
© AME Publishing Company.   J Gastrointest Oncol 2024;15(5):2129-2144 | https://dx.doi.org/10.21037/jgo-24-245

Original Article

Characterizing PANoptosis gene signature in prognosis and 
chemosensitivity of colorectal cancer 

Tingyu Zhao1#, Xiao Zhang1#, Xiao Liu2, Xingyu Jiang1, Silu Chen2, Huiqin Li2, Hongsheng Ji2,  
Sumeng Wang1, Qi Liang1, Siqi Ni1, Mulong Du2, Lingxiang Liu1

1Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; 2Department of Environmental Genomics, 

Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, 

School of Public Health, Nanjing Medical University, Nanjing, China

Contributions: (I) Conception and design: L Liu, T Zhao, X Zhang; (II) Administrative support: L Liu; (III) Provision of study materials or patients: 

M Du, S Chen, H Li, H Ji; (IV) Collection and assembly of data: X Liu, S Wang, Q Liang, S Ni; (V) Data analysis and interpretation: T Zhao, X 

Zhang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Mulong Du, MD. Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and 

Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian 

Avenue, Jiangning District, Nanjing 211166, China. Email: drdumulong@njmu.edu.cn; Lingxiang Liu, MD. Department of Oncology, The First 

Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China. Email: llxlau@163.com.

Background: PANoptosis is a cell death pathway involved in pyroptosis, apoptosis and necrosis, and plays 
a key role in the development of malignant tumors. However, the molecular signature of PANoptosis in 
colorectal cancer (CRC) prognosis has not been thoroughly explored. The present study aimed to develop a 
novel prognostic model based on PANoptosis-related genes in CRC.
Methods: We initially included transcriptome data of 404 CRC samples from The Cancer Genome Atlas 
(TCGA) cohort and identified differentially expressed genes related to PANoptosis. We then employed 
Cox, least absolute shrinkage and selection operator (LASSO) regression, and Random Forest methods to 
determine the prognostic value and constructed a PANoptosis prognostic model, followed by the validation 
on both internal (TCGA) and external datasets [Nanjing Colorectal Cancer (NJCRC) and Gene Expression 
Omnibus (GEO), n=635]. We performed immune infiltration analysis and gene set enrichment analysis 
to reveal biological processes and pathways against differential risk score. Ultimately, we carried out drug 
sensitivity analysis to predict the response of CRC patients to diverse treatment strategies.
Results: We constructed a predictive model based on four PANoptosis-related genes (TIMP1, CDKN2A, 
CAMK2B, and TLR3), with a high performance [area under the curve (AUC)1-year =0.702, AUC3-year =0.725, 
AUC5-year =0.668] and being an independent prognostic factor in predicting the prognosis of CRC patients. 
Notably, colorectal tumor with high PANoptosis risk score performed higher levels of macrophage 
infiltration and immune scores, but a greater reduction of Tumor Microenvironment Score (TMEscore) 
and DNA replication. Particularly, patients in high-risk group exhibited higher sensitivity to fluorouracil, 
oxaliplatin and lapatinib compared to the low-risk group.
Conclusions: This study highlights the prognostic potential of PANoptosis-related features in CRC, 
demonstrating their role as key biomarkers significantly associated with patient survival and aiding in the 
identification of high-risk patients, thereby advancing immunotherapy approaches.
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Introduction

Colorectal cancer (CRC) ranks as the second most 
frequently diagnosed cancer (1). Cornerstone treatments for 
CRC are often accompanied by a spectrum of side effects, 
including physical discomfort, drug resistance, recurrence, 
metastasis, and treatment intolerance. These challenges 
underscore the urgent need for treatments that are not 
only minimally invasive but also precise and efficient. 
The 2021 National Comprehensive Cancer Network 
guidelines emphasize the significance of assessing seven key 
biomarkers [KRAS, NRAS, BRAF, microsatellite instability 
(MSI), mismatch repair (MMR), ERBB2 amplification, 
and NTRK fusion] to guide optimal clinical decisions (2). 
Comprehensive genomic studies across large cohorts 
have shed light on the molecular landscape of both early-
stage and metastatic CRC, facilitating the development 
of patient-specific treatments anchored in their unique 
molecular profiles (3,4). Notably, mutations in KRAS and 
BRAF have been identified as indicators of poor response 
to epidermal growth factor receptor inhibitors, which 
correlate with reduced overall and progression-free survival 
rates. Alarmingly, despite advancements in chemotherapy, 
targeted treatments, and immunotherapy, recurrence or 
metastasis remains a significant concern, affecting up to 
one-third of patients with stage I–III CRC and a staggering 
65% of those diagnosed with stage IV CRC (5). Hence, a 

more profound investigation in this domain is paramount 
to establish a sound foundation for its clinical diagnosis and 
treatment strategies.

PANoptosis, a comprehensive inflammatory cell death 
mechanism, integrates three distinct programmed cell 
death (PCD) pathways. This concept was first introduced 
by Malireddi et al. in 2019 (6). Being a fusion of Pyroptosis 
(P), Apoptosis (A), and Necroptosis (N), the nomenclature 
accentuates its complex nature, and offers a panoramic 
perspective on cell death by highlighting the synergy among 
these processes (7,8). Aberrant regulation of PANoptosis has 
been implicated in a myriad of human diseases, spanning 
from autoimmune inflammatory disorders to infectious 
diseases, metabolic conditions, and even cancers (9). 
Caspase-6, a central biomarker closely intertwined with 
PANoptosis, is pivotal in amplifying ZBP1-mediated 
inflammasome activation, cellular apoptosis, and host 
defense mechanisms during influenza A virus (IAV) 
infection. Intriguingly, in a mouse model subjected to 
IAV infection, caspase-6 deficiency hinders PANoptosis 
activation, resulting in diminished viral elimination (10). 
In the context of adrenocortical carcinoma (ACC), CDK1 
modulates the PANoptosis through a ZBP1-dependent 
mechanism, subsequently influencing the proliferation of 
ACC cells (11).

In oncology research, the roles of pyroptosis, apoptosis, 
and necroptosis remain subjects of intense debate. 
Depending on the context, these processes can either 
inhibit tumor progression or promote tumorigenesis. For 
instance, a decrease in key molecules of necroptosis such as 
MLKL, is correlated with unfavorable outcomes in multiple 
malignancies, including CRC, acute myeloid leukemia, and 
breast cancer. Conversely, increased expression of RIPK3 
or RIPK1 is also associated with a positive outcome in both 
lung and pancreatic malignancies (12). Previous studies 
have revealed that inhibiting necroptosis can not only 
enhance cancer cell proliferation but also lead to aggressive 
malignancies (12). The absence of RIPK3 or the inhibition 
of RIPK1 in pancreatic cancer models demonstrated a 
suppressive effect on tumor formation, further suggesting 
that necroptosis might promote tumorigenesis in certain 
contexts (13). In summary, albeit necroptosis can initiate 
cancer cell mortality, it can also trigger inflammation 
response, and promote cancer development. Impaired 
cellular apoptosis can prolong tumor cell survival, leading to 
the accumulation of mutations that drive tumor progression, 
including proliferation and metastasis.  Numerous 
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anticancer agents that can induce cellular apoptosis, like 
interferons (IFNs) with nuclear export inhibitors or tumor 
necrosis factor (TNF) with IFN-γ, have demonstrated their 
potential in combating cancer (14,15). The combination 
of IFN and KPT can evoke ZBP1-dependent PANoptosis, 
thereby inhibiting the growth of melanoma in mice. The 
PANoptosis triggered by IFN and KPT correlates with the 
unique human protein ADAR1 that has a Zα domain. The 
interaction of ZBP1 with ADAR1 sustains cell survival, 
but its binding with RIPK3 also leads to cell demise (15). 
Moreover, in melanoma mouse experimental models, cell 
apoptosis caused by ZBP1 can elevate the responsiveness 
to immune checkpoint inhibitor therapies (16). Genes 
related to PANoptosis, such as ZBP1, are associated with 
a favorable prognosis in patients with melanoma. The 
PANoptosis induced by the combination of TNF and 
IFN-γ has shown preclinical promise in reducing tumor size 
in mouse xenograft models (17). In conclusion, while the 
effect of pyroptosis and necroptosis in tumor progression 
remain inconsistent, drugs inducing PANoptosis exhibit 
significant potential in cancer treatment (18). As a CDK1 
inhibitor, cucurbitacin E (CurE), can suppress ACC cell 
proliferation by eliciting PANoptosis in those cells both 
in vitro and in vivo (11). Sulconazole leads to PANoptosis 
by initiating oxidative stress and halting glycolysis, 
subsequently increasing the sensitivity of esophageal cancer 
to radiation therapy (19). Namely, a thorough exploration 
of the mechanisms of PANoptosis presents new possibilities 
for formulating more effective treatment plans for CRC 
patients (8). Therefore, a comprehensive study of the role 
of PANoptosis in the progression of CRC is warranted.

In this study, we analyzed the mRNA expression dataset 
from The Cancer Genome Atlas (TCGA) database, profiling 
hallmark gene sets in 404 cases of CRC. We identified 
PANoptosis-related key genes and constructed a prognostic 
model based on these genes. The model demonstrated high 
predictive accuracy for CRC prognosis, with significant 
associations found between high PANoptosis risk scores 
and poorer survival outcomes. Additionally, our study 
highlighted the potential of these genes as biomarkers 
for CRC diagnosis and prognosis, offering insights into 
the molecular mechanisms underlying CRC progression 
and aiding in the advancement of personalized treatment 
strategies. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://jgo.
amegroups.com/article/view/10.21037/jgo-24-245/rc).

Methods

Data acquisition

We obtained gene expression and medical information of 
CRC patients from TCGA database (https://cancergenome.
nih.gov/). Initially, 434 patients were selected for analysis. 
Patients with incomplete clinical and follow-up information 
or duplicates were excluded. Consequently, 404 samples 
were included for subsequent studies. Nanjing Colorectal 
Cancer (NJCRC) cohort and GSE39582 (https://www.
genome.gov/) supported available data of CRC for 
validation as appropriate (20). We combined NJCRC 
and GSE39582 to create an external validation set of 635 
samples. Batch effects are removed prior to analysis. Clinical 
characteristics were detailed in Table S1. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Screening of differentially expressed genes (DEGs) related 
to CRC and PANoptosis

To obtain a comprehensive PANoptosis gene list, we 
searched multiple databases for genes related to pyroptosis, 
apoptosis, and necroptosis and retain nonduplicate ones. 
Specifically, the list of pyroptosis genes was sourced from 
the Reactome pathway database, the set of necroptosis 
genes originated from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database, and the list of apoptosis 
genes was a combination of data from the HALLMARK, 
REACTOME, and KEGG pathway databases. In total, 
485 non-redundant genes were identified and included for 
further analysis (Table S2).

DEGs between the normal and cancer groups was 
detected using the ‘limma’ package (version 3.40.6). A linear 
model to the expression data was fitted using the lmFit 
function in conjunction with a design matrix. Subsequently, 
an empirical Bayes method was employed to adjust the 
standard errors of these fits. The criteria for identifying 
DEGs were set at P<0.05 and |log2 fold change (FC)| >1. 
Following the filtering process, 88 PANoptosis-related 
DEGs were pinpointed for further validation (Table S3).

Construction of a prognostic model by PANoptosis-related 
DEGs

We initially explored the association of individual genes with 
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https://cdn.amegroups.cn/static/public/JGO-24-245-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-245-Supplementary.pdf
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patient survival duration using a univariate Cox regression 
model, identifying a set of genes significantly associated 
with survival outcomes. Afterwards, the least absolute 
shrinkage and selection operator (LASSO) regression 
technique was employed with the aim of isolating the most 
prognostically impactful gene features. Through meticulous 
cross-validation and Bootstrap resampling procedures, 
the optimal regularization parameter λ was accurately 
determined. Based on this parameter, a set of gene features 
correlated to survival time was identified. In the subsequent 
phase of the analysis, we implemented random forest 
algorithm for feature selection. After repeated Bootstrap 
resampling and cross-validation procedures, we derived 
the average significance of each trait to determine the most 
important genetic signature Finally, a intersection of gene 
features identified by the aforementioned three methods 
was determined as hub genes, which would be involved in 
the prognostic model for CRC.

Ultimately, the LASSO regularization was combined 
with multivariate Cox regression to construct a prognostic 
model,  further verifying the correlation of these 
feature genes with the prognosis of CRC patients. The 
computational formula that weight the expression values of 
hub genes with the regression coefficients was as follows:

The risk score = ∑(−0.2590) × (TLR3 expression) + 
(0.0638) × (CDKN2A expression) + (0.1319) × (CAMK2B 
expression) + (0.4802) × (TIMP1 expression).

Based on the risk score, we categorized clinical samples 
into high-risk and low-risk groups to thoroughly assess the 
predictive efficacy of the model.

Validation of prognostic model

Survival curves were plotted utilizing Kaplan-Meier 
method. Three variables were selected for analysis: risk 
score, pathological staging, and age, which exhibited 
significant association with patient survival in univariate 
Cox regression analysis. Following the foundation of the 
univariate analysis, a multivariate Cox regression model was 
executed to investigate the joint effects of the mentioned 
variables on the survival duration of patients. To delve 
deeper into the predictive performance of the risk score, we 
utilized the ‘survivalroc’ function to draw receiver operating 
characteristic (ROC) curves at the 1-, 3-, and 5-year 
marks, using the area under the curve (AUC) value as the 
measure of prediction precision. To verify the robustness 
and generalizability of our risk model, the aforementioned 
procedures were reiterated using an independent test 

set. We then combined t-tests, box plots, and Kaplan-
Meier survival curves to comprehensively assess the 
clinical relevance of the risk scores across different patient 
subgroups.

Exploration of immune cell infiltration and the tumor 
immune microenvironment

To explore and contrast the infiltration rates of 22 
immune cell types in high-risk versus low-risk groups, we 
utilized three computational techniques: CIBERSORTx, 
ImmuneCellAI, and single-sample gene set enrichment 
analysis (ssGSEA). To further understand the connection 
between the tumor microenvironment (TME) and the risk 
score, we undertook correlation studies using methods like 
TMEscore, Estimate, and ssGSEA.

Functional enrichment analysis

We employed functional enrichment analysis and GSEA 
to characterize the molecular and biological functions 
of the risk model. GSEA (version 4.1.0) (https://www.
broadinstitute.org/gsea/index.jsp) was utilized to evaluate 
the differential gene expression between high-risk and low-
risk groups, identifying associated biological pathways and 
functions.

Drug sensitivity analysis

In search of therapeutic drugs effective for patients, we 
carried out a drug reactivity analysis using the ‘oncoPredict’ 
software package. We investigated the association between 
drug reactivity and parameters like risk scores, TIMP1, 
CDKN2A, CAMK2B, and TLR3.

Statistical analysis

All statistical analyses were performed using R (version 
4.0.5) software (https://www.r-project.org/). P values <0.05 
were considered significant.

Results

Identification and functional analysis of PANoptosis-
related DEGs for CRC

The workflow adopted for the analysis of PANoptosis-
related gene markers is delineated in Figure 1. Differential 

https://www.broadinstitute.org/gsea/index.jsp
https://www.broadinstitute.org/gsea/index.jsp
https://www.r-project.org/
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Figure 1 Flow diagram of the study. TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, 
differentially expressed genes; LASSO, least absolute shrinkage and selection operator; NJCRC, Nanjing Colorectal Cancer; GSEA, gene 
set enrichment analysis.

gene expression analysis between normal and tumor samples 
derived from TCGA cohort revealed a total of 444 DEGs 
(P<0.05, logFC>1). From databases including KEGG, 
REACTOME, and HALLMARK, we retrieved 485 genes 
associated with PANoptosis. By intersecting the DEGs 
with the PANoptosis-associated genes, we discerned 88 
PANoptosis-related DEGs.

Screening of PANoptosis-related and prognostic genes

Firstly, we assessed the association of each gene with 
survival duration, using univariate Cox regression analysis 
and identified 11 significant results (Figure 2A). Then, we 
employed LASSO regression. As for cross-validation, the 
optimal regularization parameter λ was determined to be 
0.038, and the final LASSO model was established based 
on this parameter (Figure 2B,2C). This model yielded 
a set of genes with non-zero coefficients, with these 11 
genes deemed to be most associated with survival duration  

(Figure 2D).  Simultaneously, we performed feature 
selection using random forests, a tree-based method, to 
get an importance score for each feature. We subjected 
these scores to multiple Bootstrap iterations and cross-
validations to derive the average importance score for each 
feature. In accordance with these scores, the top 10 most 
important features were identified (Figure 2E). Ultimately, 
the intersection of the three methods yielded four selected 
genes for subsequent analyses (Figure 2F). Three genes 
(TIMP1, CDKN2A, and CAMK2B) were defined as adverse 
prognostic factors (Figure 2G-2I), while TLR3 was favorable 
for prognosis (Figure 2J).

Establishment and validation of a PANoptosis-related 
prognostic model

We utilized samples from the TCGA database as our train 
set and constructed a prognostic model by integrating 
LASSO regularization with multivariate Cox regression. 



Zhao et al. PANoptosis of CRC2134

© AME Publishing Company.   J Gastrointest Oncol 2024;15(5):2129-2144 | https://dx.doi.org/10.21037/jgo-24-245

Figure 2 Identification of prognostic-related genes in patients with CRC. (A) Univariable cox regression analysis of 11 prognostic genes. 
(B) Cross-validation curve for LASSO regression. (C) The LASSO coefficient path of 88 genes. (D) Non-zero coefficients from LASSO 
model. (E) Top ten features based on final average importance from random forest algorithm. (F) Venn diagram presenting the feature 
genes selected by three methods. (G-J) Survival curve of patients with CRC in different groups. LASSO, single-sample gene set enrichment 
analysis; HR, hazard ratio; UniCox, universal Cox proportional hazards model; CRC, colorectal cancer.
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The risk score was calculated using the formula: ∑(−0.2590) 
× (TLR3 expression) + (0.0638) × (CDKN2A expression) 
+ (0.1319) × (CAMK2B expression) + (0.4802) × (TIMP1 
expression). Based on the risk score, samples were further 
stratified into high-risk and low-risk groups. Compared to 
the low-risk group, patients in the high-risk group exhibited 
significantly poorer survival outcomes (P<0.001) (Figure 3A). 
In the univariate and multivariate Cox regression studies of 
the training set, we identified that age, pathological stage, 
and risk score had a significant correlation with the patients’ 
prognosis (P<0.001) (Figure 3B,3C). The distribution of 
risk scores and survival conditions for the high-risk and 
low-risk groups were presented as follows (Figure 3D,3E). 
Additionally, we assessed the predictive performance of 
our model using ROC curves. The AUC values for the 
TCGA cohort at 1 year, 3 years, and 5 years were 0.702, 
0.725, and 0.668, respectively (Figure 3F), confirming the 
accuracy of our model. The results in the external validation 
were consistent as showing a positive correlation between 
mortality rate and risk score (Figure 3G-3L).

Association of PANoptosis risk score and clinical features

Through our association study, it was found that the risk 
score had no evident link with age (Figure 4A). However, 
there was a significant correlation between the risk score 
and tumor staging (Figure 4B). The relationship between 
the risk score, stage, and age groups is further illustrated 
in Figure 4C. Clinical feature subgroup analysis revealed 
that in patients aged over 60, those in the high-risk group 
exhibited notably poorer survival outcomes (Figure 4D,4E). 
For both early and advanced stages of the disease, the 
survival rate of the high-risk group was notably lower than 
the low-risk group (Figure 4F,4G).

Immune cell infiltration and tumor microenvironment 
analysis

Utilizing methods such as CIBERSORTx, ImmuneCellAI, and 
ssGSEA, we analyzed the immune cell infiltration in pMMR 
patients (n=330). We observed a significant difference in the 
Macrophages M0 immune infiltration scores between the 
high and low-risk groups (Figure 5A-5C). We also evaluated 
the tumor microenvironment using the TMEscore. There 
was a negative correlation between the TMEscore and the 
risk score. Patients in the high-risk group exhibited a lower 

TMEscore, indicating a poorer prognosis (Figure 6A-6C). 
The results from ESTIMATE indicated that StromalScore, 
ImmuneScore, and EstimateScore were all positively 
correlated with the risk score (Figure 6D-6F). Additionally, 
based on the ssGSEA analysis, the scores for angiogenesis, 
EMT (epithelial-mesenchymal transition), and the state of 
hypoxia all demonstrated a positive relationship with the 
risk score, indicating that patients in the high-risk group 
face a more unfavorable prognosis. (Figure 6G-6I). Lastly, 
when comparing the signaling pathways of the high-risk 
and low-risk groups, we observed distinct differences in the 
extracellular matrix (ECM) receptor interaction, MAPK 
signaling pathway, PI3K-Akt signaling pathway, and Wnt 
signaling pathway (Figure 6J).

Biological pathway enrichment analysis of PANoptosis risk 
score

We performed GSEA analysis on the DEGs of the high and 
low-risk groups. The results of the Gene Ontology (GO) 
enrichment analysis showed that the main increased functions 
were collagen fibril organization, elastic fiber assembly 
and collagen binding (Figure 7A). The main decreased 
functions were epithelial DNA replication initiation, 
structure maintenance and maintenance of gastrointestinal 
epithelium (Figure 7B). Meanwhile, the results from the 
KEGG functional enrichment analysis pointed out that 
ECM receptor interaction, glycosaminoglycan biosynthesis 
chondroitin sulfate and focal adhesion were the foremost 
enhanced biological processes (Figure 7C), and the main 
diminished functions were terpenoid backbone biosynthesis, 
butanoate metabolism and DNA replication (Figure 7D).

Association study of prognosis genes and drug reactivity

Leveraging the Cancer Therapeutics Response Portal 
(CTRP) database and Genomics of Drug Sensitivity in 
Cancer (GDSC) database, we conducted the drug sensitivity 
analysis. The expression levels of TIMP1, CDKN2A, 
and CAMK2B were found to be positively correlated 
with sensitivity to fluorouracil, oxaliplatin, and lapatinib. 
Conversely, TLR3 expression was inversely associated with 
sensitivity to these drugs. Consistent with these observations, 
the risk score analysis revealed that high-risk group 
demonstrated increased sensitivity to fluorouracil, oxaliplatin, 
and lapatinib (Figure 8A-8C).
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Figure 3 Construction of the prognostic risk model. (A) Kaplan-Meier survival curves of OS between low-risk and high-risk groups. (B-
C) The univariate and multivariate Cox regression analysis of risk model score and clinical features regarding prognostic value. (D) Risk 
score distribution between high and low-risk. (E) Survival status of patients in different risk groups. (F) Time-dependent ROC curves of 1-, 
3-, and 5-year of CRC patients. (G-L) Test set. HR, hazard ratio; CI, confidence interval; AUC, area under the curve; OS, overall survival; 
ROC, receiver operating characteristic; CRC, colorectal cancer.
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Figure 4 The relationship between risk score and other clinical variables. (A-C) Box plots of correlation between risk score and age, stage, 
respectively. (D-E) Survival status of patients in high and low risk groups in different age groups. (F-G) Survival status of patients in high 
and low risk groups in different stage groups. ns, no significance.

Discussion

Previous researches have suggested that pyroptosis, 
apoptosis, and necroptosis have a pivotal impact on the 
immune response against cancer (21-23). For instance, 
in breast cancer, cell pyroptosis can enhance anti-tumor 
immunity (24); cell apoptosis inhibits the proliferation of 
cancer cells; initiating the necroptosis signaling route has 
positive implications for tumor suppression (25). However, 
as research progressed, we have come to understand that 
there can be synergistic effects between them, further 
enhancing their roles. Consequently, in recent years, some 
research has delved into the potential role of PANoptosis in 
cancer therapies and its modulation methods in infectious 

diseases (26). Some research findings on pyroptosis and 
necroptosis might offer new perspectives for the future 
direction of cancer treatment, giving an initial explanation 
of the value of PANoptosis in the treatment of diverse 
tumors (27). For example, Pan and colleagues found that 
PANoptosis has a good predictive capability for the immune 
treatment response in gastric cancer (7). Furthermore, 
features related to PANoptosis have been recognized in 
cancers such as prostate cancer, liver cancer, breast cancer, 
and glioma (28-31). Nevertheless, relatively little knowledge 
is available related to the impact of PANoptosis on CRC. 
Therefore, exploring the role of PANoptosis in CRC not 
only provides insights into the programmed death research 
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Figure 5 Immune cell infiltration. (A-C) Box plots showed the immune infiltration of immune cells calculated by CIBERSORTx, 
ImmuneCellAI and ssGSEA. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, no statistical significance. ssGSEA, single-sample gene 
set enrichment analysis.
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Figure 6 Tumor immune microenvironment. (A-C) Correlation analysis of risk with TMEscore. (D-F) Estimate score, immune score, 
and stromal score in high-risk and low-risk groups. (G-I) The risk score’s correlation with angiogenic activity score, hypoxia score, and 
mesenchymal-EMT score. (J) The risk score’s correlation with signal pathway score. **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, no 
statistical significance. TMEscore, Tumor Microenvironment Score; EMT, epithelial-mesenchymal transition.

10

0

–10

4000

2000

0

–2000

6000

4000

2000

0

1.2

0.9

0.6

8000

4000

0

10

5

0

–5

–10

10

0

–10

–20

TM
E

sc
or

eA

TM
E

sc
or

eB
Im

m
un

es
co

re
E

M
T

A
ng

io
ge

ne
si

s
C

el
l p

ro
po

rt
io

n
S

tr
om

al
sc

or
e

E
st

im
at

es
co

re
H

yp
ox

ia
TM

E
sc

or
e

0 2 4 6

0 2 4 6

0 2 4 6 0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6
Risk score

Risk score

Risk score Risk score Risk score

Risk score Risk score

Risk score Risk score

Risk group

Risk group Risk group Risk group

Risk groupRisk groupRisk group

Risk group Risk groupHigh

High High High

HighHighHigh

High HighLow

Low Low Low

LowLowLow

Low Low

1.00

0.75

0.50

0.25

0.00

3

2

1

0

–1

2.5

2.0

1.5

1.0

Risk group
High
Low

cA
M

P si
gn

ali
ng

 p
at

hw
ay

JA
K S

TA
T 

sig
na

lin
g 

pat
hw

ay

M
APK si

gn
ali

ng
 p

at
hw

ay

NF 
ka

pp
a B

 si
gn

ali
ng

 p
at

hw
ay

PI3K
 A

kt 
sig

na
lin

g 
pat

hw
ay

TG
F 

bet
a s

ign
ali

ng
 p

at
hw

ay

TN
F 

sig
na

lin
g 

pat
hw

ay

VEGF 
sig

na
lin

g 
pat

hw
ay

W
nt

 si
gn

ali
ng

 p
at

hw
ay

ECM
 re

ce
pto

r in
te

ra
ct

ion

Cell
 ad

he
sio

n m
ole

cu
les

Cyto
kin

e c
yto

kin
e 

re
ce

pto
r in

te
ra

ct
ion

A B C

D

G

J

H I

E F



Zhao et al. PANoptosis of CRC2140

© AME Publishing Company.   J Gastrointest Oncol 2024;15(5):2129-2144 | https://dx.doi.org/10.21037/jgo-24-245

Figure 7 Enrichment analysis of DEGs. (A,B) GO enrichment analysis. (C,D) KEGG enrichment analysis. GOBP, Gene Ontology 
Biological Process; GOMF, Gene Ontology Molecular Function; GOCC, Gene Ontology Cellular Component; HP, Human Phenotype; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.

of CRC cells, but also helps offer new directions for the 
therapy of patients with CRC.

In this study, the relationship between CRC and 
PANoptosis was explored in depth. By comprehensively 
analyzing the dataset of CRC patients from the TCGA 
database, we successfully identified DEGs related to 
PANoptosis and further constructed a risk scoring model 
predicting CRC prognosis. Our findings suggest that the 
DEGs related to PANoptosis hold significant biological 
implications in CRC. These genes are not only associated 
with the onset and progression of CRC but also closely 
linked to patient outcomes. We identified that the genes 
TIMP1, CDKN2A, CAMK2B, and TLR3 are prognostically 
significant for CRC patients. Among them, inhibiting 
TIMP1 expression increases apoptosis of CRC cells and 
reduces cancer proliferation and metastasis by inducing 

TIMP1-specific regulation of the FAK-PI3K/AKT and 
MAPK pathways (32). High expression of CDKN2A 
in CRC leads to poor prognosis, while knocking down 
CDKN2A expression can promote apoptosis and cell cycle 
progression, affect the EMT process in CRC, and thereby 
inhibit cancer cell proliferation (33). Utilizing these four 
genes, we established a risk scoring model, providing an 
effective predictive tool for the prognosis of CRC patients. 
The predictive capability of this model was further validated 
through its association with other clinical features, such 
as age and tumor staging. We employed methods like 
CIBERSORTx, ImmuneCellAI, and ssGSEA to analyze 
the immune cell infiltration in both high- and low-risk 
groups. We observed a marked increase in M0 macrophage 
infiltration among patients in the high-risk group. This 
enhanced M0 macrophage immune infiltration might 
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improve the efficacy of checkpoint inhibitor treatments, 
amplifying the capability of immune cells to target the 
tumor (34). When assessing the tumor microenvironment, 
the low TMEscore in the high-risk group indicates reduced 
immunosuppression in the tumor microenvironment, which 
is beneficial for immunotherapy. The elevated stromal 
and immune scores may signify an abundance of immune 
cells and stromal components, correlating positively with 
the effectiveness of immunotherapy. However, increased 
angiogenesis, epithelial-mesenchymal transition, and 
hypoxia levels are associated with the tumor’s invasiveness, 
metastatic tendencies, and malignancy, potentially 
diminishing the efficacy of immunotherapy and allowing 
tumor cells to evade the immune system (35). We carried 
out a GSEA analysis on the differential gene expression 
between the high-risk and low-risk groups. The GO 
enrichment analysis results showed that the primary 
enhanced functions are collagen fibril organization, elastic 
fiber assembly, and collagen binding, whereas the main 
diminished functions are epithelial DNA replication 
initiation, structure maintenance, and maintenance 
of the gastrointestinal epithelium. Concurrently, the 
KEGG enrichment analysis indicated that ECM receptor 
interaction, glycosaminoglycan biosynthesis chondroitin 
sulfate, and focal adhesion are the predominant augmented 
biological functions, while the primary reduced functions 
are terpenoid backbone biosynthesis, butanoate metabolism, 
and DNA replication, indicating a poor prognosis (36,37). 
Utilizing the CTRP database and GDSC dataset, we 
predicted the drug sensitivity. TIMP1, CDKN2A, and 
CAMK2B levels positively correlated with sensitivity to 
fluorouracil, oxaliplatin, and lapatinib, while TLR3 showed 
an inverse relationship. Similarly, high-risk group exhibited 
greater sensitivity to these therapeutic agents.

There are certain limitations in this study. Firstly, our 
research primarily relies on data from the TCGA database, 
which might introduce some biases. In the future, we 
need to validate our findings in a larger patient cohort. 
Additionally, while our risk scoring model performed well 
in the training set, its performance in other independent 
datasets still requires further validation.

Conclusions

In summary, our analysis presents an early snapshot of the 
relationship between PANoptosis and CRC prognosis, 
and molecular signature as well. The DEGs related 
to PANoptosis and the risk score model we identified 

offer valuable tools for the diagnosis and treatment of 
CRC. Moving forward, we hope to further validate our 
findings and explore the specific roles of these genes in 
the pathogenesis of CRC. Our results would consequently 
reveal candidate targets for the diagnosis and prognosis 
of CRC, along with novel insights for therapeutic 
interventions.
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