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Abstract

Brain network control theory (NCT) is a groundbreaking field in neuroscience that employs system engineering and cybernetics prin-
ciples to elucidate and manipulate brain dynamics. This review examined the development and applications of NCT over the past
decade. We highlighted how NCT has been effectively utilized to model brain dynamics, offering new insights into cognitive control,
brain development, the pathophysiology of neurological and psychiatric disorders, and neuromodulation. Additionally, we summa-
rized the practical implementation of NCT using the nctpy package. We also presented the doubts and challenges associated with
NCT and efforts made to provide better empirical validations and biological underpinnings. Finally, we outlined future directions for

NCT, covering its development and applications.
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Introduction

In the intricate field of neuroscience, a key challenge has long
been to understand how the brain’s vast network of systems act
in a coordinated manner to produce, regulate, and maintain vari-
ous cognitive functions (Lynn & Bassett, 2019). Brain network con-
trol theory (NCT), a popular research perspective in neuroscience
that has emerged in the last decade, takes a system engineer-
ing approach and uses fundamental principles of cybernetics to
provide insights into how the brain manages and regulates com-
plex neural network interactions during its dynamic behaviors
(Medaglia et al., 2017; Srivastava et al., 2022). Central to the NCT
is the concept of brain states, which are defined as activity pat-
terns across regions or voxels at a given moment. These states are
characterized by diverse patterns of neural activity, varying con-
nectivity strengths, and differing levels of network engagement
(Braun et al.,, 2021; Gu et al., 2017). The transitions between these
states reflect the brain’s dynamic processes as it shifts from one
functional mode to another, influenced by both internal mecha-
nisms and external control inputs (Gu et al., 2017). This framework
provides a basis for understanding how network control mech-
anisms can facilitate or hinder these transitions, offering a pre-
dictive, quantitative perspective to unify the diverse datasets re-
quired to describe neural systems and explain observed structural
and functional relationships. Research in this area is not only crit-
ical for revealing the fundamental mechanisms of brain function
but also holds great potential for the early diagnosis and treat-
ment of brain diseases (Guo et al., 2021; Zarkali et al.,, 2022). To
provide an up-to-date perspective of its potential for wide ap-
plication in neuroscience, this paper reviews the significant ad-
vances and applications of brain NCT over the last decade. More-
over, we explore the questions and challenges encountered dur-
ing the development of NCT and provide an outlook on its future
development.

Emergence and development of brain
network control theory

The brain is an intricate, dynamic system that has the enormous
information processing capacity required for human thought
(Marois & Ivanoff, 2005). However, how complex cognitive pro-
cesses are executed in the brain remains a challenging and unre-
solved question (Medaglia et al., 2017). In recent years, the control
of networked dynamic systems has provided a promising opportu-
nity for addressing these neuroscientific questions. These new ap-
plications can be traced back to when Barabasi and colleagues, by
integrating tools from network science and control theory, delved
deeply into the controllability theory of complex networks and
its practical applications in the early 21st century. They demon-
strated that the controllability of a network is primarily deter-
mined by the degree distribution of its nodes, and they effectively
identified driver nodes of the network using maximum matching
theory (Liu et al.,, 2011). This novel approach not only enhances
the robustness of network control but also opens new possibilities
for the study of brain dynamics. The structural connectome, de-
fined as a comprehensive map of neural connections within the
brain, serves as a foundation for understanding transitions be-
tween cognitive states (Parkes et al., 2024). Gu and colleagues were
the first to implement linear network control models on human
brain structural networks, establishing the practical application
of this method in the human brain (Gu et al., 2015). They explored
how the brain’s structural connectivity supports and influences
the transition between different cognitive states, identifying spe-
cific brain regions that significantly impact this dynamic process.
The results supported the hypothesis that, as a complex network,
the brain is theoretically controllable (see Box 1) and that differ-
ent parts of the brain have their own roles in controlling brain dy-
namics (Fig. 1). These findings not only demonstrate how specific
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Figure 1: Elucidating brain network control properties through diverse metrics. (A, B) Average controllability describes the ability of brain regions to
drive the network state toward various easily reachable states. Correlation scatter plots show a strong positive correlation between the weighted
degree (a measure of connectivity strength) of brain regions and their average controllability, suggesting that regions with higher connectivity are more
effective in driving the network to easily reachable states. (C, D) Modal controllability focuses on controlling the network to reach difficult-to-achieve
states. Scatter plots reveal a strong negative correlation between the weighted degree and modal controllability, indicating that regions with lower
connectivity are crucial in driving the network to hard-to-reach states. (E, F) Boundary controllability quantifies the ability to decouple or integrate
network modules. Correlation scatter plots indicate a weak positive correlation between the weighted degree and boundary controllability, suggesting
that regions with slightly greater connectivity may play a role in the dynamics of network module integration (Gu et al., 2015).

regions contribute to overall cognitive flexibility and control but
also lay the foundation for future studies into the relationships
between individual differences in network controllability and be-
havioral, cognitive, clinical, and genetic variables (Gu et al., 2015).

Box 1 Controllability

Controllability in NCT refers to the capacity of specific brain
regions, via control inputs, to guide brain states along a des-
ignated trajectory—i.e. to move from an initial state to a target
state following a predetermined path (Cai et al., 2021; Gu et al.,
2015). This concept introduces possibilities for understanding
the mechanisms of cognitive control. To explore this, the first
essential question is whether the brain is controllable in prin-
ciple. This is a foundational inquiry within the NCT framework,
as it provides a basis for determining whether interventions can
indeed alter the system’s state.

To address this question, the concept of global controllability
isintroduced to assess whether the brain network can be guided
to a target state through inputs to a single node, effectively alter-
ing the overall network state. Furthermore, we must determine
which brain regions are most influential in either constraining
or facilitating changes in brain state trajectories. Three diag-
nostic measures of regional controllability provide insights into

boundary controllability. Each of these methods captures dis-
tinct control objectives (Gu et al., 2015; Karrer et al.,, 2020; Tang
& Bassett, 2018).

Average controllability identifies regions capable of driving
the system to a variety of easily accessible states with minimal
effort (i.e. low input energy). Central nodes in the brain often
exhibit high average controllability, allowing brain states to shift
with minimal energy input. In cognitive terms, such regions are
crucial for tasks involving multitasking or low cognitive load,
as they enable efficient switching between different functional
states.

Modal controllability, in contrast, assesses a region’s ability
to drive the system to difficult-to-reach states, typically requir-
ing higher energy inputs. Regions with high modal controlla-
bility are usually not core network hubs but are instead lower
connectivity nodes that facilitate shifts in high-cognitive-load
scenarios, such as intense concentration or focused attention.

Boundary controllability identifies brain regions situated at
the edges of network communities, playing a pivotal role in in-
tegrating cognitive systems. These boundary regions enable co-
ordination across different cognitive systems, assisting in the
synchronization and transfer of information between distinct
processes, such as auditory and language or visual and motor
functions.

this question: average controllability, modal controllability, and



After establishing the fundamentals of network controllabil-
ity of the human brain, the field moved on to explore whether
such a tool can help model specific dynamic processes of the hu-
man mind, i.e. if we treat the brain as a complex network, how do
we guide it to shift its state from one particular starting point to
another destination through quantifiable inputs? Pasqualetti and
colleagues developed a new quantitative approach to this network
control problem by examining the relationship between the num-
ber of control nodes and energy demand during the transition
of system states in a complex network, and they introduced this
energy demand as “control energy” (see Box 2) (Pasqualetti et al.,
2014). Furthermore, Betzel et al. applied NCT to the human brain,
revealing the control energy associated with transitions among
different cognitive states. They found that the rich-club struc-
ture plays a key role in brain state transitions and that disrupting
these structures significantly increases the related energy costs
(Betzel et al., 2016). Additionally, Gu and colleagues focused on the
optimal trajectories of brain state transitions, particularly during
cognitive functions such as attention and executive control, and
showed how the brain’s white matter structure constrains and
supports these state transitions (Gu et al., 2017). Together, these
studies demonstrate how NCT can help model brain dynamics,
advancing our understanding of such energetic processes.

Box 2 Control energy

Control energy refers to the amount of energy required to drive
a brain network from one state to a target state within the NCT
framework. Analysis of control energy encompasses identify-
ing optimal pathways and minimizing energy consumption to
achieve state transitions, revealing the unique roles of various
network nodes in facilitating these transitions.

Optimal control energy represents the minimum internal cog-
nitive control or external stimulation needed to drive the brain
from an initial state x(0) = xo to a target state x(T) = xr. This
process considers not only energy consumption but also the
length of the state transition path, aiming to minimize the com-
bined cost of path length and control input energy. When transi-
tions involve greater distances or greater task complexity—such
as moving from a resting state to a complex working memory
task—more control energy is needed. Minimal control energy
is a specific form of optimal control energy that focuses solely
on minimizing energy costs without considering path length.
In this case, the control function aims to minimize the energy
required for the transition from x(0) = xo to x(T) = xr with-
out accounting for the path distance (Karrer et al., 2020). Con-
trol energy quantifies the energy required for brain state tran-
sitions, which can be employed to compare the effort required
to achieve various cognitive states and to assess the extent to
which brain disorders or external stimuli impact the transition
between brain states (Luppi et al., 2024; Singleton et al., 2022).
The foundation for calculating control energy lies in the con-
trollability Gramian matrix, a matrix derived from the system'’s
dynamics that quantifies the control energy needed to drive the
system from an initial state to a target state. Smaller eigen-
values of the Gramian indicate lower control energy require-
ments for state transitions, whereas larger eigenvalues indicate
higher energy demands. Therefore, the size of the controllability
Gramian determines the feasibility of arbitrary state transitions
and the associated energy costs.

Several factors influence the amount of control energy required
(Parkes et al.,, 2024), such as the size of the control set. Con-
trol energy decreases significantly as the number of nodes in-
volved in control increases, meaning that a greater number of
control nodes can reduce the overall energy required to achieve
the target state. This indicates that under multinode collabora-

tive control, state transitions become more energy efficient. The
difficulty of the state transition also plays a role, and the “dis-
tance” between states has a pronounced effect on the control
energy, with greater distances requiring more energy for tran-
sition. For example, shifting from a low-cognitive-load state to
a high-load state consumes more control energy (Braun et al.,
2021), which has practical implications for understanding the
energy demands of brain regions involved in complex tasks.

Wide applications of brain network control
theory

As a powerful tool for decoding brain dynamics, NCT has been
widely adopted to address neuroscientific inquiries related to hu-
man cognition, brain development, neurological and psychiatric
diseases, and neuromodulations.

The first application in understanding human cognition with
NCT targets the realm of cognitive control. Cognitive control is
an intricate cognitive-neural process involving the transition of
cognitive states (Medaglia et al., 2016). With NCT, researchers
can quantify the controllability of nodes within brain structural
and functional networks, specifically by examining how differ-
ent brain regions theoretically influence the brain’s transitions
into various cognitive states during cognitive control. For exam-
ple, Medaglia et al. found that the modal and boundary control-
lability of regions involved in cognitive control were significantly
correlated with performance on tasks such as the continuous per-
formance attention test, color/shape switching task, Stroop inhi-
bition task, and spatial n-back working memory task (Medaglia
et al., 2016). Additionally, by assessing average and modal con-
trollability metrics in healthy adult brains, Lee et al. revealed the
associations between cognitive functions and regional controlla-
bility, offering a new perspective on how the brain regulates dy-
namic changes in cognitive states (Lee et al., 2020). Building on
these studies, NCT has also been employed to explore the criti-
cal roles of specific “hub” regions, such as the anterior insula and
dorsolateral prefrontal cortex, in cognitive tasks (Cai et al., 2021).
These regions typically serve as crucial outflow and inflow hubs
within the network. By analyzing the network characteristics of
these hub regions, we can gain a deeper understanding of how
the controllability of brain networks changes under high cogni-
tive load and how this affects cognitive performance. Further ex-
panding on the application of NCT, Luppi et al. (2024) defined 123
cognitive activation maps, referred to as cognitive topographies,
using data from the NeuroSynth database, which encompasses a
wide range of cognitive and behavioral terms such as “attention”,
“emotion”, and “memory”. By constructing the human structural
connectome and modeling control inputs, the research team cal-
culated the control energy required to transition between these
different cognitive topographies, revealing how brain structure in-
fluences the transitions of cognitive states.

Another fruitful application of NCT has been in the field
of neural development. Tang and colleagues demonstrated that
as individuals age, the controllability of brain networks signifi-
cantly increases in young individuals. Specifically, this study high-
lighted how the development of the white matter network ef-
fectively maximizes controllability, including both average and
modal controllability, while simultaneously reducing synchroniz-
ability. These findings indicate that the capacity of the brain net-
work has been structurally optimized to control dynamic changes,
thereby facilitating the development of cognitive abilities (Tang et
al., 2017). Additionally, Lee and colleagues investigated how the
controllability of individual brain regions in structural networks
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affects cognitive function performance in individuals. They calcu-
lated two primary control metrics, average and modal controlla-
bility, and validated that these region-specific controllability indi-
cators exhibit both reproducibility and heritability (Lee et al., 2020).
These findings not only supported the genetic basis of controlla-
bility as a neural network characteristic but also revealed the over
presentation of high-controllability regions in high-order resting-
state networks. Extending these insights, Cui et al. examined the
maturation of structural brain networks during youth, using NCT
to quantify the energetic cost of activating the frontoparietal net-
work necessary for executive function. They found that this cost
decreases as structural networks mature, facilitating more effi-
clent state transitions at a reduced energetic expense. This op-
timization correlates with enhanced executive function, specifi-
cally through the modulation of energy costs in key brain areas
such as the cingulate cortex (Cui et al., 2020). Additionally, recent
findings have indicated that cortical variations in cytoarchitec-
ture form a sensory—fugal axis that shapes regional profiles of
extrinsic connectivity and guides signal propagation and integra-
tion across the cortical hierarchy. Using a minimum control en-
ergy model within the framework of NCT, Parkes and colleagues
examined the amount of energy required to propagate dynamics
across this sensory—fugal axis, revealing an asymmetry in energy
demands; bottom—up transitions were easier to complete than
top—down transitions were. This asymmetry is underpinned by
a connectome topology that supports efficient bottom-up signal-
ing. Furthermore, these asymmetries are correlated with differ-
ences in communicability and intrinsic neuronal time scales and
lessen throughout youth (Parkes et al., 2022). Collectively, these
studies not only underscore the adaptability and efficiency im-
provements of brain networks with age but also offer a new per-
spective on how the brain’s structural connectivity evolves to
support higher cognitive functions during critical developmental
periods.

Third, as expected, NCT is also used to unravel the patholo-
gies of neurological and psychiatric diseases. Meyer-Base and col-
leagues explored the application of NCT in dementia. They ap-
plied average and modal controllability to determine the mini-
mum set and location of driver nodes in structural brain net-
works throughout the disease’s progression. They found that
this approach could accurately describe the varying roles of dif-
ferent nodes in controlling the trajectories of brain networks,
demonstrating shifts in some driver nodes while conserving oth-
ers throughout the disease course. This study underscores the
potential of NCT in decoding the complex neural dynamics in-
volved in neurodegenerative diseases (Meyer-Bdse et al., 2020).
zoller and colleagues employed NCT to assess structural con-
trol energy in resting-state functional brain states among pa-
tients with 22q11.2 deletion syndrome (22q11DS), a genetic dis-
order associated with a high risk of psychiatric conditions. Com-
pared with healthy controls, patients with 22q11DS presented dis-
tinct patterns of sustained control energy across multiple brain
states. Further analysis revealed a negative correlation between
sustained control energy and resting-state activation time, sug-
gesting that the brain typically reduces energy expenditure by
minimizing the time spent in high-energy states. This energy-
saving mechanism was less effective in patients with 22q11DS, in-
dicating a reduced dynamic efficiency in brain function associated
with the disease (Zoller et al., 2021). Tang and colleagues further
compared the differences in controllability between first-episode,
medication-naive schizophrenia patients and healthy controls,
exploring how these differences evolve with age. They found that,
unlike healthy controls, patients with schizophrenia showed no

age-related decline in average controllability within the default
mode network (DMN) or the right prefrontal cortex, suggesting an
atypical maturation process in these areas. Additionally, patients
with schizophrenia exhibited an accelerated age-related decline
in average controllability within the subcortical network, support-
ing the neurodegenerative model of schizophrenia. This study re-
vealed age-related changes in the controllability of white matter
pipelines in patients with schizophrenia, supporting both devel-
opmental and degenerative hypotheses of the disease and indi-
cating that the DMN and subcortical networks may be partic-
ularly susceptible to schizophrenia-related dysfunction (Tang et
al., 2022). Wilmskoetter et al. applied NCT to study aphasia re-
covery after strokes, focusing on language-related regions. They
found the average and modal controllability of the inferior frontal
gyrus significantly predicted language improvements post ther-
apy, suggesting a targeted approach for personalized rehabilita-
tion strategies (Wilmskoetter et al.,, 2022). These studies collec-
tively emphasize the potential of NCT in advancing our under-
standing of the complex neural dynamics underlying both neu-
rological and psychiatric disorders. Additionally, research by Sin-
gleton and colleagues indicated that psychedelics, such as lyser-
gic acid diethylamide (LSD) and psilocybin, increased the diver-
sity and complexity of brain function by reducing the control
energy required for state transitions. This study employed NCT
and functional magnetic resonance imaging (fMRI) data to quan-
tify the impact of psychedelics on brain states, revealing how
they alter brain functionality. These findings provide a new per-
spective for understanding the effects of psychedelics on con-
sciousness and may open new avenues for the treatment of psy-
chiatric disorders in the future. Research has shown that LSD
and psilocybin optimize brain dynamics by modulating control
energy, complementing the applications of NCT in the study of
neurological and psychiatric disorders and thereby deepening
our understanding of complex neural dynamics (Singleton et al.,
2022).

Finally, NCT is instrumental in modeling neuromodulatory pro-
cesses, enabling targeted interventions that optimize brain func-
tions and therapeutic outcomes. Previous studies, which typically
relied on heuristic methods to select specific regions for stim-
ulation signals (Kumar et al., 2022), have been significantly en-
hanced by employing NCT to construct models of interregional in-
fluence. This approach has enabled the design of more optimized
treatment strategies across various neurological conditions. For
instance, Muldoon and colleagues utilized a data-driven com-
putational model of nonlinear brain dynamics to systematically
explore the effects of targeted stimulation. Their findings vali-
dated predictions from NCT regarding the relationship between
regional controllability, including average and modal controlla-
bility, and the focal versus global impact of stimulation, form-
ing a crucial step toward the development of personalized stim-
ulation protocols by revealing how different regions impact over-
all brain dynamics (Muldoon et al., 2016). Sanchez-Rodriguez et
al. developed a control framework that uses external stimulation
inputs to reverse pathological electroencephalography (EEG) ac-
tivity in neurodegenerative diseases such as Alzheimer’s disease,
providing a promising avenue for targeted interventions in neu-
rological diseases (Sanchez-Rodriguez et al., 2018). Additionally,
Medaglia et al. explored how the network controllability of brain
regions, specifically in relation to the inferior frontal gyrus, influ-
ences the effects of transcranial magnetic stimulation (TMS) on
cognitive control. Their study demonstrated that controllability
metrics, including average and modal controllability, significantly
predict the efficacy of TMS interventions in enhancing cognitive



performance. This work underscores the potential of NCT to refine
neuromodulation strategies by identifying which brain regions are
most responsive to stimulation, thereby facilitating targeted inter-
ventions that could improve cognitive functions (Medaglia et al,,
2018). Subsequently, Stiso and colleagues illustrated the applica-
tion of NCT in modeling neural dynamics to predict and manage
the brain’s response to grid stimulation in patients with epilepsy.
They utilized both average and modal controllability metrics to
understand how structural properties of the brain influence its
dynamic responses to stimulation. Their findings revealed a sig-
nificant shared variance between the predicted and observed ac-
tivity state transitions, supporting the validity of the model. Fur-
thermore, using an optimal control framework, researchers have
proposed testable hypotheses about which brain states and struc-
tural characteristics could effectively enhance memory encoding
during stimulation (Stiso et al., 2019).

In summary, the evolving field of neuroscience has created new
needs for NCT, driving it to expand and deepen in response to a
variety of specific challenges. By actively exploring and addressing
these emerging issues, NCT is shaping our understanding of brain
dynamics, demonstrating its great potential for future research
and practical applications in neuroscience.

Practical implementation of NCT

As the theoretical foundation of NCT has been refined and widely
applied in neuroscience research, it has become an invaluable
framework for investigating how the topological properties of the
brain’s structural connectome influence and constrain neural dy-
namics. Owing toits ability to predict external control signal prop-
agation and model the control potential of specific regions, NCT
offers unique insights into brain function and network control
mechanisms.

To facilitate empirical research on NCT, Parkes and colleagues
recently introduced a Python package, nctpy, to standardize the
implementation of NCT pathways (Parkes et al., 2024). This pack-
age provides a structured workflow, streamlining NCT applica-
tions and enabling researchers to calculate key metrics, such as
control energy and average controllability, with relative ease.

This section outlines two main pathways for implementing
NCT using the nctpy package: Pathway A, which calculates the
control energy required to achieve specific neural state transi-
tions, and Pathway B, which measures average controllability to
assess a brain region’s capacity for global network influence. To-
gether, these pathways support a comprehensive analysis of net-
work control characteristics, both locally and globally, whereas
model comparison techniques (e.g. the use of null models) in-
crease robustness and interpretability.

Pathway A: Control Energy

Pathway A involves the calculation of the control energy neces-
sary for state transitions within the brain network. The process
begins by selecting a time system, where researchers must decide
between discrete-time or continuous-time systems to model neu-
ral dynamics. Next, the adjacency matrix is normalized to ensure
system stability, with adjustments based on the chosen time sys-
tem. Control tasks are then defined by specifying target states for
each brain region involved. To optimize energy usage for efficient
state transitions, methods such as gradient descent are employed.
This pathway provides valuable insights into the energy required
to drive specific brain state changes, with the option of visualizing
control energy using heatmaps or matrices.

Pathway B: Average Controllability

Pathway B focuses on measuring a brain region’s potential to in-
fluence network-wide dynamics without the need to specify a tar-
get state. The key component of this pathway is the average con-
trollability metric, which quantifies each node’s ability to affect
the network. Higher values of this metric indicate greater control
potential for that region. To facilitate analysis, controllability val-
ues can be visualized, allowing for comparisons across different
regions. This pathway allows for understanding how specific re-
glons contribute to overall network control, helping to identify key
nodes in brain networks.

Considerations

Considerations for both pathways include several important fac-
tors. First, model constraints require careful normalization of the
adjacency matrix to ensure stability across both continuous and
discrete-time systems for both pathways. Additionally, the choice
of control set plays a crucial role in the effectiveness of the anal-
ysis; researchers are encouraged to experiment with various con-
figurations, such as full, partial, or weighted control sets, to iden-
tify the most efficient approach for their specific research goals.
Finally, when interpreting results from Pathway A, itis essential to
consider energy asymmetries, as energy variations may arise de-
pending on the direction of state transitions. These factors must
be taken into account to ensure accurate and meaningful inter-
pretation of the results.

Doubts and challenges

The pioneering work of Gu and his collaborators has inspired ex-
tensive follow-up research aimed at better understanding and
capturing the controllability of brain networks. However, this
theory is not accepted without constraints. After reviewing the
framework for applying control theory to complex networks, Tu et
al. argued that brain networks cannot be controlled by a single re-
gion (in a statistically significant sense) and that the random null
model bears no biological resemblance to the structure of brain
networks, highlighting the crucial roles of appropriate experimen-
tal control and assumptions (Tu et al.,, 2018). Similarly, Popova et
al. also questioned findings by Wilmskoetter et al. regarding the
application of NCT in predicting language recovery for stroke pa-
tients (Popova et al., 2022; Wilmskoetter et al., 2022). They argued
that NCT itself still assumed the control of individual nodes and
ignored the relevance of the controllability of excluded brain re-
gions to treatment outcomes. Furthermore, even if it were theo-
retically possible to control the entire brain from a single brain
region, the energy required would be enormous. Taken together,
doubts about NCT seem to stem mainly from the lack of empiri-
cal evidence for the effectiveness of these control principles.

To address these challenges, earlier studies have applied NCT
in simpler biological systems to provide empirical validation. Yan
and colleagues applied NCT to predict and experimentally vali-
date the functional roles of neurons in Caenorhabditis elegans. They
developed a mathematical framework that links neuronal con-
trollability to motor behavior, identifying twelve neuron classes
critical for controlling muscles or motor neurons, including the
previously undescribed PDB neuron (Yan et al, 2017). Similarly,
Eichler et al. employed NCT to elucidate the intricate dynam-
ics of neural networks within the Drosophila larval mushroom
body, a critical learning and memory center. They meticulously
mapped the connectome at synaptic resolution, revealing how
Kenyon cells integrate sensory input from various projection
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(Adapted from He et al., Science Advances 2022)

Figure 2: Associations between regional control energy consumption and glucose metabolism in patients with temporal lobe epilepsy. (A-E) Significant
correlations were identified between the laterality indices of glucose uptake and control energy consumption across different brain regions, notably in
limbic areas, indicating that regions with lower metabolic rates demanded more control energy. This was established through Pearson correlations
adjusted for multiple comparisons, with significant results highlighted. (F) Mediation analysis in the hippocampus revealed that the laterality of
glucose uptake fully mediated the relationship between gray matter volume laterality and control energy consumption (He et al., 2022).

neurons, which encode diverse stimuli, including olfactory, ther-
mal, and visual signals. By demonstrating the structured yet
adaptable interactions within these networks, their findings high-
lighted the utility of NCT in comprehending complex neural ac-
tivities across different organisms. Such insights are pivotal for
advancing our understanding of brain network responses to en-
vironmental changes and stimuli, thus providing a robust frame-
work for potential translational neuroscience applications (Eich-
ler et al., 2017).

Another challenge lies in the absence of a biological basis for
this theory, i.e. what exactly controls energy in the human brain.
He and colleagues used unilateral temporal lobe epilepsy as a
lesion model, integrating multimodal neuroimaging techniques
such as diffusion-weighted imaging and positron emission tomog-
raphy (PET), to reveal the association between control energy and

glucose metabolism (He et al.,, 2022). By modeling various state
transitions in the brain with NCT, this work linked the increased
control energy demands associated with disease-related ineffi-
ciency to glucose hypometabolism and gray matter loss in the hip-
pocampus, offering a novel theoretical framework that integrates
gray matter integrity, metabolism, and neural dynamics (Fig. 2).
With the biological basis provided for NCT, this study not only laid
a solid foundation for the further application and development of
NCT in neuroscience but also provided strong support and vali-
dation for previous works (Menara et al., 2018; Pasqualetti et al,,
2019).

In summary, despite existing skepticism, this growing body of
literature highlights the potential of NCT to enhance our under-
standing of neural dynamics and responses to changes. However,
as NCT has broader applications, it is crucial to continue rigor-



ously validating its principles and assumptions to ensure robust
and biologically relevant outcomes.

Future prospects

One interesting notion is that neural dynamics are not linear. Nev-
ertheless, the current application of NCT is based on linear mod-
els. Although in some cases nonlinear behaviors can be accurately
approximated by linear behaviors (Muldoon et al., 2016; Honey et
al., 2009), how to strike a good balance between model complexity
and study ability and how to further describe the controllability of
the brain by constructing more appropriate nonlinear models are
important topics for future research. Future research should focus
on developing network control models capable of capturing non-
linear dynamics, integrating machine learning and multimodal
data fusion to enhance the understanding of brain controllabil-
ity. Furthermore, empirical validation of these nonlinear models
in clinical interventions will provide new insights into brain dy-
namics.

Second, unlike the descriptive statistics of networks such as
graph theory, NCT explains how changes in the activation of a sin-
gle node can cause spatially distributed and system-wide effects
throughout the system, with a specific pattern depending on the
structure of the anatomical network connecting all nodes (Kim
et al,, 2018). In addition, as a dynamic system, the brain’s state
stability largely depends on the level of cognitive effort (Braun
et al., 2021). In computational neuroscience, an elusive goal is to
describe the brain as a dynamic system with predictable natu-
ral temporal evolution and responses to inputs (Cornblath et al.,
2020). Therefore, taking into account temporal information and
exploring how to account for the effects of external signals over
time on stimuli and the brain in the absence of interactive ef-
fects are also important directions for the future of NCT. Future
research can utilize emerging time series analysis techniques, in-
cluding models of delay effects and instantaneous responses, to
focus on the time-dependent relationship between external stim-
ulation signals and brain dynamics. At the same time, develop-
ing dynamic system models that reflect the temporal evolution
of brain states will enhance the ability to predict the brain’s re-
sponses during different cognitive tasks. Furthermore, exploring
the impact of cognitive load on the dynamic stability of brain net-
works, as well as analyzing brain controllability under various ex-
ternal stimulation conditions, will provide important insights for
research.

Third, although NCT has emerged as a promising framework
for understanding structure—function relationships in the brain,
with widespread attention given to both health and disease (Kar-
rer et al., 2020), its application in explaining the effects of neu-
romodulation on brain networks remains somewhat limited. In
clinical applications, it will be crucial to design interventions that
can effectively and safely influence brain dynamics and modulate
neural circuits. This will require optimizing the selection of stim-
ulus targets based on an individual’s unique connectome and ad-
justing stimulus dosages accordingly. One of the key advantages
of the NCT is its ability to predict the effects of multipoint control,
particularly in how altering the activity of multiple control points
can influence brain states. This capability could offer valuable
contributions to the development of multipoint neuromodulation
techniques (Braun et al., 2018). NCT is especially relevant for the
study and treatment of various neurological and psychiatric disor-
ders, such as schizophrenia and Alzheimer’s disease, which are of-
ten associated with disruptions in brain network connectivity and
pathological changes. In the context of clinical neuromodulation,

NCT plays a pivotal role in guiding personalized treatment inter-
ventions. By precisely identifying the most effective stimulation
sites, NCT can help optimize the use of neuromodulation tech-
niques, such as TMS or deep brain stimulation, ensuring that in-
terventions are both safe and effective. Furthermore, NCT can aid
in tailoring individualized treatment plans based on the unique
brain network characteristics of each patient, thereby increasing
the precision and therapeutic outcomes of neuromodulation. This
not only improves treatment effectiveness but also expands the
potential applications of neuromodulation technologies in clini-
cal therapy and cognitive enhancement.

Fourth, a crucial step in advancing NCT is the validation of the
brain dynamics predicted by the theory. A promising approach in-
volves combining complementary neuroimaging techniques, such
as EEG and fMRI, which offer high temporal and spatial resolu-
tion, respectively, for capturing brain activity. This integration can
provide a robust validation of the predictive capabilities of NCT.
Additionally, combining fMRI with PET can offer a more compre-
hensive view of brain activity, with fMRI capturing dynamic state
changes and PET measuring the associated energy consumption.
Moreover, future research should focus on integrating NCT with
specific neuromodulation strategies, such as TMS experiments, to
directly test and refine the model’s predictive power. By employ-
ing these approaches, researchers can further deepen their under-
standing of NCT and lay a solid foundation for the development
of personalized neuromodulation interventions.

By outlining the potential of the nascent and burgeoning field
of brain NCT, we aim to engage more researchers and intensify
efforts toward the vital goal of modulating the dynamics of brain
networks, a pursuit of paramount importance for improving hu-
man health and cognitive function.
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