Cys 9 (4.9%)

G12V c.35G > T p.Gly12Val 18 (9.9%)

13 G13D c.38G > A p.Gly13Asp 21 (11.5%)

  Hamzehzadeh et al.38 KRAS 2 12 G12D c.35G > A p.Gly12Asp 7 (28%)

G12V c.35G > T p.Gly12Val 4 (16%)

G12A c.35G > C p.Gly12Ala 3 (12%)

G12S c.34G > A p.Gly12Ser 3 (12%)

G12C c.34G > T p.Gly12Cys 1 (4%)

13 G13D c.38G > A p.Gly13Asp 7 (28%)

Iraq

  Al-Allawi et al.39 KRAS 2 12 G12V c.35G > T p.Gly12Val 9 (31%)

G12D c.35G > A p.Gly12Asp 7 (24.1%)

G12A c.35G > C p.Gly12Ala 5 (17.2%)

G12C c.34G > T p.Gly12Cys 3 (10.3%)

G12S c.34G > A p.Gly12Ser 2 (6.9%)

13 G13D c.38G > A p.Gly13Asp 3 (10.3%)

 (Continued)
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Country author 
(reference)

Gene Exon Codon Amino acid Nucleotide Protein Frequency, No (%)

Israel

  Kislitsin et al.40 KRAS 2 12 G12C c.34G > T p.Gly12Cys 4 (14%)

G12S c.34G > A p.Gly12Ser 4 (14%)

G12V c.35G > T p.Gly12Val 7 (23%)

G12D c.35G > A p.Gly12Asp 14 (43%)

13 G13D c.38G > A p.Gly13Asp 12 (27%)

Jordan

  Elbjeirami et al.41 KRAS 2 12 G12D c.35G > A p.Gly12Asp 24 (54.5%)

G12V c.35G > T p.Gly12Val 6 (13.6%)

G12C c.34G > T p.Gly12Cys 5 (11.4%)

G12A c.35G > C p.Gly12Ala 2 (4.5%)

G12R c.34G > C p.Gly12Arg 2 (4.5%)

G12S c.34G > A p.Gly12Ser 1 (2.3%)

13 G13D c.38G > A p.Gly13Asp 5 (11.4%)

  Awidi et al.46 KRAS 2 12 G12D c.35G > A p.Gly12Asp 18 (19.56%)

G12A c.35G > C p.Gly12Ala 16 (17.39%)

G12T c.(34G > A; 
35G > C)

p.Gly12Thr 13 (14.13%)

G12V c.35G > T p.Gly12Val 10 (10.87%)

G12S c.34G > A p.Gly12Ser 3 (3.26%)

G12C c.34G > T p.Gly12Cys 2 (2.17%)

13 G13D c.38G > A p.Gly13Asp 7 (7.60%)

G13A c.38G > C p.Gly13Ala 6 (6.52%)

3 61 Q61H c.183A > C p.Gln61His 1 (1.08%)

4 117 K117N c.351A > C p.Lys117Asn 6 (6.52%)

146 A146T c.436G > A p.Ala146Thr 2 (2.17%)

NRAS 2 12 G12V c.35G > T p.Gly12Val 1 (1.08%)

13 G12C c.37G > T p.Gly13Cys 1 (1.08%)

G13A c.38G > C p.Gly13Ala 1 (1.08%)

3 61 Q61R c.182A > G p.Gln61Arg 1 (1.08%)

Q61P c.182A > C p.Gln61Pro 1 (1.08%)

A61T NA p.Ala61Thr 1 (1.08%)

Table 4.  (Continued)
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Gene Exon Codon Amino acid Nucleotide Protein Frequency, No (%)

Lebanon

  Baba et al.50 KRAS 2 12 G12D c.35G > A p.Gly12Asp 49 (37.4%)

G12V c.35G > T p.Gly12Val 28 (21.4%)

G12C c.34G > T p.Gly12Cys 15 (11.5%)

G12A c.35G > C p.Gly12Ala 7 (5.3%)

G12S c.34G > A p.Gly12Ser 6 (4.6%)

G12R c.34G > C p.Gly12Arg 2 (1.5%)

13 G13C c.37G > T p.Gly13Cys 1 (0.8%)

G13D c.38G > A p.Gly13Asp 16 (12.9%)

3 61 Q61H c.183A > T p.Gln61His 1 (0.8%)

4 117 K117N c.351A > T p.Lys117Asn 1 (0.8%)

146 A146T c.436G > A p.Ala146Thr 1 (0.8%)

A146V c.437C > T p.Ala146Val 1 (0.8%)

NRAS 2 12 G12D c.35G > A p.Gly12Asp 6 (37.5%)

13 G13R c.37G > C p.Gly13Arg 2 (12.5%)

3 61 Q61R c.182A > G p.Gln61Arg 3 (18.75%)

Q61L c.182A > T p.Gln61Leu 3 (18.75%)

BRAF 15 600 V600E 1799T > A p.Val600Glu 2 (1.2%)

Saudi Arabia

  Bader et al.42 KRAS 2 12 G12D c.35G > A p.Gly12Asp 16 (45.7%)

G12V c.35G > T p.Gly12Val 11 (31.4%)

G12C c.34G > T p.Gly12Cys 3 (8.5%)

G12S c.34G > A p.Gly12Ser 1 (2.8%)

13 G13D c.38G > A p.Gly13Asp 4 (11.4%)

  Zekri et al.43 KRAS 2 12 NA NA NA NA

13 NA NA NA NA

  Zahrani et al.44 KRAS 2 12 G12V c.35G > T p.Gly12Val 26 (35.6%)

G12D c.35G > A p.Gly12Asp 26 (35.6%)

G12S c.34G > A p.Gly12Ser 10 (13.7%)

G12C c.34G > T p.Gly12Cys 6 (8.2%)

G12R c.34G > C p.Gly12Arg 3 (4.2%)

G12A c.35G > C p.Gly12Ala 2 (2.7%)

13 G13D c.38G > A p.Gly13Asp 10 (90.9%)

G13R c.37G > C p.Gly13Arg 1 (9.1%)

Table 4.  (Continued)
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Country author 
(reference)

Gene Exon Codon Amino acid Nucleotide Protein Frequency, No (%)

  Mulla et al.47 KRAS 2 12 G12A c.35G > C p.Gly12Ala 1 (6.7%)

G12C c.34G > T p.Gly12Cys 1 (6.7%)

G12D c.35G > A p.Gly12Asp 8 (53.3%)

G12S c.34G > A p.Gly12Ser 2 (13.3%)

G12V c.35G > T p.Gly12Val 3 (20%)

NRAS 2 12 G12D c.35G > A p.Gly12Asp 1 (50%)

3 61 Q61L c.182A > T p.Gln61Leu 1 (50%)

  Saharti51 KRAS 2 12 G12D c.35G > A p.Gly12Asp 17 (18.3%)

G12V c.35G > T p.Gly12Val 6 (6.5%)

G12S c.34G > A p.Gly12Ser 4 (4.3%)

G12A c.35G > C p.Gly12Ala 3 (3.2%)

G12R c.34G > C p.Gly12Arg 1 (1.1%)

G12C c.34G > T p.Gly12Cys 1 (1.1%)

13 G13D c.38G > A p.Gly13Asp 3 (3.2%)

3 61 Q61H c.183A > T p.Gln61His 2 (2.2%)

4 117 K117N c.351A > T p.Lys117Asn 2 (2.2%)

146 A146T c.436G > A p.Ala146Thr 2 (2.2%)

NRAS 3 61 Q61K c.181C > A p.Gln61Lys 1 (1.1%)

Q61L c.182A > T p.Gln61Leu 1 (1.1%)

BRAF 15 600 V600E 1799T > A p.Val600Glu 2 (2.2%)

Abbreviation: NA, not available.

Table 4.  (Continued)


