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Atherosclerosis (AS) seriously impairs the health of human beings and is manifested initially
as endothelial cells (ECs) impairment and dysfunction in vascular intima, which can be
alleviated through mobilization of endothelial progenitor cells (EPCs) induced by stromal-
cell-derived factor-1α (SDF-1α). A strong inverse correlation between HDL and AS has
been proposed. The aim of the present work is to investigate whether 4F, an
apolipoprotein A-I (apoA-I, major component protein of HDL) mimic peptide, can
upregulate SDF-1α in mice and human umbilical vein endothelial cells (HUVECs) and
the underlying mechanism. The protein levels of SDF-1α were measured by ELISA assay.
Protein levels of HIF-1α, phosphorylated Akt (p-Akt), and phosphorylated ERK (p-ERK)
were evaluated by Western blotting analysis. The results show that L-4F significantly
upregulates protein levels of HIF-1α, Akt, and ERK, which can be inhibited by the PI3K
inhibitor, LY294002, or ERK inhibitor, PD98059, respectively. Particularly, LY294002 can
downregulate the levels of p-ERK, while PD98059 cannot suppress that of p-Akt. D-4F
can upregulate the levels of HIF, p-Akt, and p-ERK in the abdominal aorta and inferior vena
cava from mice. These results suggest that 4F promotes SDF-1α expression in ECs
through PI3K/Akt/ERK/HIF-1α signaling pathway.

Keywords: apolipoprotein A-I, human umbilical vein endothelial cells, stromal-cell-derived factor-1α, hypoxia-
inducible transcription factor-1 alpha, 4f

INTRODUCTION

As the leading cause of cardiovascular and cerebrovascular diseases, atherosclerosis (AS) seriously
impairs the health of human beings (Torres et al., 2015). It has been suggested that endothelial cells
(ECs) impairment and dysfunction in vascular intima act as the initial event of AS onset (Schwartz
et al., 2010). Therefore, the restoration of impaired ECs contributes to the suppression of AS
development. Endothelial progenitor cells (EPCs) can differentiate into ECs as the precursor cells of
the latter. EPCs are involved in vascular integrity, function, and repair, along with angiogenesis
(Asahara et al., 2011). Many studies have shown that EPCs can migrate to the damaged site in
endothelium and mediate its regeneration, promote the neovascularization in ischemic lesions, and
thus alleviate the progression of AS (Hill et al., 2003; Naito et al., 2012; Xu et al., 2014). Stromal-cell-
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derived factor-1α (SDF-1α), a well-known chemokine expressed
in multiple tissues and cells such as ECs, has been demonstrated
to be related to cardiac protection (Zaruba and Franz, 2010).
Upregulated SDF-1α in ischemic tissues has been shown to be
capable of mediating the mobilization of BM-derived EPCs into
peripheral blood and their homing to the damaged site and then
promoting the neovascularization of ischemic tissues (Yin et al.,
2010; Rath et al., 2016). It has been observed that selectively
expressed SDF-1α in impaired tissues is implicated in adult stem
cell recruitment and tissue regeneration, suggesting its vital role
in recruitment of stem and progenitor cells (Askari et al., 2003;
Yamaguchi et al., 2003).

A strong inverse correlation between high-density lipoprotein
(HDL) and AS has been proposed by many epidemiological
studies even after the adjustment of many risk factors,
although the correlation is not a causal one (Toth et al., 2013;
Karathanasis et al., 2017). Classically, HDL works mainly through
reversing cholesterol transport (RCT) and delivering cholesterol
from peripheral tissues into the liver and steroidogenic organs
(Connelly and Williams, 2004). HDL exerts preventive effects on
AS mainly through its major structural protein of apolipoprotein
A-I (apoA-I) (Tardif et al., 2007).

It has been known that hypoxia-inducible transcription factor-1
alpha (HIF-1α) can directly regulate the expression of SDF-1α
(Ceradini et al., 2004; Du et al., 2012). Tan et al. reported that HDL
induced the HIF-1α expression through PI3K/Akt signaling
pathways, thereby promoting ischemia-induced angiogenesis
(Tan et al., 2014). It has been shown that the expression of HIF-
1α can be induced by activating the ERKpathway in ECs (Guo et al.,
2019). As the major structural protein of HDL, apoA-I plays a vital
role in counteracting the development of AS. Therefore, D-4F or L-
4F, an apoA-I mimic peptide (Li Volti et al., 2017; Guo et al., 2020;
Peng et al., 2020), may exert similar effects to those of apoA-I. L-4F
also prevents myocardial and coronary functional abnormalities in
db/db mice through a mechanism involving upregulated
adiponectin, pAMPK, and peNOS (Vecoli et al., 2011). Based on
the aforementioned, the present study aims to investigate whether
D-4F or L-4F promotes the expression of SDF-1α in vivo or in vitro
through the PI3K/Akt/HIF-1α or ERK/HIF-1α signaling pathways.

MATERIALS AND METHODS

Synthesis of the Mimetic Peptide of L-4F
The amino acid sequences of the mimetic peptide of L-4F and
scrambled L-4F (sL-4F) (purity as 98%) are as follows: (Ac-
DWFKAFYDKVAEKFKEAF-NH2) and (Ac-DWFAKDYFKKAF
VEEFAK-NH2), respectively. The amino acid sequences of D-4F
and scrambledD-4F (sD-4F) are (Ac-DWFKAFYDKVAEKFKEAF-
NH2) and (Ac-DWFAKDYFKKAFVEEFAK-NH2), respectively.
They were synthesized by Scilight-Peptide Inc. (Beijing, China),
with their structure and purity validated by gas chromatography/
mass spectrometry (GC/MS) method.

Animals
All mice and experimental procedures were approved by the
Animal Experimental Ethics Committee of Weifang Medical

University (approval code: 2020SDL142) and performed in
accordance with the guidelines for the Care and Use of
Laboratory Animals from NIH. Male C57 mice (6 weeks old)
were obtained from the Pengyue Company (Shandong, China) and
randomly divided into three groups (n � 6 for each group): D-4F,
sD-4F, and control group, respectively. Mice fromD-4F and sD-4F
groups were intraperitoneally injected with D-4F and sD-4F
[1 mg/kg/day, dissolved in stroke-physiological saline solution
(SPSS)] for 9 days, respectively. The time points for peripheral
blood collection and dosage of D-4F at 1 mg/kg/day are based on
our preliminary work (see Supplementary Figure S1). The control
group was treated with the equivalent volume of SPSS.

Blood, Cells, and Tissue Sampling
Mice were anesthetized by isoflurane inhalation. Peripheral blood
was collected from the eye socket vein after overnight fasting at the
beginning of the study. Nine days after the injection of D4F
(1 mg/kg/day) or sD-4F (1mg/kg/day) or SPSS, peripheral blood
was collected again. Then, the mice were killed with cervical
dislocation, and the abdominal aorta and inferior vena cava were
separated under a stereomicroscope and stored at−80°C prior to use.

Humanumbilical vein endothelial cells (HUVECs)were purchased
from the Type Culture Collection of the Chinese Academy of Sciences
(Shanghai, China) and cultured inM199 medium [free of fetal bovine
serum (FBS), Hyclone, Thermo Fisher Scientific, Waltham, MA,
United States] supplemented with 100U/m penicillin and 100 μg/
ml streptomycin under 5% CO2 at 37°C.

Cell Viability
The effects of L-4F on the cell viability of HUVECs were evaluated
by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) method. HUVECs were seeded in a 96-well plate at a
density of 1 × 104 cells per well and treated for 24 h with L-4F at
various concentrations (final concentrations at 1, 10, 30, 50, and
100 μg/ml, respectively) or sL-4F at 50 μg/ml. Then, 20 μl MTT of
5 mg/ml was employed to each well, and the incubation under the
same culture condition lasted for another 4 h before the medium
was discarded. Subsequently, each well was added with 150 μl
dimethylsulfoxide (DMSO), followed by the determination of

FIGURE 1 | D-4F upregulates the protein levels of SDF-1α in mice
plasma. Peripheral blood was collected before and after intraperitoneal
injection of D-4F (1 mg/kg/day) or sD-4F (1 mg/kg/day) or equal volume of
SPSS for 9 days, n � 6, one-way ANOVA, SNK test, *p < 0.05,
compared with other groups.
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absorbance at 450 nm by a microplate spectrophotometer
(Multiskan GO, Thermo, United States).

ELISA Assay
The levels of SDF-1α in mice plasma and the cell culture medium
were measured by a commercial ELISA kit (Mlbio, Shanghai,
China) according to the producer’s instructions. In brief, L-4F
was added to the HUVECs cultured in 24-well plate 2 h after the

addition of relevant inhibitors, and the incubation under the same
condition was performed for another 24 h. Then, the
concentration of SDF-1α was detected by ELISA, and total
proteins extracted from HUVECs were quantified by a BCA
kit (Solarbio, Beijing, China). The concentration of SDF-1α in
the medium was normalized by the total proteins of the HUVECs
extract. The levels of SDF-1α were expressed relative to that of
control, which was set as 100%.

FIGURE 2 | D-4F upregulates protein levels of HIF-1α, p-Akt, and p-ERK in mice. (A–D) Abdominal aorta. (E–H) Inferior vena cava. Mice were treated with or
without D-4F at 1 mg/kg/day for 9 days, n � 6, unpaired t-test, *p < 0.05, **p < 0.01, compared with the group without the addition of D-4F.
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Western Blotting Analyses
Proteins levels ofHIF-1α, Akt, and ERKwere evaluated byWestern
blotting analyses. Briefly, the abdominal aorta and inferior vena
cava were ground by an automatic fast sample grinding instrument
at 4°C. On the other hand, L-4F was added to HUVECs cultured in
24-well plate 2 h after the addition of LY294002 at 30 μM ( Sigma,
St. Louis, MO, United States) and PD98059 at 20 μM (Sigma, St.
Louis, MO, United States), respectively. LY294002 and PD98059
were first dissolved in DMSO to 10mM and then diluted to the
corresponding final working concentration byM199 medium. The
incubation under the same condition was performed for different
time durations of up to 60min. Then, total proteins were extracted
using cold radio immunoprecipitation assay (RIPA) lysis buffer
supplemented with protease and phosphatase inhibitors and
quantified using the BCA method. Protein samples of 30 μg
were loaded into each well and separated on 8% sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE),
followed by being transferred onto a polyvinylidene fluoride
(PVDF) membrane. Under constant shaking, the membrane
was blocked using 5% FBS for 2 h at room temperature,
incubated with primary monoclonal antibodies of HIF-1α (1:
1,000, Bioss, Beijing, China, RRID: AB_10857933), p-Akt (1:
500, Sigma, St. Louis, MO, United States, RRID:AB_2893426),
Akt (1: 500, ImmunoWay, Plano, TX, United States, AB_2893427),
p-ERK (1: 100, Santa Cruz, Dallas, TX, United States, RRID:
AB_2139990), ERK (1: 100, Santa Cruz, Dallas, TX,
United States, RRID: AB_2650548), β-actin (1: 3,000,
ImmunoWay, Plano, TX, United States, RRID: AB_2629465),
and α-tubulin (1: 3,000, ImmunoWay, Plano, TX, United States,
RRID:AB_2893428) at 4°C overnight, rinsed with Tris-buffered
saline with Tween 20 (TBST) three times, incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies
at room temperature for 2 h, successively. After being washed
with phosphate-buffered saline (PBS) three times, the protein
bands on the PVDF membrane were visualized using an ECL
kit on a chemiluminescence gel imaging system (FluorChem Q,
ProteinSimple, CA, United States). β-Actin or α-tubulin was used
as an internal reference gene for normalization.

Statistical Analyses
All data were presented as means ± standard deviation (SD). The
data were analyzed using SPSS software (version 18.0, SPSS Inc.,
Chicago, IL, United States). Differences between two groups were
analyzed by unpaired t-test after the demonstration of
homogeneity of variance with an F-test. Differences between
three groups or more were analyzed by one-way ANOVA.
Dunnett’s test or Student–Newman–Keuls (SNK) test was used
in the post-hoc analysis. It was considered statistically
significantly different when p-value was smaller than 0.05.

RESULTS

D-4F Upregulates Protein Levels of SDF-1α
in Mice Plasma
Since D-4F and L-4F demonstrate comparable action and L-4F
must be delivered parenterally (Rosenbaum et al., 2015), D-4F

and L-4F were therefore employed for in vivo and in vitro
investigations in the present work, respectively. The peripheral
blood of mice was collected from day 0 to 11 after D-4F injection.
The effects of D-4F on the levels of SDF-1α in mice plasma were
evaluated by ELISA, and the results are shown in Figure 1. It can
be learned that D-4F at a concentration of 1 mg/kg/day for 9 days
significantly upregulated the levels of SDF-1α in mice plasma
compared with control group or the D-4F group before injection.

D-4F Upregulates Protein Levels of HIF-1α,
Phosphorylated Akt, and Phosphorylated
ERK in the Abdominal Aorta and Inferior
Vena Cava of Mice
The effects of D-4F on protein levels of HIF-1α, p-Akt, and
p-ERK in the abdominal aorta and inferior vena cava were
investigated by Western blotting analyses. As shown in
Figure 2, D-4F significantly upregulates the levels of HIF-1α,
p-Akt, and p-ERK in abdominal aorta and inferior vena cava.

L-4F Improves the Cell Viability of HUVECs
Next, we employed HUVECs as an in vitro cellular model to
investigate the mechanism underlying the promotive effects of 4F
on the levels of SDF-1α. To determine an appropriate working
concentration of L-4F, its effects on the cell viability of HUVECs
were evaluated by MTT method. As shown in Figure 3, L-4F at a
concentration not higher than 100 μg/ml exerts no significant
cytotoxic effects on HUVECs, nor does the sL-4F at 50 μg/ml. L-
4F improves the cell viability of HUVECs in a concentration-
dependent manner.

L-4F Upregulates Protein Levels of SDF-1α
in Cell Medium
The effects of L-4F on the levels of SDF-1α in cell medium were
determined by ELISA, and the results are shown in Figure 4. It
could be learned that L-4F at a concentration of ≤50 μg/ml
upregulates the levels of SDF-1α in a concentration-dependent
manner when compared with the control group. Therefore, L-4F
at 50 μg/ml was employed in the subsequent experiments. The
specific inhibitors of LY294002 and PD98059 pretreatment
significantly suppress the levels of SDF-1α promoted by L-4F.
There is no significant difference between the 50 μg/ml sL-4F
group and the control.

L-4F Upregulates the Protein Levels of
HIF-1α, p-Akt, and p-ERK in HUVECs
The effects of L-4F at different time points and concentrations on
protein levels of HIF-1α, p-Akt, and p-ERK in HUVECs were
investigated by Western blotting analyses. The results are
presented in Figures 5 and 6, respectively. Compared with
control, L-4F treatment for 30 min exerts the most significant
effects on protein levels of HIF-1α, p-Akt, and p-ERK (Figures
5A–D). L-4F upregulates the protein levels of HIF-1α, p-Akt, and
p-ERK in a concentration-dependent manner at a concentration
of ≤50 μg/ml in comparison with control (Figures 6A–D).
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Pretreatment of LY294002 and PD98059
Suppresses Protein Levels of HIF-1α, p-Akt,
and p-ERK Induced by L-4F in HUVECs
The effects of pretreatment of specific inhibitors of LY294002 and
PD98059 on protein levels of HIF-1α, p-Akt, and p-ERK induced
by L-4F in HUVECs were studied by Western blotting analysis
(Figures 7A–D). It can be found that the upregulated protein
levels of HIF-1α and p-ERK caused by L-4F can be significantly
suppressed by LY294002 and PD98059 (Figures 7B and D).
However, the elevated levels of p-Akt by L-4F could not be
significantly inhibited by PD98059, but LY294002 (Figure 7C),
also suggesting ERK as a downstream molecule of PI3K signaling
pathway in the present work.

DISCUSSION

In consideration of the critical role of EPCs in neovascularization
and resistance to ischemic lesions as aforementioned, it is of great
importance to investigate potential means to activate functional
EPCs. SDF-1α has been well demonstrated to be involved in the
mobilization, trafficking, and homing of EPCs derived from the
bone marrow to ischemic lesions through its specific receptor of

CXCR4 (Ceradini et al., 2004). Therefore, SDF-1α seems to play a
vital protecting role against cardiovascular disease. The present work
shows that the apoA-Imimic peptide of 4F can effectively induce the
expression of SDF-1α in HUVECs and plasma in mice, which may
be through the signaling pathway of PI3K/Akt/ERK/HIF-1α.

Numerous studies have exhibited that the expression of SDF-1α
is regulated by the transcription factor of HIF-1α in vivo and in vitro
(such as ECs), which is consistent with the present work (Loh et al.,
2009; Zan et al., 2015). Generally, HIF-1α is kept at extremely low
levels and can be induced by hypoxia (Huang et al., 1998). Recently,
HIF-1α was reported to be induced by many other factors such as
insulin and angiotensin II, and the activation of PI3K/Akt and
ERK1/2 signaling pathways even under normoxic conditions (Pagé
et al., 2002; Hartmann et al., 2008; Tan et al., 2014). The elevated
HIF-1α can mediate multiple processes, including angiogenesis,
and regulate a lot of target genes such as SDF-1α (Semenza, 2003).
As one of the numerous downstream effectors of HIF-1α, SDF-1α
can be transcriptionally regulated through binding the hypoxia
response elements within its promoter to HIF-1α (Ceradini et al.,
2004). It should be noted that HIF-1α improves the EPCs function
during the process of angiogenesis by upregulating many factors
such as VEGF (Zan et al., 2015).

The expression of HIF-1α has been reported to be closely
related to the activation of PI3K/Akt signaling pathway, which
widely participates in the migration and localization of numerous
cells (Yu et al., 2010; Zheng et al., 2007). PI3K can activate its
downstream kinases of Akt and mTOR (Fresno Vara et al., 2004).
Moreover, the trans-activation activity and stability of HIF-1α
can also be significantly elevated by the signaling pathway of
ERK1/2 MAPK through directly phosphorylating its C-terminal
domain (Minet et al., 2000; Sang et al., 2003). These two signaling
pathways work mainly dependent on the kinase of p70 S6 to
ultimately enhance the translation rate of HIF-1α from mRNA to
protein via the initiating a cascade of events (Semenza, 2003). In
addition to the upregulation of SDF-1α, as evidenced in the
present work, these two signaling pathways also involve the
regulation of the growth, survival, and migration of ECs in
angiogenesis (Gates et al., 2007; Karar and Maity, 2011).
Interestingly, it can be learned from Figures 6 and 8 that ERK
functions as a downstream molecule of PI3K signaling pathway.
MEK⁄ERK has been demonstrated to be regulated by Akt1 via the
PAK pathway (Lee et al., 2011). The results suggested that 4F

FIGURE 3 | L-4F improves cell viability of HUVECs. Cells were treated for
24 h with L-4F at various concentrations (final concentrations at 0, 10, 30, 50,
and 100 μg/ml, respectively) or sL-4F at 50 μg/ml, n � 6, one-way ANOVA,
SNK test, **p < 0.01, compared with the group at 0 μg/ml.

FIGURE 4 | L-4F upregulates the protein levels of SDF-1α in HUVECs. (A) Cells were treated for 24 h with L-4F at various concentrations (final concentration at 0,
10, 30, 50, and 100 μg/ml, respectively) or sL-4F at 50 μg/ml (n � 6, one-way ANOVA, Dunnett’s test). (B) Cells were pretreated with and without relevant specific
inhibitors for 2 h prior to the treatment with L-4F or sL-4F at 50 μg/ml for 24 h (n � 6, SNK test). *p < 0.05, **p < 0.01, compared with control.
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FIGURE 5 | (A) Representative Western blot images. L-4F upregulates protein levels of HIF-1α (B), p-Akt (C), and p-ERK (D) in HUVECs at different time points.
Cells were treated with L-4F (50 μg/ml) for 0, 5, 15, 30, and 60 min, respectively, or sL-4F at 50 μg/ml for 30 min, n � 3, one-way ANOVA, Dunnett’s test, **p < 0.01,
compared with control.

FIGURE 6 | (A)RepresentativeWestern blot images. L-4F at different concentrations upregulates protein levels of HIF-1α (B), p-Akt (C), and p-ERK (D) in HUVECs.
Cells were treated with L-4F at 0, 10, 30, 50, and 100 μg/ml, respectively, or sL-4F at 50 μg/ml for 30 min, n � 3, one-way ANOVA, Dunnett’s test, *p < 0.05, **p < 0.01,
compared with control.
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induces the expression of SDF-1α in HUVECs and mice through
PI3K/Akt/ERK/HIF-1α signaling pathway.

The overexpression of apoA-I has been found to possess the
capability to elevate the number of circulating EPCs, which plays a

key part in the process of neovascularization induced by ischemia
(Feng et al., 2009). These effects rely on the same signaling pathways
of PI3K/Akt and mitogen-activated protein kinase (MAPK), which
have been shown to be capable of driving the pathway of HIF-1α/
VEGF (Miura et al., 2003; Mineo and Shaul, 2007). As a mimic
peptide of apoA-I, 4F significantly activates the PI3K/Akt/ERK/
HIF-1α signaling pathway in the present study. Therefore, 4F may
exert its protective effects against AS and the promotion of
neovascularization through a similar mechanism to apoA-I.

Although the activation of HIF-1α acts as an adaptive response
to hypoxia for cells, its prolonged activation is deleterious to
hypoxic cells, and overexpressed HIF-1α has been reported to
be associated with tumor growth, cancer metastasis, and poor
prognosis, and tumor chemotherapy resistance (Shoshani et al.,
2002; Goda et al., 2003; Wei et al., 2013; Doktorova et al., 2015;
Zhang et al., 2015).Moreover, elevated SDF-1α should be evaluated
cautiously, since it could promote the aggregation of platelet (Abi-
Younes et al., 2000). Therefore, further studies are needed for
optimizing the expression of SDF-1α probably through the
employment of an inducible vector. In addition, HIF-1α-
independent mechanisms underlying the expression of SDF-1α
should be further investigated (Lerman et al., 2010).

It has been reported that HIF-1α can mobilize EPCs to the site of
vascular intimal injury and promote the repair of vascular endothelial
injury through promoting the level of SDF-1α in vivo (Ceradini et al.,
2004; Hiasa et al., 2004). One of our previous papers also suggests that
in C57mice fed by high-fat diet, reverse-D-4F (demonstrating similar
function to 4F) can increase the number of EPCs and SDF-1α levels

FIGURE 7 | (A) Representative Western blot images. Pretreatment of LY294002 and PD98059 suppresses protein levels of HIF-1α (B), p-Akt (C), and p-ERK (D)
induced by L-4F in HUVECs. Cells were pretreated with and without relevant specific inhibitors for 2 h prior to the treatment with L-4F or sL-4F at 50 μg/ml for 30 min, n �
3, one-way ANOVA, SNK test, **p < 0.01, compared with other groups.

FIGURE 8 | Schematic diagram for 4F promoting SDF-1α expression in
vascular endothelial cells. 4F can upregulate the levels of HIF-1α in mice and
endothelial cells by activating PI3K/Akt/ERK signaling pathway and thus
promoting the level of SDF-1α. Elevated SDF-1α in blood circulation may
mobilize EPCs in the bone marrow to migrate to the site of vascular intimal
injury where EPCs differentiate into mature ECs and participate in the repair of
vascular endothelial injury.
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(Yang et al., 2015). However, there are still some limitations in the
present work. First, the biological effects of elevated SDF-1α induced
by 4F in vivo and the underlying mechanisms have not been deeply
studied in the present study. Second, whether 4F mobilizes EPCs to
the damaged vascular intima and inhibits the occurrence and
development of atherosclerosis in vivo is not investigated in the
present work. Next, we will employ conditional gene knockout
animals, inhibitors, antibody intervention, etc. to investigate the
underlying mechanisms aforementioned in vivo.

In conclusion, 4F can promote the expression of SDF-1α in
ECs andmice through PI3K/Akt/ERK/HIF-1α signaling pathway.
The improved levels of SDF-1α in blood may mobilize EPCs from
the bone marrow and tissues to the injured intima to restore
vascular endothelium.
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