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Sheathless CE-MS based metabolic 
profiling of kidney tissue section 
samples from a mouse model of 
Polycystic Kidney Disease
Elena Sánchez-López1, Guinevere S. M. Kammeijer2, Antonio L. Crego1, María Luisa Marina1, 
Rawi Ramautar3, Dorien J. M. Peters4 & Oleg A. Mayboroda2

Capillary electrophoresis-mass spectrometry (CE-MS) using a sheathless porous tip interface emerged 
as an attractive tool in metabolomics thanks to its numerous advantages. One of the main advantages 
compared to the classical co-axial sheath liquid interface is the increased sensitivity, while maintaining 
the inherent properties of CE, such as a high separation efficiency and low sample consumption. 
Specially, the ability to perform nanoliter-based injections from only a few microliters of material in the 
sample vial makes sheathless CE-MS a well-suited and unique approach for highly sensitive metabolic 
profiling of limited sample amounts. Therefore, in this work, we demonstrate the utility of sheathless 
CE-MS for metabolic profiling of biomass-restricted samples, namely for 20 µm-thick tissue sections of 
kidney from a mouse model of polycystic kidney disease (PKD). The extraction method was designed 
in such a way to keep a minimum sample-volume in the injection vial, thereby still allowing multiple 
nanoliter injections for repeatability studies. The developed strategy enabled to differentiate between 
different stages of PKD and as well changes in a variety of different metabolites could be annotated 
over experimental groups. These metabolites include carnitine, glutamine, creatine, betaine and 
creatinine. Overall, this study shows the utility of sheathless CE-MS for biomass-limited metabolomics 
studies.

Polycystic kidney disease (PKD) is a complex clinical entity unifying a group of diseases that results in renal 
cyst development1. The animal models and the rodents in particular are essential for the understanding of the 
biochemical mechanisms of the disease, providing information which would be impossible to get from the obser-
vational human studies only. The trend towards a more responsible use of the laboratory animals stimulates 
the changes in analytical methodologies demanding analytical workflows for the volume restricted biological 
samples. Metabolomics is one of the areas where such methods are highly needed. For instance, the onset and 
progression of autosomal dominant polycystic kidney disease (ADPKD) is commonly explained as an effect of 
the dysregulated expression of the PKD1 or PKD2 genes. The encoded proteins are associated with remodeling of 
the tubular architecture and as such, directly or indirectly, control multiple signaling cascades in renal epithelial 
cell. This, in turn, leads to a profound metabolic remodeling of the affected cells. Consequently, it raises a question 
whether such remodeling contributes to the PKD pathophysiology2,3. Here, we would like to address this question 
using kidney-specific PKD1-deletion mice, of which we analysed single 20 μm tissue sections.

There are different technical solutions available, but here we are presenting a report on using capillary electro-
phoresis – mass spectrometry (CE-MS) for metabolic profiling of such material. CE-MS offers many advantages 
that makes it a useful tool in metabolomics studies. One can mention minimal sample requirement (usually only 
a few nanoliters are injected) or the high separation efficiency due to the flat flow profile of the electro-osmotic 
flow where only longitudinal diffusion is contributing to band broadening in CE4. Moreover, the method has a 
proven track record for the analysis of polar and charged compounds5. However, as every analytical technique, 
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CE-MS has its weaknesses. Limitations of CE include low migration time repeatability and relatively poor detec-
tion sensitivity due to the low injection volume. Moreover, in the case of employing a sheath-liquid interface an 
extra dilution occurs thereby compromising the sensitivity even further4. In the past years, significant develop-
ments addressed these limitations and resulted in improved interfacing techniques for CE-MS among them the 
sheathless porous tip interface6. The porous tip interface (offered by SCIEX as CESI sprayer) can substantially 
improve the detection sensitivity (i.e., up to 100-fold) as compared to using a conventional co-axial sheath-liquid 
interface7,8. Another advantage of the porous tip sprayer interface is reduced ion suppression, which is inherent to 
the use of flow rates below 20 nL/min in ESI-MS9. For a variety of reasons, the potential of CESI-MS for metab-
olomics has hardly been explored. Only a limited number of studies were reported using urine7,10, plasma11,12, 
CSF11, and cells13–16. Thus, with this report we demonstrate the utility of CESI-MS for metabolic profiling of 
biomass-restricted tissue material and, at the same time, we provide a descriptive study of the metabolic changes 
associated with PKD progression1.

Results and Discussion
For decades, laboratory animals and rodents in particular are being used as the main experimental tool of the 
modern biology. They offer a unique possibility for modeling the human diseases in vivo, getting insight into the 
systemic and local effects of a given pathology. Miniaturization of the analytical workflows is one of the most 
obvious demands. With regard to metabolomics the diversity of the mammalian metabolome implies availability 
of several micro-scale strategies which could be adopted to a particular class of the metabolites or the sample 
types. CE-MS has a proven track record as a micro-scale method, known for its possibility to provide complex 
biological profiles from only a limited amount of material. Here, we demonstrate the feasibility of this approach 
for an animal model for PKD using a specific type of biomass-restricted samples, namely 20 µm-thick tissue 
sections of mouse kidneys. The set of the samples consisted of four groups. The two wild type groups (Wt) at the 
beginning of the experiment and 14 weeks into the experiment (Wt0 and Wt14). The other two groups represent 
a mild (MCK) and advanced (ESCK) kidney damage conditions.

Potential of Sheathless CE-MS for Metabolic Profiling of Biomass-Restricted Samples. There 
are several technical solutions for integration of CE and MS6,15,17–19. Here, we use a CESI-MS platform, a sheathless 
CE-MS configuration, where CE separation and ESI ionization work as a single process8. Moreover, following the 
recent work of Kammeijer et al.20 in which a dopant-enriched nitrogen gas (DEN-gas) was employed to further 
increase the detection sensitivity of CESI-MS, we also used the DEN-gas attenuated version of CESI. To test the 
general performance of this approach as a tool for metabolic profiling, standard metabolite mixtures consisting of 
sixty compounds in an equimolar concentration (HMT mixture) have been analyzed. This mixture includes the 
major metabolite classes such as amino acids, betaines, lactams, purines and nucleosides. Figure 1 shows a base 
peak electropherogram (BPE) obtained by CESI-MS for the standard metabolite mixture. It is important to note 

Figure 1. Comparison of base peak electropherograms of standard metabolite mixture consisting of 60 
metabolites at 50 µM (A) and a QC sample of tissue sections (B) obtained with the sheathless CE-MS platform. 
Experimental conditions: BGE, 10% (v/v) acetic acid (pH 2.3); voltage, +20 kV; sample injection, 1 psi × 60 s 
(1.4% total volume of the capillary, i.e. roughly 9 nL); 91 cm × 30 µm i.d. × 150 µm o.d. fused-silica capillary.
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that it was possible to obtain low nanomolar detection limits for most metabolites in this standard mixture, this 
being in agreement with previous CESI-MS metabolomics studies7. The second Figure in the panel (Fig. 1) shows 
the BPE of a quality control (QC) sample, i.e. a pooled sample containing equally volumes of all samples used in 
this study. Not surprisingly, the complexity of the QC sample exceeds the one of the standard metabolite mixture. 
Moreover, despite a general pattern similarity, there is a clear difference between the metabolite mixture and QC 
sample in the responses observed for individual metabolites. Supplementary Fig. S-1 clearly illustrates this point 
by showing extracted ion electropherograms for various selected metabolites from the different chemical families.

A detailed description of the analytical sequence is given in section 4.5. Apart from using a DEN-gas enhanced 
version of the CESI-MS the sequence has been organized as a standard profiling experiment using a block acqui-
sition approach, where every block includes a random selection of the measured samples, QC samples and the 
analytical standards. CE-based metabolomics methods are usually criticized for low migration-time reproduci-
bility21. Anticipating the problem, we took a special care on the alignment of the data using an in-house built tool, 
msalign2, which takes advantage of the superior mass accuracy of modern TOF instruments for migration-time 
correction21. Supplementary Fig. S-2 illustrates the effect of the alignment for measured QC samples (n = 11), 
where it can be seen that the variability of migration times was strongly reduced. We have also introduced a rigor-
ous filtering step including in the analysis only the features which had a relative standard deviation (RSD) below 
30% in the QC samples.

Exploratory analysis of polycystic kidney disease tissue samples. The final data matrix after appli-
cation of the 30% RSD filtering includes only 112 metabolic features. Even though the number of identified meta-
bolic features seems rather low compared to other metabolomic studies13, it should be taken into account that the 
starting material was limited. In addition, the lower number in identification could be considered as an advan-
tage, since data can be easily overfitted during multivariate modelling when limited samples are available (N = 60 
mice). The number of detected metabolic features might have been enlarged if preconcentration approaches, 
e.g. dynamic pH junction22, were used. The essential first analysis step of the metabolic profiling experiment is 
evaluation of the analytical consistency and description of the main sources of the variance. The initial princi-
pal component analysis (PCA) modeling revealed a strong outlier - a MCK sample. Despite using probabilistic 
quotation normalization (PQN), abnormally low signal intensities were observed in this sample, indicating an 
analytical failure as a possible cause and consequently the sample was removed from further analysis. The score 
plot of the PCA model built after reprocessing the data without the outlier is presented in Fig. 2A. The model 
requires just three principal components to cover the first 50% of the variance, while the first two principal com-
ponents covered 43% of the variance. The QC samples clustered together which indicates a proper analytical 
consistency and analytical variance within the limits expected for the CESI-MS method. It is worth mentioning 
that metabolic profiles for QC samples were not analyzed from multiple injections using the same injection vial, 
but were obtained from independent aliquots which had to be reconstituted in 2.5 µL of water every day before 
the start of the acquisition sequence. Figure 2B shows the score plot of the PCA model built without QC samples, 
similar characteristics were observed when compared to Fig. 2A, with only three components 50% of the variance 
was covered, whereas the first two components covered 44% of the variance. The score plot clearly shows that the 
end-stage cystic kidney (ESCK) group, which forms a distinct cluster, strongly influences the model. Figure 2C 
shows the loadings plot of the model presented in Fig. 2B. The plot is colored according to the modelling power 
emphasizing the cluster of the variables relevant for the model. As a next step we built a multi-class PLS-DA 
model using the experimental groups as the class ID. Figure 3A,B show the score plot and cross-validated score 
plot of the resulting model, respectively. The model parameters (R2X 0.75, R2Y 0.94, Q2 0.5) and CV-ANOVA 
values (F = 13,1, p-value = 2.6 × 10−30) indicate a strong model. However, as well as in the PCA, samples from 
the ESCK group strongly influence the model, which complicates the interpretation of the VIP values (Fig. 3C). 
Apparently, the strongest ones will mainly explain the differences between the ESCK group and the remaining 
samples.

Context-specific multivariate modelling. To get a more specific description of the metabolic changes 
between the groups, several two-class PLS-DA models were built, namely Wt0 (wildtype at timepoint 0) vs MCK 
(to explain the differences between non-PKD and mild PKD) and MCK vs ESCK (to explain a transition from 

Figure 2. (A) PCA of log-transformed data. (B) PCA of data in (A), excluding QC samples. (C) PCA loading 
plot of 112 variables in (B), colored according to the modeling power of (B).
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mild to advanced stage of PKD). Finally, to get insight into metabolic changes associated with the aging of the ani-
mals, an additional model Wt0 vs Wt14 (Wt + 14 weeks) was built. Figure 4 shows the cross-validated score plots 
for all three models and Table 1 summarizes the model’s parameters. Despite the differences, all three models are 
valid. In agreement with the first two models (PCA and PLS-DA) the strongest model explained the differences 
between MCK and ESCK groups (highest values of R2X, R2Y, Q2 and F and the lowest p-value for CV-ANOVA 
from all models). From each model a subset of the most influential variables was selected by using the model 
specific variable importance on projection (VIP) values with an arbitrary cut-off of 1.35. Supplementary Fig. S-3 
shows a Venn diagram summarizing all selected variables for the three models. Table 2 summarizes the features 
annotated according to the guidelines outlined in section 4.7.

Biological Relevance of the Annotated Metabolites. Table 2 summarizes all annotated features, how-
ever, the degree of confidence for the given annotations is varying. Figures S-4 and S-5 from supporting informa-
tion display the box-plots for metabolites annotated unequivocally and tentatively, respectively. From this point 
the most logical question is to which degree the metabolites present in this table describe biology associated 
with the applied experimental design. There are several metabolites like e.g. creatinine, creatine, carnitine, and 
glutamine which have a proven track record of being associated with a renal physiology. The very fact that these 

Figure 3. (A) PLS-DA score plot for the four groups of samples analyzed by the sheathless CE-MS platform.  
(B) Cross-validated score plot of the PLS-DA plot. (C) VIP vs p(corr) plot, colored according to the VIP values  
from (B).

Figure 4. PLS-DA models for the three different pairwise comparisons performed in this work.

PLS-DA model
Number of 
latent variables R2X R2Y Q2

CV-ANOVA

F p-value

Wt0 vs MCK 3 0.440 0.987 0.923 35.0 3.6 × 10−10

MCK vs ESCK 3 0.569 0.988 0.967 95.0 1.4 × 10−14

Wt0 vs Wt14 2 0.311 0.969 0.857 37.8 2.9 × 10−14

Table 1. Number of latent variables, quality parameters (R2X, R2Y, Q2 and CV-ANOVA F and p-values) for the 
pairwise PLS-DA.
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metabolites are on the list illustrates that the selected analytical workflow is capable of targeting the relevant struc-
tures. Yet, verifying the results of a metabolomics experiment with the published data only provides hardly any 
novel information. Something that a post-genomics technology such as metabolomics is meant to do. Mapping 
the annotated structures to the biochemical pathways provides even less practical information. The flexibility of 
the mammalian biochemistry is such that a causal relation between the metabolites cannot be reconstructed from 
the profiling data without an experiment exploring a product-substrate relationship. To this end, we have explored 
an unbiased way of the data interpretation which uses the information available within the dataset: experimental 
design and the relative abundances of the metabolites. However, instead of a comparison between the experi-
mental groups we have visualized the data in a form of the correlational relationships between metabolites within 
each experimental group. Figure 5 shows the results of such visualization. Notably, the most complex correlation 
structure at the given threshold of the inclusion (0.6) was observed within the MCK group. One of the “hubs” in 
this network is methylhistidine showing strong negative correlations to a number of the metabolites including 

Level of 
assignment Annotation Abbreviation

Migration time 
(min)

Detected  
specie

Experimental  
m/z m/z error

VIP values of PLS-DA

Wt0 vs Wt14 Wt0 vs MCK
MCK vs  
ESCK

Confirmed with 
standard

Creatinine Cre 13.4 [M+H]+ 114.0671  
115.0697 0.9 mDa 2.03  

1.75
1.56  
1.29

1.30  
1.36

Carnitine Carn 15.4 [M+H]+

163.1159  
(isotopic  
profile of  
162.1139)  
164.1173

1.4 mDa 0.37  
0.31

0.91  
0.95

1.55  
1.58

Creatine Cr 17.0 [M+H]+

133.0796  
(isotopic  
profile of  
132.0782)

1.4 mDa 1.49 1.42 0.20

Glutamine Gln 21.0 [M-NH3+H]+ 130.0503 0.5 mDa 1.27 1.42 0.59

Betaine Btn 22.9 [M+H]+

119.0899  
(isotopic  
profile of  
118.0884)

2.1 mDa 0.12 0.44 1.39

Tentative 
annotation

1-methylhistidine mHis 14.6 [M+H]+ 170.0925  
171.0955 0.1 mDa 2.31  

2.29
2.17  
2.20

0.25  
0.26

Acetylcholine Ach 14.7 [M+H]+ 146.1178 0.2 mDa 0.91 1.47 0.72

4-Guanidinobutanoic acid Gba 15.0 [M+H]+ 146.0927 0.3 mDa 1.04 1.44 1.65

2-Aminooctanoic acid AoA 15.2 [M+H]+ 160.1334  
161.1367 0.2 mDa 1.53  

1.54
1.81  
1.86

0.94  
0.96

Methylguanine (different 
isomers are possible) mGu 15.2 [M+H]+ 166.0725 0.2 mDa 0.46 0.61 1.55

γ-L-Glutamylputrescine or 
N5-(1-imino-3-butenyl)-L-
ornithine

Gput 15.4 [M-H2O+H]+ 200.1393 0.6 mDa 1.55 1.71 1.01

Formylisoglutamine fGln 15.4 [M+H]+ 175.0715 0.2 mDa 0.14 1.04 1.60

Imidazolelactic acid ILA 16.3 [M+H]+ 157.0609 0.1 mDa 1.66 1.66 0.73

Asn-Hydroxyproline or 
Hydroxyprolyl-Asn P1 16.5 [M+H]+ 246.1083 0.1 mDa 1.41 1.29 1.57

Argininic acid ArgA 16.5 [M+H]+ 176.1030 0.0 mDa 0.20 0.19 1.65

Propionyl-L-carnitine Pcarn 16.6 [M+H]+ 218.1386  
219.1417 0.1 mDa 1.36  

1.37
0.92  
0.90

1.28  
1.27

Homocitrulline Hcit 16.8 [M+H]+ 190.1185 0.1 mDa 1.09 0.30 1.64

Glycyl-lysine or lysyl-glycine P2 17.4 [M+H]+ 204.1342 0.1 mDa 0.68 0.28 1.63

N-α-Acetyl-L-arginine Aarg 17.7 [M+H]+ 217.1286 0.9 mDa 1.75 0.82 1.54

3-Hydroxyisovalerylcarnitine HIVC 17.7 [M+H]+ 262.1647 0.2 mDa 2.07 0.43 1.47

(1) Phe-Thr or Thr-Phe (2) 
Hydroxyproline-Leu(Ile), or 
Leu(Ile)-Hydroxyproline

P3 18.5 [M+H]+ (1) 
[M+Na]+ (2)

267.1339  
268.1370 0.9 mDa 1.70  

1.68
1.57  
1.86

1.61  
1.65

2-[3-carboxy-3-
(methylammonio)propyl]-L-
histidine

CMHis 19.0 [M+H]+ 271.1400 0.1 mDa 0.52 1.27 1.64

Proline betaine ProB 23.1 [M+H]+ 144.1023 0.4 mDa 1.86 2.18 1.39

γ-carboxyglutamic acid Gla 32.1 [M+H]+ 192.0501 0.2 mDa 1.26 0.83 1.35

5-Hydroxyindoleacetylglycine hINaG 32.1 [M-H2O+H]+ 231.0764 0.6 mDa 1.88 1.67 1.56

Pantothenic acid PA 32.2 [M-H2O+H]+ 202.1074 0.5 mDa 0.06 0.15 1.45

Table 2. Annotation of variables with VIP values higher than 1.35 (highlighted in bold) in at least a pairwise 
PLS-DA model from the CE-MS metabolomics analysis of PKD samples.
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creatine, creatinine, glutamine and a downstream product of the histidine metabolism, formylisoglutamine. It is 
interesting to note that the correlational structure of the MCK samples includes a number of the expected asso-
ciations like e.g. creatine, creatinine, creatine-glutamine and some which till recent were not mentioned in the 
literature in the context of the renal physiology. It is important to keep in mind that the relationships visualized 
in Fig. 5 are not actual biochemical interactions but rather guidelines which can be used for follow-up research. 
To our opinion, creating the sets of the ideas for further validation in a more focused experimental design/setting 
is exactly the purpose of global metabolic profiling. Yet, one cannot ignore the fact that methylhistidine offers a 
few possibilities for speculation about its possible physiological role. For instance, the imidazole ring of methyl-
histidine was for long time considered as a prime source of the anti-oxidative activity of the histidine derivatives. 
Moreover, it has been shown that naturally occurring histidine containing the di-peptides carnosine and anserine 
have ability to chelate metals.

Conclusions
Here, we present a first application of sheathless CE-MS (CESI-MS) for metabolic profiling of biomass-restricted 
tissue samples, namely individual sections of mouse kidney. After application of a strict data processing routine, 
consistent metabolic profiles were obtained covering more than 100 metabolic features, although minute amounts 
of sample were used (histological samples). Note that the number of metabolic features might have been increased 
if preconcentration strategies, such as dynamic pH junction, were used. The recorded metabolic profiles clearly 
differentiated the experimental groups included in this pilot study. Using a combination of non-supervised and 
supervised multivariate analysis we have dissected a subset of the metabolites underlying the differences between 
the experimental groups (non-PKD young mice, adult mice with PKD in mild state, adult mice with PKD in 
end-stage, and non-PKD adult mice). Several annotated compounds such as glutamine, carnitine, creatinine and 
creatine are well known for their roles in renal physiology. Using a data visualization procedure based on the cor-
relational relationships between the metabolites, we could provide leads for further research. Overall, this study 
demonstrates the feasibility of sheathless CE-MS as a platform for metabolic profiling of biomass-restricted tissue 
samples, and it may open new possibilities for a better understanding of biological processes in sample-limited 
cases.

Methods
Chemicals and reagents. Sodium hydroxide (NaOH) was obtained from Merck (Darmstadt, Germany). 
Glacial acetic acid, water, hydrochloric acid (HCl), glutamine, carnitine, creatine, and creatinine were purchased 
from Sigma-Aldrich (Steinheim, Germany) and were of analytical grade or higher. Acetonitrile (MeCN) of LC–
MS grade originated from Biosolve (Valkenswaard, The Netherlands). A standard metabolite mixture comprised 
of roughly 60 metabolites, with a concentration of 50 µM in water, was obtained from Human Metabolome 
Technologies (Tokyo, Japan), the so-called “HMT” mixture.

Figure 5. Correlational relationships between the annotated metabolites within each of the four experimental 
groups. For abbreviations see Table 2.
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Animals, Experimental Design and Sample Collection. Oral administration of tamoxifen was con-
ducted at Post Natal (PN) days 40–42 to inducible kidney-specific PKD1-deletion mice (tam-KspCad-CreERT2;P-
KD1lox2–11;lox2–11 mice) as previously reported23. At 8–12 weeks after gene disruption a subgroup of mice was 
sacrificed (MCK group: mild cystic kidneys). These mice displayed tubular dilations and small cysts accompanied 
by increased 2KW/BW% (1.9–3.3%). Another group of mice was sacrificed at renal failure (ESCK group: end 
stage cystic kidneys) having large 2KW/BW% (11–17%). A blood urea concentration of ≥20 mmol/L was used 
as an indicative of renal failure. In addition, there were two control group of mice having normal kidneys and not 
receiving tamoxifen, mice of age PN40 (Wt0) and at age of PN40 + 14 weeks (Wt14). Therefore, the study was 
composed of a total of four groups (Wt0, Wt14, MCK, and ESCK) having five mice each, being twenty the total 
number of subjects.

Snap-frozen kidneys were attached to a cryotome table using the embedding medium for frozen tissue 
KP-CryoCompound (Klinipath BV, The Netherlands). Three 20 µm-thick sections of the same kidney were 
obtained per mouse. Sections were collected in 1.5 mL microtubes and they were kept at −80 °C until sample 
preparation was conducted.

All the animal experiments were approved by the Animal Experiment Ethics Committee of Leiden University 
Medical Center and the Commission Biotechnology in Animals of the Dutch Ministry of Agriculture and all the 
methods were performed in accordance with their guidelines and regulations.

Sample preparation. Sample preparation was a continuation of the work by Sánchez-López et al. in which 
the samples were analyzed on liquid chromatography-MS platforms (both RPLC, and HILIC)24. Upon evapora-
tion and reconstitution of the samples in 80:20 (MeCN:water, v/v), 7.5 µL were evaporated for 15 min at room 
temperature in a SpeedVac instrument (Eppendorf, model 5301) and reconstituted in 2.5 µL of water for sheath-
less porous tip CE-MS analysis. QC pool for the CE-MS platform was prepared by taking 1 µL of each sample 
(N = 20) and mixing thoroughly.

Sheathless CE-MS conditions. CE analyses were performed on a Sciex/Beckman Coulter CESI 8000 sys-
tem (Sciex, Framingham, MA) equipped with a temperature-controlled sample tray, kept at 10 °C, and a power 
supply able to deliver up to 30 kV. Separation was performed using a bare fused silica capillary (91 cm × 30 μm 
i.d. × 150 μm o.d.) and carried out by applying a voltage of 20 kV without any pressure applied. Prior to each sam-
ple injection, the capillary was rinsed with 0.1 M NaOH for 2.5 min, water for 4 min, 0.1 M HCl for 2.5 min, water 
for 4 min, and background electrolyte (BGE) for 4 min. The BGE was a solution of 10% (v/v) acetic acid (pH 2.3). 
All samples were hydrodynamically injected applying a pressure of 1 psi for 60 s (which corresponds to 1.4% of 
the capillary volume, injecting 9 nL). A plug of BGE was injected after the sample injection by applying a pressure 
of 0.5 psi for 25 s (corresponding to 0.3% of the capillary volume). CE vials were built “in-house” by manually cut-
ting the tip of a PCR microtube and introducing it in a Sciex/Beckman Coulter 1.5 mL vial by means of a stainless 
spring (see Fig. S-6). This setup enabled working with vial volumes as low as 2.5 µL per sample.

The CE apparatus was coupled to a UHR-QqTOF maXis Impact HD mass spectrometer from Bruker 
Daltonics (Bremen, Germany) via a sheathless porous tip CE-MS interface based on a custom-made platform 
from Sciex/Beckman Coulter (Brea, CA) allowing for an optimal position of the capillary porous tip in front of 
the MS nanospray shield (Bruker Daltonics). Dopant enriched nitrogen (DEN)-gas at 0.2 bar was used along the 
sequence. To this end, an in-house made polymer cone was slid onto the housing of the porous tip allowing for 
a coaxial sheath flow of the DEN-gas around the ESI emitter. The concentration of acetonitrile in the DEN-gas 
corresponds to ∼4% (mole percentage). All CE-MS experiments were carried out in ESI positive mode with a 
capillary voltage of 1,000 V. Drying gas flow (N2) rate was 1.2 L/min at 150 °C. MS data was acquired between m/z 
50 and 1,300 with a spectral acquisition rate of 1 Hz. For MS/MS experiments, all parameters were similar to the 
ones for MS, except for the spectra acquisition that was registered from m/z 30 to 1,200. Collision energy was set 
to 20 V. MS and MS/MS data were acquired with DataAnalysis 4.2 (Build 387, Bruker Daltonics).

CE-MS metabolomics sequence. At the beginning of the metabolic profiling sequence, blanks, QC pools 
and standard metabolite mixtures from Human Metabolome Technologies (HMT) were injected in the CE-MS 
platform. Samples of PKD study were randomized for injection, and a QC pool was injected after seven samples 
were injected. The HMT mixture was injected at least once per day to assess the metabolite annotation (the 
metabolomic sequence lasted for 5 days).

Data treatment and data analysis. MS data files obtained by the CE-MS platforms were recalibrated 
based on sodium acetate clusters and were exported in the.mzXML format. Alignment was performed by an 
in-house tool, msalign221. Peak picking was carried out on the aligned data using XCMS R-package (The Scripps 
Research Institute, La Jolla, CA) based on the centWave algorithm using the following settings: maximum tol-
erated m/z deviation in consecutive scans, 15 ppm; chromatographic peak width, 5–25 s; scan range, 60–2325 s; 
scan range to process, m/z 50–1,300; noise, 20,000; prefilter step, at least 3 peaks with intensity > 50,000; m/z 
center of the feature, wMean (intensity weighted mean of the feature m/z values); signal-to-noise ratio threshold, 
50; minimum difference in m/z for peaks with overlapping migration time, 0.01 min. After peak picking, peak 
grouping was performed with the following parameters: bandwidth, 2; and m/z width of 0.01. After peak picking 
and grouping, variables having RSD values above 30% in the QC were excluded.

Before multivariate analysis, the data was normalized using the PQN algorithm. PQN is based on the deter-
mination of the most probable dilution factor by considering the distribution of the quotients of the signals of a 
certain sample by those of the QC samples25. Multivariate statistical analysis was carried out by means of SIMCA 
14 (Umetrics, Umeå, Sweden).
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Base peak electropherogram and extracted ion electropherogram Figures were plotted using MZmine 226. The 
data visualization was performed using R version 3.4 and packages, “Rcpm”, “ggplot”, “igraph”, “ggraph”, “corrr”. 
For Fig. 5 the data set was divided according to the conditions MCK, ESCK, Wt0, Wt14, and a correlation matrix 
was built on every subset separately and converted into a long format; this output was filtered to retain only 
the correlations with absolute value above 0.6 and passed to the “ggraph” function using “circular” outline for 
visualization.

Metabolite annotation. Highly influencing variables in the PLS-DA models were tentatively identified by 
looking up their m/z values in different databases (METLIN (http://metlin.scripps.edu), HMDB (http://hmdb.ca), 
and KEGG (http://genome.jp/kegg)), establishing 20 ppm as the error width. The identity of carnitine, glutamine, 
creatinine, betaine and creatine could be confirmed by matching the migration time and MS/MS spectra pattern 
obtained from standards. Tentative identities were annotated based on databases.

Data Availability
The dataset generated and analyzed during this study is included in the Supplementary Information file of this 
article.
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