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Abstract
The isolated use of the statistical hypothesis testing for two group comparison has limita-
tions, and its combination with effect size or confidence interval analysis as complemen-
tary statistical tests is recommended. In the present work, we estimate the use of these 
complementary statistical tests (i.e. effect size or confidence interval) in recently published 
in research articles in clinical and biomedical areas. Methods: The ProQuest database was 
used to search published studies in academic journals between 2019 and 2020. The analy-
sis was carried out using terms that represent five areas of clinical and biomedical research: 
“brain”, “liver”, “heart”, “dental”, and “covid-19”. A total of 119,558 published articles 
were retrieved. Results: The relative use of complementary statistical tests in clinical and 
biomedical publications was low. The highest frequency usage of complementary statis-
tical tests was among articles that also used statistical hypothesis testing for two-sample 
comparison. Publications with the term “covid-19” showed the lowest usage rate of com-
plementary statistical tests when all article were analyzed but presented the highest rate 
among articles that used hypothesis testing. Conclusion: The low use of effect size or 
confidence interval in two-sample comparison suggests that coordinate measures should 
be taken in order to increase the use of this analysis in clinical and biomedical research. 
Their use should be emphasized in statistical disciplines for college and graduate students, 
become a routine procedure in research laboratories, and recommended by reviewers and 
editors of scientific journals.
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Introduction

Statistical analysis comparing two groups or populations is a common procedure in clinical 
and biomedical research analysis. It has an essential role in data analysis as it can not only 
allow to test hypothesis but also to measure the strength of the relationship between two 
groups, allowing a coherent association of the obtained data, leading to adequate conclu-
sions and practical significance (Kraemer, 2014). However, it is important to remember 
that the results of the statistical inference method assume that the data have been correctly 
collected, analyzed, and reported, and that they are supported by a statistical model that 
takes in account the data variation (Greenland et al., 2016), since traditional significance 
tests do not adequately consider systematic error (Schuemie et al., 2014). Failure to meet-
ing these parameters may compromise the interpretation of the results (Greenland et al., 
2016). Due to the relative complexity of the experimental design and the statistical analy-
sis, the reader’s confidence in published scientific research frequently relies on the exper-
tise of reviewers’ analysis and the authors’ conclusion statements that may have different 
levels of transparency. An extremely summarized representation or, even, the total lack of 
transparency of the statistical model, creates difficulties for the understanding and critical 
analysis of the subsequent assumptions (Greenland et  al., 2016; Kraemer, 2014). In this 
context, inadequate use or interpretation of statistical tests can lead to flawed conclusions, 
and failures in the reproducibility of scientific studies (Kraemer, 2014). These problems 
may go unnoticed by readers who are not familiar with statistical methods of data analy-
sis, which include the lay public as well as health students and professionals (Jenny et al., 
2018).

Widely used in inferential statistical analysis, the p-value is the most frequent param-
eter used to assess the testing hypothesis. The p-value generated after the hypothesis test 
is defined as the probability that the chosen test statistic is at least as large as its observed 
value—if all the model’s assumptions are correct (Gigerenzer, 2018; Greenland et  al., 
2016). However, the real meaning and interpretations of the p-value are accompanied by 
numerous errors and misinterpretations that have been largely widespread (Gigerenzer, 
2018). The p-value should be interpreted with caution, as low scores (usually < 0.05) do 
not imply the probability that a hypothesis is true or replicable, and do not relate to an 
actual presentation of the differences between the two groups, since it is influenced by the 
sample size and is not able to provide the magnitude of the effect or its accuracy (Berben 
et  al., 2012; Gigerenzer, 2018; Nakagawa & Cuthill, 2007; Wasserstein & Lazar, 2016). 
While calculating the p-value, standardized significance levels are established, ignoring 
the selected sample size and the particularities of each study. Consequently, the p-value 
is frequently interpreted without considering the real practical clinical or biological mean-
ing, generating absolute and arbitrary conclusions about what is “true” or “false”, rather 
than expressing the level of compatibility between the sample and the hypotheses (Alt-
man & Krzywinski, 2016, 2017; Gigerenzer, 2018; Greenland et al., 2016; Wasserstein & 
Lazar, 2016). Besides, it is worth mentioning that the p-value is asymmetric, arbitrary, and 
variable between samples (Altman & Krzywinski, 2017; Espirito Santo & Daniel, 2015). 
Therefore, the study’s analysis, presentation, and conclusions should rely on the combined 
use of p-value with other statistical tests (Altman & Krzywinski, 2017).

In addition to the debate over the isolated use of the p-value and its misinterpretation, there 
is concern about the consequent impact generated by the “significance pursuit” (Amrhein 
et al., 2017). The “data dredging” or “p-hacking” is a bias characterized by carrying out alter-
native analyses until a significant result is found. This result is reported selectively without the 
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presence of previously found non-significant results (Amrhein et al., 2017; Bruns & Ioannidis, 
2016). Publication and selective reporting biases are part of p-hacking (Amrhein et al., 2017; 
Chan et al., 2014; Chavalarias et al., 2016; Cristea & Ioannidis, 2018; DeVito et al., 2020; 
Fanelli, 2012; Goodman, 2019; Lane et al., 2016; Lynch et al., 2007; Rosenthal, 1979; Sim-
mons et al., 2011; Song et al., 2010). These phenomena cause systematic errors in the results 
and bias the successor statistical tests to the hypothesis test and, consequently, compromise 
the research results (Amrhein et al., 2017; Bruns & Ioannidis, 2016). In addition, there are so 
many “researcher degrees of freedom” that, in some cases, researchers choose statistical tests 
based on the data obtained and not on previous planning. These facts contribute to the gen-
eration of biased results and highlight the importance of all data processing steps (Gelman & 
Loken, 2013; Loken & Gelman, 2017).

The limitations and misunderstandings caused by the isolated p-value report can be over-
come by complementing this analysis with other statistics. Confidence intervals and effect 
size tests have been pointed as valuable alternatives (Baguley, 2009; Cumming, 2014; Durlak, 
2009). These complementary tests (i.e. effect size and confidence interval) can indicate the 
magnitude and practical importance of the results, showing the distance between the actual 
situation and the null hypothesis (Kraemer, 2014; Nuzzo, 2014). As a p value cannot provide 
the magnitude and practical importance of an effect, a small p-value can be related to a low, 
medium, or high effect (Durlak, 2009). Effect size calculations do not depend on the sample 
size, reduce p-value misinterpretation, and are relevant criteria for comparing results during 
the elaboration of meta-analysis studies (Espirito Santo & Daniel, 2015; Kraemer, 2014).

Using Bayesian statistical theory, Johnson (2013) estimated that between 17 and 25% of 
the scientific studies’ results reporting borderline significant p-value may be fallacious, com-
promising their reproducibility. Reproducibility is defined as the ability to duplicate results 
using the same materials used in the original research (Goodman et al., 2016), and there are 
ways to estimate the reproducibility rate without performing extensive replications and rigor-
ous methodology. However, it should be noted that there is no consensus to assess replication 
success, so studies can be examined from a variety of perspectives (Collaboration, 2015; Gel-
man & Carlin, 2014; Goodman et al, 2016). It is noteworthy that even research of exemplary 
quality can have empirical results that are irreproducible due to random or systematic errors, 
the presence of selective reports and analyses, and insufficient specifications of the neces-
sary conditions to obtain the results (Collaboration, 2015; Goodman et al., 2016; Greenland, 
2017). Therefore, in the last years, publishing guidelines are increasingly requesting the use of 
p-value together with effect sizes and/or confidence intervals (Altman & Krzywinski, 2016, 
2017; Kraemer, 2014).

The use of effect size and confidence interval in statistical analysis of research articles has 
traditionally been low (Fidler et al., 2004a, b; Freire et al., 2019; Fritz et al., 2012a, b; Stang 
et al., 2017), and there is no precise estimate of the current use of these tests in clinical and 
biomedical research areas. Considering the expressive concern about scientific studies’ quality 
in terms of not using the p-value and effect sizes to generate scientific conclusions, this study 
aims to analyze and quantify the use of complementary statistical tests (i.e. effect size or confi-
dence interval) in recently published studies in different health areas.
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Material and methods

The present study used the ProQuest database (www.​proqu​est.​com) to search by the 
number of published studies in academic journals between 2019 and 2020 consider-
ing pre-defined health knowledge areas to analyse and quantify the use of effect size in 
clinical and biomedical research studies.

The search included studies with the terms “treatment” and one of the following 
terms: “liver”, “brain”, “heart”, “covid-19”, or “dental”. The term “treatment” was 
included to enrich our sample with articles with clinical and biomedical research stud-
ies. The anatomical and disease related terms were included to analyse the use of effect 
size in distinct areas of clinical and biomedical research. In order to select only research 
articles, papers including the terms “meta-analysis” and “review” were excluded from 
the analyses.

Association between the number of published studies and the use 
of complementary statistical tests (i.e. effect size or confidence interval)

Initially, this study sought to establish a relation between the number of published stud-
ies and the effect size or confidence interval (herein termed as complementary statistical 
tests). Therefore, the search results for each area mentioned above were accounted in 
two different groups:

Group I: Total of published studies in the area.
Group II: Total of published studies in the area that have the terms “effect size”, 
“cohen’s d”, “hedges’ g” or “confidence interval”. The terms “cohen’s d” or “hedges’ 
g” were included as they are popular effect size methods used in the literature and 
can be mentioned without the use of the term “effect size”.

At this stage of the search strategy, were used combinations and variations of the 
following terms for each interest area: (“liver/brain/dental/covid-19/heart” AND “treat-
ment”), AND (“effect size” OR “cohen’s d” OR “hedges’ g” OR “confidence interval”).

The combined use of statistical hypothesis and complementary statistical tests

The subsequent stage of this study sought to establish a relation between the number of 
published studies that used statistical hypothesis testing inference and studies that used 
complementary statistical tests. In addition to the previously collected data, two other 
groups were accounted for:

Group III: Total of published studies that have the terms “t-test” or “wilcoxon” or 
“mann–whitney”. These terms were used as they represent frequently used methods 
for statistical hypothesis testing for groups comparison.
Group IV: Total of published studies that have the terms “t-test” or “wilcoxon” or 
“mann–whitney” and “effect size” or “cohen’s d” or “hedges’ g” or “confidence inter-
val”.

http://www.proquest.com
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At this stage of the search strategy, were used combinations and variations of the 
following terms for each interest area: (“liver/brain/dental/covid-19/heart” AND “treat-
ment”), AND (“effect size” OR “cohen’s d” OR “hedges’ g” OR “confidence interval”), 
AND (“t-test” OR “wilcoxon” OR “mann–whitney”).

Statistical analysis

The statistical analysis was made by using the R 4.0.2 software (https://​www.r-​proje​ct.​
org) and the obtained data were analyzed by the Chi-square test with a significance level 
of 5%. The Cramér’s V was used for the effect size analysis and for its interpretations 
were considered the benchmarks suggested by Cohen (1988): for chi-square tests with 
degrees of freedom equal to 4, a value of Cramér’s V between 0.05 and 0.15 indicates 
a small effect, a value within the range of 0.15–0.25 indicates a medium effect and a 
value greater than 0.25 indicates a large effect. Pair-to-pair comparisons were performed 
between groups using the Test of Equal or Given Proportions with a significance level 
of 5% and a 95% confidence interval (for Test of Equal or Given Proportions results, see 
Online Resource).

Results

Effect size and confidence interval analysis are not frequently used in clinical 
and biomedical research

The results showed that published articles in clinical and biomedical areas make low 
use of the complementary statistical tests. The search results with the terms “brain”, 
and “liver” have the highest number of articles published (Table  1). The relative use 
(frequency percent) of complementary tests (Group II/Group I) was restricted to 8.9% 
with “heart” and “treatment”, 7.9% with “liver” and “treatment”, 7.3% with the terms 
“brain” and “treatment”, 6.1% with “dental” and “treatment”, and 3.3% with “covid-19” 
and “treatment” (Fig. 1). Among the study areas, there is a statistically perceptible dif-
ference with a significance level of 5% in the relative use of effect size (X2

4 = 330.24; p 
value < 2.2e-16; Cramer’s V = 0.05). In the Test of Equal or Given Proportions results 
analysis, it was observed that this difference is present among all groups (p < 0.01 in all 
comparisons).

Table 1   Number of papers 
according to studied areas and 
groups

Group I Group II Group III Group IV

Liver 33,977 2678 11,830 1531
Brain 35,387 2600 11,675 1446
Heart 33,277 2965 9244 1535
Covid-19 8107 267 426 90
Dental 8810 541 2019 237

https://www.r-project.org
https://www.r-project.org
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Studies that use statistical hypothesis testing for sample comparison 
and complementary statistical tests represent the smallest portion of published 
articles

It is possible that the use of complementary statistical tests may be more frequent in arti-
cles that also use statistical hypothesis testing for comparison of two groups. Therefore, 
we seek to estimate the use of statistical hypothesis testing for comparison of two groups 
among all published articles. The percent frequency of the articles that used statistical 
hypothesis testing for group comparison (group III/group I) was 34.8% with the terms 
“liver” and “treatment”, 33% with “brain” and “treatment”, 27.8% with “heart” and “treat-
ment”, 22.9% with “dental” and “treatment”, and 5.3% with “covid-19” and “treatment” 
(Fig. 2). Among the study areas, there is a statistically notable difference with a signifi-
cance level of 5% in the use of hypothesis test (X2

4 = 3195.6; p value < 2.2e-16; Cramer’s 
V = 0.16). In the Test of Equal or Given Proportions results analysis, it was observed that 
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this difference is present among all groups (p < 0.0001 in all comparisons). These results 
indicate that most articles used other methods than two group comparison hypothesis test-
ing. These works may have used multiple groups comparison analysis methods or other 
types of analysis such as correlation and regression, Bayesian methods, or presented only a 
descriptive analysis.

The relative frequency of articles that used both statistical hypothesis and complemen-
tary testing for two sample comparisons among all articles (Group IV/Group I) was 4.6% 
with “heart” and “treatment”, 4.5% with “liver” and “treatment”, 4.1% with the terms 
“brain” and “treatment”, 2.7% with “dental” and “treatment”, and 1.1% with “covid-19” 
and “treatment” (Fig. 3). Among the study areas, there is a statistically notable difference 
with a significance level of 5% in the articles that used hypothesis test and complemen-
tary statistical tests among all articles (X2

4 = 267.82; p value < 2.2e-16; Cramer’s V = 0.05). 
In the Test of Equal or Given Proportions results analysis, it was observed that there was 
no statistically perceptible difference between "liver" and "heart" (p value = 0.52). While 
"heart", "dental" and "covid-19" showed a notable statistical difference among all areas 
(p < 0.01 in all comparisons, Fig. 3).

Among articles that used statistical hypothesis testing for two sample comparison the 
use of complementary statistical tests (Group IV/Group III) was 21.1% with “covid-19” 
and “treatment”, 16.6% with “heart” and “treatment”, 12.9% with “liver” and “treatment”, 
12.4% with the terms “brain” and “treatment”, and 11.7% with “dental” and “treatment” 
(Fig. 4). Among the study areas, there is a statistically perceptible difference with a sig-
nificance level of 5% in the use of complementary statistical tests among articles that use 
hypothesis test (X2

4 = 114.84; p value < 2.2e-16; Cramer’s V = 0.06). In the results analysis 
of the Test of Equal or Given Proportions, it was observed that there was no statistically 
notable difference between "liver", "brain" and "dental" (p value = 0.21, 0.14, and 0.43). 
While the "heart" and "covid-19" areas showed a notable statistical difference among all 
areas (p < 0.02 in all comparisons, Fig. 4).

It is possible that some articles of Group IV could have only mentioned terms related 
to statistical hypothesis testing (“t-test”, “wilcoxon” or “mann–whitney”) and the comple-
mentary statistical tests (“effect size”, “cohen’s d” or “hedges’ g” or “confidence interval”) 
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without having performed analysis with these tests. In order to have an appraisal of the 
proportion of articles in Group IV that have performed both tests, we inspected a sample of 
125 articles randomly selected. One hundred and nineteen out of the 125 papers analyzed 
(95.2% of the papers) had used both tests in their data analysis, and the 6 remaining arti-
cles (4.8%) had used only hypothesis testing. These results show that the combined use of 
statistical hypothesis testing and complementary tests is likely to be slightly lower than our 
initial prediction.

Discussion

The use of p value in isolation has been the subject of discussions and has raised concerns 
about the replicability, veracity, and reliability of the conclusions generated (Peng, 2015; 
Wasserstein & Lazar, 2016). In agreement with the literature (Berben et  al., 2012), this 
study shows that estimates of effect size are generally not reported as part of the scientific 
studies results.

Previous studies focused on eating and psychological disorders (Crosby et  al., 2006), 
psychology (Faulkner et  al., 2008; Fidler et  al, 2005; Fritz et  al., 2012a, b), educational 
psychology (Osborne, 2008; Sun et  al., 2010), and learning and education (Barry et  al., 
2016) are in consonance with the results presented in this research since it was observed 
that the effect size analysis is not routinely used in clinical and biomedical research. How-
ever, it is important to point out that the present study was performed without applying 
filters related to the magazine type, impact factor, or revision criteria, such as mandatory 
complementary statistical test report or peer reviews. It is noteworthy that the comple-
mentary statistical test report analysis might vary according to the used analyzes, criteria 
established by magazines for publishing the articles and the type filter applied to select the 
articles (Alhija & Levy, 2009; Sun et al., 2010). The authors’ lack of knowledge and the 
incorrect use and interpretation of statistical analysis (Peng, 2015) contribute to this con-
text, in which complementary statistical tests are not used. It is worth mentioning that stud-
ies that resulted in a statistically non-significant p-value should present the results of their 
tests (American Psychological Association, 2010) and, even if this is the recommendation, 
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the authors tend not to mention the complementary statistical tests in these cases (Berben 
et al., 2012).

The small prevalence of the articles that use both hypothesis testing and complemen-
tary statistical tests can be justified by the low usage of complementary tests. Factors that 
contribute to this aspect include the entrenched habit of using the p value as the main 
analytical and determinant method, the lack of presentation and interpretation of confi-
dence intervals that indicate the direction and size of the treatment effect, and even the 
presence of “spin” (incorrect and selective representation, or misrepresentation of search 
results) (Gates & Ealing, 2019; Gewandter et al., 2015, 2017). Standardized significance 
levels are the most demanded parameters by the academic community and journals and are 
also highly emphasized in academic courses in statistics (Wasserstein & Lazar, 2016). In 
addition to the above-mentioned reasons, the null hypothesis test establishes an arbitrary 
p-value and creates a belief that “significative” discoveries (p value < 0.05) are more valu-
able, reliable, and reproducible (Nickerson, 2000) and that results with p values higher than 
0.05 are not relevant (Ialongo, 2016). This reality makes it more likely to publish studies 
with “positive” than with “negative” results and erroneously reaffirm the hypothesis test as 
the main statistical method (Begg & Berlin, 1988). In a retrospective analysis of 136,212 
clinical trials performed between 1975 and 2014, it was found that the statistical power 
increased (although they are still small in most cases—around 10% average power) while 
the use of effect size remained stable. This increase was mainly due to increasing sample 
sizes (Lamberink et al., 2018). The widespread use of p value to generate scientific conclu-
sions tends to be predominant in articles in the most diverse areas (Fidler et  al., 2004a, 
b; Kirk, 2001), holding a dominant position in the statistical analyses to obtain conclu-
sions (Fidler et al., 2004a, b). The null hypothesis significance test favors the aggravation 
of cognitive distortions (Greenland, 2017), that remain due to the researchers’ internalized 
belief in the “null ritual” and the desire to obtain a “significant p-value” (Gigerenzer, 2018; 
Meehl, 1978), although the “significant differences” found are little more than complex 
and causally uninterpretable results of statistical power functions (Meehl, 1978). Based on 
this, with sufficient data, it is possible to reject any null hypothesis, and after the study has 
been completed, it may be possible that the alternative hypothesis becomes the desirable 
alternative hypothesis (Gelman, 2016; Yarkoni, 2020).

Statistical methods do not free data from uncertainty and that they provide a noisy sig-
nal (Greenland, 2017; Wasserstein et al., 2019). It should always be considered that every 
scientific dataset comes with its own systematic errors skewing the observed distributions 
away from the null (Gelman & Carlin, 2017; Gigerenzer, 2018). In order to maximize the 
chances of producing reliable and meaningful data, the design and execution of a research 
work should be carefully planned before its execution (Wasserstein et al., 2019). The con-
comitant use of the p value, effect size analysis, and/or confidence intervals would allow 
more precise and reliable conclusions (Altman & Krzywinski, 2017; Wasserstein et  al., 
2019). It is also desirable that studies have high or at least reasonable statistical power 
(Gigerenzer, 2018). The author-reader communication must be clear and transparent about 
the confidence level present in the results obtained in the statistical analysis (Greenland, 
2017; Wasserstein et al., 2019).

It is worth mentioning that the “covid-19” articles have the lowest use of statisti-
cal hypothesis testing for sample comparison, complementary statistical, and the lowest 
concomitant use of these two methods among all articles published in the area. These 
results agree with other published articles reporting a lower scientific quality and accuracy 
(Zdravkovic et  al., 2020), and a high rate of post-publication corrections and retractions 
(Soltani & Patini, 2020). These may occur as a side effect of rushed publications induced 
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by the lack of information and sudden high interest in this subject matter. However, among 
the “covid-19" papers that have used hypothesis testing the use of complementary statis-
tical tests is significantly higher than in the other areas. Our results suggest that careful 
analysis of the published data, tables, and figures should be made by the reader before 
complying with the authors’ claims in papers related to covid-19.

While the statistical hypothesis test provides the p-value that represents a statistical 
summary of the compatibility between the observed data and what we would expect to 
observe (Greenland et al., 2016), the effect size is represented by a number that measures 
the strength of the relationship between the groups. These tests used in conjunction will 
give a more accurate appraisal of the relationship between two sample populations. The 
estimation and interpretation of effect size are straightforward and can be made online 
using diverse reliable sources (Becker, 2000; Lenhard & Lenhard, 2016). The results of 
this article suggest that coordinate measures should be taken to increase the use of effect 
size in research analysis. Its use should be emphasized in statistical disciplines for college 
and graduate students, become a routine procedure in research laboratories, and recom-
mended by reviewers and editors of scientific journals.
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