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Abstract

Developed biological systems are endowed with the ability of interacting with the environment; they sense the external
state and react to it by changing their own internal state. Many attempts have been made to build ‘hybrids’ with the ability
of perceiving, modifying and reacting to external modifications. Investigation of the rules that govern network changes in a
hybrid system may lead to finding effective methods for ‘programming’ the neural tissue toward a desired task. Here we
show a new perspective in the use of cortical neuronal cultures from embryonic mouse as a working platform to study
targeted synaptic modifications. Differently from the common timing-based methods applied in bio-hybrids robotics, here
we evaluated the importance of endogenous spike timing in the information processing. We characterized the influence of
a spike-patterned stimulus in determining changes in neuronal synchronization (connectivity strength and precision) of the
evoked spiking and bursting activity in the network. We show that tailoring the stimulation pattern upon a neuronal spike
timing induces the network to respond stronger and more precisely to the stimulation. Interestingly, the induced
modifications are conveyed more consistently in the burst timing. This increase in strength and precision may be a key in
the interaction of the network with the external world and may be used to induce directional changes in bio-hybrid
systems.
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Introduction

The ability of interacting with the environment is an essential

capability of evolved biological systems. Both the nervous system

internal wiring and its retained plastic properties are the primary

features underlying neural network modifications and endowing a

system with the ability to react to the external and internal

environment. For their complexity, biological structures cannot be

fully translated into an artificial system. One of the most important

aspects in neurorobotics is the ability of ‘extracting’ the essential

information embedded in a biological system while maintaining a

satisfactory level of functionality. In order to ‘use’ a neural

substrate for an artificial application, hybrids where a set of

neurons (slice or dissociated cultures) are coupled with a robotic

system have been an ultimate choice in the field of neurorobotics

[1]. A so-build artificial system will be endowed with the ability of

sense and react to external modifications. Micro-electrode arrays

(MEAs) have now become a valuable interfacing technique for

establishing a bi-directional communication between a neuronal

network and the external world [2–4]. In contrast with an in vivo

system, cultures of neurons do not contain the afferent sensory

inputs and efferent motor outputs. Yet neurons in culture develop

patterns of activity comparable to those recorded from developing

brains [5]. They have been demonstrated to retain the ability to

adapt following stimulation via potentiation and/or depression [6–

10] and maintain and generate complex activity patterns

(bursting). Many recent technological advances made it possible

to connect in vitro neuronal networks with an artificial embodiment

via sensor/actuators feedbacks in a ‘real-time’ scenario. The

methodologies employed so far focused on the importance of the

neurons ‘spike’ element more than their collective bursting

activity. Following this rationale, an exogenous electrical stimula-

tion of predetermined characteristics of frequency, amplitude and

duration has so far been the mostly common method to induce

directional changes in the network activity [7,11]. Interestingly, in

both in vivo and in vitro systems, burst firing has been proved to be

involved in sensory information transmission, as well as tonic

spiking and it may be more informative than single spike events in

sensory input coding [12–14].

In this study, we stimulated networks of dissociated cortical

neurons by using trains of extracellular voltage-pulses, whose inter-

stimulation timing was delivered offline from the actual spike-train

detected at one selected electrode during the earlier spontaneous

activity. Our purpose was to investigate whether the applied

stimulation was able to induce changes in the spontaneous spiking

and bursting patterns of the neurons. Interestingly, we found that

the burst event (i.e. the first spike of a burst) is affected by a specific

modality of ‘repeated’ stimulation in which the spontaneous

neuronal firing timing is respected. Our final goal was to extract
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the principles of dynamic modifications of a neural network that

can be used in a working platform of bio-hybrids devices to

optimize sensory input coding strategies to improve interaction

with the external environment.

Methods

Cell cultures
All procedures involving experimental animals were approved

by the Italian Ministry of Health and Animal Care (authorization

ID 227, prot.4127 March 25, 2008). When performing the

experiments we minimized the potential for nociceptor activation

and painlike sensations and we respected the three R (replace-

ment, reduction and refinement) principle in accordance with the

guidelines established by the European Community Council

(Directive 2010/63/EU of September 22nd, 2010).

Mouse embryonic cortical neurons were obtained as previously

described [15,16]. Briefly, embryos were recovered from CO2

anaesthetized pregnant C57BL/6J mouse at embryonic day 18

(E18). Neurons were plated onto MEAs (MEA 1060 by

Multichannel System, MCS, Reutlingen, Germany) of 60 TiN

electrodes (30 mm in diameter, 200 mm spaced) with internal

reference. Embryos were removed, microdissected and brain

cortex pieces were dissociated by enzymatic digestion in Trypsin

0.125% for 20 min at 37uC and then triturated with a fire-

polished Pasteur pipette. Dissociated neurons were plated onto

poly-D-lysine-and laminin-coated MEAs in a 100 ml drop covering

the electrode region (1000 cells/mm2). One hour later, cells

adhered to the substrate and 1 ml of medium was added to each

device. Cells were incubated with 1% Glutamax, 2% B-27

supplemented Neurobasal medium (Invitrogen) in a humidified

5% CO2 atmosphere at 37uC. The 50% of the medium was

changed weekly. No antimitotic medium agent was used to control

glial proliferation, because application of serum-free medium

limits the growth of non-neuronal cells. Neurons were allowed to

grow functional and structural mature networks over a period of

2–3 weeks. Mature cultures at 18–21 days in vitro were used for

the experiments.

Ethics statement
All procedures involving experimental animals were approved

by the Italian Ministry of Health and Animal Care (authorization

ID 227, prot.4127 March 25, 2008) and were carried out in

accordance with the guidelines established by the European

Community Council (Directive 2010/63/EU of September 22nd,

2010).

Recordings and stimulation
The experimental set-up was based on the MEA 60 system,

consisting of: a microelectrode array, a mounting support with 60

integrated channels, a pre-and a filter amplifier (gain 1200X), a

personal computer equipped with a PCI data acquisition board for

real time signal monitoring and recording, an anti-vibration table

and a Faraday cage. Network activity was recorded and stimulated

using two commercial software, MCRack and MCStimulus

(Multichannel Systems, MCS, Reutlingen, Germany) for on-line

visualizations, raw data storage and stimulus sequence application.

The experiments were performed outside the incubator and were

maintained over the MEAs at 37uC in the culturing medium. A

custom script for stimulation design on the basis of the spiking

pattern was developed in MATLAB H (The Mathworks, Natick,

MA, USA). Based on its firing activity and connection with

neighboring electrodes, one electrode within the network was

chosen as source and sink of the stimulation pattern. A train of

biphasic rectangular voltages pulses (750 mV, 250 msec for phase,

positive phase first) was delivered through the electrode of the

array chosen for the design of the spike pattern stimulation (Fig. 1).

This localized extracellular stimulation has previously been shown

to be the most effective stimulus at any given voltage and to be

effective in controlling the rhythm of bursting activity [17].

Experimental rationale
At the developmental stage we performed our experiments

(,3th week in culture), the network has reached a stable condition

of maturation and synaptic connections [9,11] and displays a rich

and elaborated temporal pattern of bursting activity. Spontaneous

neuronal activity was recorded for 20 minutes (pre-stimulus stage)

previous to the stimulation. The stimulation phase lasted

2 minutes in all the protocols, it was delivered only once in each

experiment (Fig. 1A) and was followed by additional 20 minutes of

recording of the spontaneous neuronal activity (post-stimulus

stage). We chose to alternatively apply three distinct stimulation

protocols: single stimulation (SS), repetitive stimulation (RS) and

Poisson stimulation (POISSON). The stimulus temporal pattern

was built upon the spiking pattern of the spontaneous activity

shown by one selected electrode. The designated stimulation

electrode was one that had maintained both the recorded activity

and the functional connections with the neighboring electrodes

good and stable throughout the 20 minutes of pre-stimulus stage.

The recording window upon which the stimulation pattern was

build was chosen within the last five minutes of the pre-stimulus

stage. An SS protocol is representative of a single sequence of

spontaneous neuronal activity of 2 minutes. The RS protocol is

composed of six repetitions of a shorter sequence of spontaneous

activity (,20 sec). The rationale behind the use of an RS protocol

is that this will ‘emulate’ the repeated presentation of one

stimulation pattern, as it happens during training for learning

when inducing process of learning [18]. Poisson stimulation was

used to double check the effect of a stimulation pattern tailored to

the network spontaneous firing.

The POISSON sequence was built by producing a new

distribution of pulses with same firing rate of the selected electrode

of the network, but with an Inter Spike Interval histogram (ISIh)

following the Poisson distribution. To do that, we developed a

custom MATLAB script which also calculated the Coefficient of

Variation of the output process. As expected [19,20], the CV

obtained for the sequences of stimuli in case of the POISSON

experiments was 1.00860.209 (mean 6 sd).

While in the RS protocol the stimulus does not erode the fidelity

of the temporal coding, this fidelity is lost in the POISSON

protocol and the network undergoes a single stimulation where the

frequency of firing is respected, but a randomization in the

temporal pattern is introduced. A series of ‘SHAM’ experiments,

in which no stimulation was delivered to the network, was

performed in order to evaluate the spontaneous changes in

network activity during the 40 min of the experiment.

Data analysis and statistics
Data analysis was performed off-line by using a custom software

developed in MATLAB H named SPYCODE [21], which collects

a series of tools for processing multichannel neural recordings.

Briefly, data were imported in MATLAB from .mcd files (MCS

format) and then spike-detected using the PTSD (Precise Timing

Spike Detection) algorithm [22]. Afterwards, spike trains were

analyzed by using a custom burst detection method (Pasquale et

al., 2010), whose input parameters were directly estimated from

the inter-spike interval distribution of each channel. Once spike

and burst detection procedures were performed, several param-
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eters describing the electrophysiological patterns could be extract-

ed, such as the mean firing rate (MFR; spikes/sec), the mean

bursting rate (MBR; bursts/min) and the inter-burst-interval (IBI;

the time interval in min between two consecutive bursts). We

assumed a normal distribution of spike and burst events

considering the large number of output spikes available in our

data sets [23,24].

We used the cross-correlation analysis to evaluate the network

functional connectivity and the effect of local stimulation on the

spontaneous spiking and synchronous bursting activity of the

network. Investigating the relationship between electrodes pairs

Figure 1. Selection and application of the stimulation sequence and network frequency-dependent modifications. A) The activity
recorded from one electrode is chosen for the design of the spike pattern stimulation (see right traces). After network stabilization, its activity is
extracted over a period of 2 min and a spike detection algorithm is applied to extract its spike timing pattern. A train of biphasic rectangular voltage
pulses (750 mV, 250 msec for phase, positive phase first) is built based on the spike pattern of the designed electrode and delivered through it. Three
distinct stimulation protocols of the same duration (see right traces) are alternatively applied: single (SS), repetitive stimulation (RS) and Poisson
stimulation (POISSON). B) Conditional Firing Probability (CFP): function and relative parameters. Left: A representative CFP histogram (black profile)
and the relative fitting (red profile) between two channels during a ‘SHAM’ condition. Right: Extraction of the main parameters from the fitting of the
CFP by using the equation 1 (cf. Methods section). The strength represents the maximum probability above offset, the width is computed as the
amplitude of the peak at the height ‘offset+0.8 strength’, and the offset refers to background noise and unrelated background activity.
doi:10.1371/journal.pone.0049299.g001
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gives identity to different neuronal pathways and discloses selective

modifications (enhancement or reduction) occurring in the

network. More specifically, a modified version of the cross-

correlation algorithm named Conditional Firing Probability – CFP

[24] was applied to each spike as well as to burst event trains (i.e.

trains containing only the first spike of each burst). This method

has been widely used in the MEA field and has been demonstrated

to fit well in the context of spike train analysis [24–28].

In the present study, the conditional firing probability CFPij(t) is

defined by the occurrence of an event (i.e. a spike or a burst event)

at electrode j at delay t (0#t#500) after that an event has been

detected at electrode i, divided by the total number of events at i.

To analyze the measured signals, binary arrays Xi were

constructed for all recording sites i = 1, …, 60, with as many data

points as the sampled signals, with Xi[n] = 1 at a detected action

burst and Xi [n] = 0 elsewhere. CFPi,j[t] is a measure related to

cross-correlation Ri,j[t] [24,25]. If CFPi,j[t] showed a distribution

that clearly deviated from flat, electrodes i and j were considered

related. CFP curves were then fitted by the following equation:

CFP
fit
i,j ½t�~

Mi,j

1z
t{Ti,j

wi,j

� �2
zoffseti,j ð1Þ

where Mi,j is the maximum above offset and Ti,j is the delay at

which the CFP fit function reaches its maximum value. Parameter

wi,j determines the shape of the curve (the width at the 80% of the

maximum above offset) and offseti,j reflects unrelated background

activity. In the present study, for each pair i,j we derived the

parameters M and w related to the strength (M) and the width (w,

i.e. a measure of precision) of their connection (Fig. 1B). More

specifically, for all the electrodes pairs showing values of M

different from zero, we computed the histogram of M values. The

description of the CFP in term of the strength (M) and width (w)

parameters allows a higher degree of freedom than the common

probability density functions and allowed us to interpret the

network connectivity properties.

We then selected two ranges of data: the strong connections,

related to M values between the 80th and 100th percentile of the

distribution, and the medium connections (20th–80th percentile).

We discarded the weak connections (,20th percentile). The values

of w were directly obtained from those selected for M.

Statistical analysis was performed to assess the data distribution

and the difference between the stimulation experiment conditions

and the sham reference condition. The normal distribution of

experimental data was assessed using the Kolmogorov-Smirnov

normality test. All the data sets were normally distributed and

Student’s t-tests were performed accordingly. P values,0.05 were

Figure 2. Network mean firing rate (MFR) and mean bursting rate (MBR) modifications. A, B) Variations of the network MFR (A) and MBR
(B) are reported in relation to the frequency of the applied stimulation. C, D) Normalized MFR (C) and MBR (D) calculated in PRE and POST stimulus
stages for the four considered experimental conditions: SHAM, SS, RS and POISSON stimulation. Only RS causes a significant increase in the level of
both the firing rate and the bursting rate after stimulation. *, p,0.05; t test.
doi:10.1371/journal.pone.0049299.g002
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considered significant. Statistics on the Inter-Burst Interval

distributions computed before and after stimulus delivery was

performed through the paired-Wilcoxon signed rank test. All

statistical analyses were carried out by using OriginPro (OriginLab

Corporation, Northampton, MA, USA) and Sigma Stat (Systat

Software Inc., San Jose, CA, USA).

Results

Modifications in network activity evoked by stimulation
patterns

Different cultures of primary neurons have intrinsic firing

pattern variability. Given that the stimulus delivered to the

network retains its typical frequency and temporal pattern, in our

experiments each network could have received very different

stimulation sequences. We therefore checked for the influence of

the stimulus frequency on the network response. We found that

network spontaneous activity typically ranged from 10 to 70 Hz.

We evaluated the percentage variation of the mean firing rate

(MFR) and mean bursting rate (MBR) of each network in response

to the applied stimulus frequency. We found that the stimulation

frequency did not induce directional changes in the network MFR

(Fig. 2A, B; linear regression, adj R2 = 0.0499; p.0.05) and MBR

(linear regression, adj R2 = 20.0354; p.0.05).

Twelve SHAM experiments, in which no stimulation was

delivered to the network, were conducted. In these experiments,

the spontaneous network activity was monitored and analyzed as

for the stimulated networks to check for possible spontaneous

modifications in activity during the 40 min of experiment. They

were used as a ‘control’ for the stimulated networks. In these

experiments we found that on a temporal scale of 40 min, both

MFR and MBR tended to remain constant (Fig. 2C, D; t test,

Figure 3. Cumulative IBI histograms. IBI histograms calculated for the SHAM (A), SS (B), RS (C) and POISSON (D) experimental groups before (red
trace) and after the stimulation (black trace). While the frequency profile is not influenced by the applied stimulation in the SHAM, SS and P groups,
the IBI histograms calculated for the RS experiments shows a significant shift of the peak of IBI distribution toward lower values (paired sample
Wilcoxon test, p,0.05).
doi:10.1371/journal.pone.0049299.g003
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p.0.05). The bursting activity was not markedly re-organized and

we did not observe any directional change in the IBI (Fig. 3A;

paired sample Wilcoxon test, p.0.05).

In SS experiments (n = 8), stimulation was designed on the

network firing pattern for the entire stimulus window of 2 min. No

effects on the MFR nor on MBR were induced (Fig. 2C, D; t test,

p.0.05). IBI values were also not influenced by the applied

stimulation (Fig. 3B; paired sample Wilcoxon test, p.0.05). RS

experiments (n = 9) were based on the application of a stimulus

composed by six repetitions of a 20 sec single sequence respecting

the firing pattern of the culture. Interestingly, a general increase in

both the MFR and MBR was observed (Fig. 2C, D; t test, p,0.05)

and the peak of IBI distribution was significantly shifted toward a

lower value (Fig. 3C; paired sample Wilcoxon test, p,0.05). These

results were consistent with previous observations in which we

found that the feedback stimulation pattern needs to be repetitive

over a certain time, in order to achieve modifications in a neuronal

culture (data not shown).

In POISSON experiments (n = 11), a randomization in the

spike timing pattern was introduced for the entire 2 min stimulus

window, while respecting the frequency of firing. We found that

both MFR and MBR did not significantly change after stimulation

(Fig. 2 C, D; t test, p.0.05) and, similarly, IBI values were

comparable in the two experimental stages (Fig. 3D; paired sample

Wilcoxon test, p.0.05).

Modifications in the network connectivity: cross-
correlograms, connectivity strength and precision

Connectivity analysis showed that network connectivity gets

reorganized in most of the cultures and depending on the applied

protocol. From each experiment, we extracted the strength (M)

and width (w; i.e. 1/precision) of the conditional firing probability

for electrode pairs (CFP; see Materials and Methods and Fig. 1B). We

calculated the CFP starting from both the spike trains (ST) and the

burst event trains (BE). For each experimental stage, we built the

distribution of the strength and width values and selected two

ranges of data: the values obtained from the 20th and 80th

percentile of the histogram (‘Perc-20’ values, relative to the

medium-strength connections) and the values obtained from the

80th and the 100th percentile of the histogram (Perc-80’ values,

relative to the strong connections).

We found that the network CFP strength and width based on

80th percentile spike trains (CFP-ST) did not show directional

changes in response to any of the applied protocol (Fig. 4 A, B).

Interestingly the CFP strength on 80th percentile calculated on

burst events (CFP-BE) were indeed affected by the stimulation

sequences. In particular, in RS experiments a higher number of

electrode pairs showed an increased M in the post-stimulus stage if

compared to the SHAM experiment (Fig. 4C; t test, p,0.05). Both

Poisson and SS experiments showed no significant differences

Figure 4. Stimulus-induced modification in the network CFP based on spike and burst events. A, B) Box plots of the percentage of
electrode pairs showing a directional variation of spike train CFP (CFP-ST) strength (A) and width (B) in the post stimulus stage. C, D) Percentage of
electrodes pairs showing a directional variation of burst event CFP (CFP-BE) strength (C) and width (D) in the post stimulus stage. *, p,0.05; t test.
doi:10.1371/journal.pone.0049299.g004
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from the SHAM group (Fig. 4C t test, p.0.05). No significance

difference among any of the experimental groups was revealed also

in the number of electrode pairs involved in CFP width variation

calculated for bursts (Fig. 4D t test, p,0.05 for each group).

We then checked if the CFP parameters tended to co-variate

and therefore to be intrinsically connected one to the other. To do

that, we quantified the level of connectivity modification that

networks underwent in each experimental protocol (network

increase and decrease in width and strength). Variations in

connectivity strength can be associated with increase or decrease

in width (decrease or increase of precision). Interestingly we found

that increments in strength are associated either with smaller

increase in width (smaller decrease of precision) or with larger

decreases in width (higher increases in precision) than decrement

in strength. For each experimental group, the difference between

the width variations for strength increase and strength decrease

was also statistically significant (data not shown). This can account

for a general tendency toward stabilization (increase in precision)

of the stronger connections versus destabilization (decrease in

precision) of the weaker connections.

We then computed the tendency of the strength and width to

increase, decrease or stay the same by evaluating their linear fitting

before and after the application of each protocol. The slopes

resulted from the fitting procedure of each experiment relative to

the Perc-20 values are reported in the box plots of Fig. 5. No

difference was revealed among the four experimental conditions

for both strength and width of spike trains (Fig. 5 A, B).

Considering only the burst-event spikes (which are a subset of

the spike train), a significant difference in the CFP strength was

found only between the RS and the SHAM protocol (p,0.05, t-

test) (Fig. 5C, D). The ‘strongest connections’ (i.e. Perc-80 values,

Fig. 6) fitting showed again no difference for the whole spike set

between any of the experimental groups (Fig. 6 A, B). On the other

hand, considering the burst events, a significant difference between

the RS conditions and the SHAM was found for both the strength

and the width parameters (p,0.05, t-test) (Fig. 6 C, D).

Discussion and Conclusions

Nervous system plasticity is based on activity-dependent

synaptic modifications such as LTP or on new forms of synaptic

modification which require a more precise pattern of spiking

activity such as the spike timing-dependent plasticity. In neural

circuits, the spike timing-dependent plasticity mechanism may

underlie processes of computation and storage of the information

[29]. Many studies are now pointing toward the importance of

‘timing’ of neural activity (i.e. inter-pulse interval) for correct

sensory representations and directional network modifications

[30–33]. Precise spike timing seems also to promote in vivo cortical

network oscillations which may contribute to the flow, represen-

tation and storage of information in neural circuits [30,34,35].

Figure 5. Stimulus-induced modification in the Perc-20 CFP based on spike and burst events. Box plots of the slopes resulted from the
fitting procedure of the Perc-20 values of strength (A) and width (B) of the spike trains (ST) and strength (C) and width (D) of burst events (BE) before
and after the application of each protocol. *, p,0.05; t test.
doi:10.1371/journal.pone.0049299.g005
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The methodologies employed so far in neuro-robotics focused

on the importance of the ‘spike’ element of a neuron. However, in

vivo neural circuits show an alternation of irregular spiking and

high-frequency bursts. Network bursting is indeed an important

aspect of neuronal activity and is naturally occurring in many

brain regions. Thus it seemed reductive to focus only on the

spiking, and not on the bursting properties of a network assembly.

Network bursts carry information on both rate and timing of

neuronal spikes and this conveys the information expressed by the

network. Recent studies are now pointing toward the importance

of a ‘burst’ timing-based rule for stimulus encoding in various

neural systems and various aspects of the animal behavior. Burst

spiking has been proved to be a form of associative plasticity [36]

which may guide processes such as reward-based reinforcement

learning and goal-directed behaviors through mechanisms of

burst-time dependent-plasticity [37,38]. Interestingly, this new

form of plasticity, which has been shown to be associative, input

specific and reversible, obeys the same timing rule of the cue-

reward learning paradigms in behaving animals [38]. In neuronal

networks, precisely timed sequences of bursts of action potentials

spread over the entire network are non-random, repetitive [39–43]

and represent a general property of self-organizing networks

[44,45].

Based on that, our idea has been to apply stimulation sequences

tailored on the network spontaneous activity, and therefore

tailored on the single neuronal culture. Here we show that the

exposure of a cortical network to a repeated stimulation pattern

(RS protocol) retaining the network temporal pattern induces an

increase in the network MFR and MBR, as well as substantial

changes in the network IBI. This massive effect is not visible with a

single delivery of the stimulation pattern. Interestingly, in vivo

studies have shown that the repetitive exposure to an identical

stimulation improves the timing precision of action potentials and

promotes synchronization of cortical activity relevant to several

behaviors [30]. In cultured neuronal networks, synchrony has

been already suggested to be important for the functional efficacy

of a network, where synchronous and asynchronous activity can

enhance or reduce synaptic efficacy [10].

In order to check if and what modifications in the network

synchronization occurred in response to the repeated stimulation

applied, we used between pairs of active channels a cross-

correlation based algorithm named CFP [46]. This method has

Figure 6. Stimulus-induced modification in the Perc-80 CFP based on spike and burst events. Box plots of the slopes resulted from the
fitting procedure of the Perc-80 values of strength (A) and width (B) of the spike trains (ST) and strength (C) and width (D) of burst events (BE) before
and after the application of each protocol. *, p,0.05; t test.
doi:10.1371/journal.pone.0049299.g006
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been widely used in the MEA field and has been demonstrated to

fit well in the context of spike train analysis [24–28]. In order to

use this methodology, a normal distribution of the output spikes

was assumed. This was justified by the richness in independent

identically distributed random variables of our neuronal networks.

Under this condition the heterogeneity of individual cells is lost

and responses can be seen as the sum of identically distributed

random variables [23,24]. We found that the connectivity strength

between electrode pairs gets reorganized following stimulation,

independently of the applied protocol. All networks showed a

general tendency toward stabilization (increase in precision) of

stronger connections versus destabilization (decrease in precision)

of weaker connections.

We can explain this finding by assuming that fewer constraints

may limit a decrease in the connectivity precision (and therefore

electrode pairs may undergo larger variation of precision), while a

precision increase may be limited by an intrinsic boundary of the

network. The stimulus pattern seems to play an important role in

determining the ‘efficacy’ of the stimulation at the network level. It

seems that the network achieves that by preferentially acting on

the burst more than on spike properties. In fact RS stimulation was

the only one able to induce directional changes in the network

response and that these changes were mostly carried by the

bursting of the network.

We also found that this stimulation increases the bursting

strength and precision of the stronger connections, while only

partially affects the weaker connection. This may be a mechanism

exploited by the network to strengthen the connections that are

more informative and probably more relevant to the overall

network activity.

We think that following RS stimulation, the network reorgani-

zation points toward a selection of the connections increasing their

strength and precision thus acting as a positive feedback for

weakening the less reliable connections. Peculiarly, most of these

modifications are based on a burst timing rule. The fact that

Poisson stimulation (where the temporal structure of the neuronal

activity is lost, but the overall frequency is retained) did not induce

similar directional changes confirmed our hypothesis that the

information brought by the stimulus is carried by its temporal

structure, and not by the overall frequency of stimulation.

Interestingly, a recent study showed that the application of a

‘naturalistic’ endogenous electric field (stimulation based on the

network local field potential) to an in vitro neocortical model system

may guide network activity and have functional implications for

patterning of activity sequences [47]. In conclusion we have shown

that electric stimulation tailored on the network endogenous

activity is able to efficiently induce modifications in the network

synchronization and, in particular, affect the network bursting

properties. The strongest connections are able to respond to this

external modification by reinforcing their connection efficacy

against the weaker connections.

Here we suggest the use of a spike timing rule to direct

modification in networks of bio-hybrid devices. A so-build system

will be fine-tuned on changes in the external environment and will

be endowed with the ability of reacting more reliably to external

modifications. This study offers a new perspective to break into the

‘grammar’ of neuronal activity and in its functional interactions

with the real world.
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