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Abstract 

Br ain netw ork contr ol theor y (NCT) is a gr oundbr eaking field in neur oscience that employs system engineering and cybernetics prin- 
ciples to elucidate and manipulate brain dynamics. This re vie w examined the development and applications of NCT over the past 
decade. We highlighted how NCT has been effecti v el y utilized to model brain dynamics, offering new insights into cogniti v e contr ol, 
brain development, the pathophysiology of neurological and psychiatric disorders, and neur omodulation. Additionall y, we summa- 
rized the practical implementation of NCT using the nctpy pac kage . We also presented the doubts and challenges associated with 

NCT and efforts made to provide better empirical validations and biological underpinnings. Finally, we outlined future directions for 
NCT, covering its development and applications. 
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Introduction 

In the intricate field of neuroscience, a k e y challenge has long 
been to understand how the brain’s vast network of systems act 
in a coordinated manner to pr oduce, r egulate, and maintain vari- 
ous cognitive functions (Lynn & Bassett, 2019 ). Brain network con- 
trol theory (NCT), a popular r esearc h perspectiv e in neur oscience 
that has emerged in the last decade, takes a system engineer- 
ing a ppr oac h and uses fundamental principles of cybernetics to 
provide insights into how the br ain mana ges and r egulates com- 
plex neural network interactions during its dynamic behaviors 
(Medaglia et al., 2017 ; Srivastava et al., 2022 ). Central to the NCT 

is the concept of brain states, which are defined as activity pat- 
terns across regions or voxels at a given moment. These states are 
c har acterized by div erse patterns of neur al activity, v arying con- 
nectivity strengths, and differing levels of network engagement 
(Braun et al., 2021 ; Gu et al., 2017 ). The transitions between these 
states reflect the brain’s dynamic processes as it shifts from one 
functional mode to another, influenced by both internal mecha- 
nisms and external control inputs (Gu et al., 2017 ). This fr ame work 
provides a basis for understanding how network control mech- 
anisms can facilitate or hinder these transitions, offering a pre- 
dicti ve, quantitati ve perspecti ve to unify the diverse datasets re- 
quired to describe neural systems and explain observed structural 
and functional r elationships. Researc h in this ar ea is not onl y crit- 
ical for r e v ealing the fundamental mechanisms of brain function 

but also holds great potential for the early diagnosis and treat- 
ment of brain diseases (Guo et al., 2021 ; Zarkali et al., 2022 ). To 
provide an up-to-date perspective of its potential for wide ap- 
plication in neuroscience, this paper reviews the significant ad- 
v ances and a pplications of br ain NCT ov er the last decade. More- 
ov er, we explor e the questions and challenges encountered dur- 
ing the de v elopment of NCT and provide an outlook on its future 
de v elopment. 
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mergence and de v elopment of brain 

etwork control theory 

he brain is an intricate, dynamic system that has the enormous
nformation pr ocessing ca pacity r equir ed for human thought
Marois & Ivanoff, 2005 ). Ho w ever, ho w complex cognitive pro-
esses are executed in the brain remains a challenging and unre-
olv ed question (Meda glia et al., 2017 ). In r ecent years, the contr ol
f network ed d ynamic systems has provided a promising opportu-
ity for addressing these neuroscientific questions . T hese new ap-
lications can be traced back to when Barabasi and colleagues, by

ntegr ating tools fr om network science and contr ol theory, delv ed
eeply into the controllability theory of complex networks and 

ts pr actical a pplications in the earl y 21st century. They demon-
trated that the controllability of a network is primarily deter- 
ined by the degree distribution of its nodes, and they effectiv el y

dentified driver nodes of the network using maximum matching 
heory (Liu et al., 2011 ). This novel approach not only enhances
he robustness of network control but also opens new possibilities
or the study of brain dynamics . T he structural connectome , de-
ned as a compr ehensiv e ma p of neur al connections within the
r ain, serv es as a foundation for understanding transitions be-
ween cognitive states (Parkes et al., 2024 ). Gu and colleagues were
he first to implement linear network control models on human
r ain structur al networks, establishing the pr actical a pplication
f this method in the human brain (Gu et al., 2015 ). They explored
ow the brain’s structural connectivity supports and influences 
he transition between different cognitive states, identifying spe- 
ific brain regions that significantly impact this dynamic process.
he results supported the hypothesis that, as a complex network,
he brain is theoretically controllable (see Box 1 ) and that differ-
nt parts of the brain have their own roles in controlling brain dy-
amics (Fig. 1 ). These findings not only demonstrate how specific
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Figure 1: Elucidating brain network control properties through diverse metrics. (A, B) Average controllability describes the ability of brain regions to 
drive the network state toward various easily reachable states. Correlation scatter plots show a strong positive correlation between the weighted 
degree (a measure of connectivity strength) of brain regions and their average controllability, suggesting that regions with higher connectivity are more 
effective in driving the network to easily reachable states. (C, D) Modal controllability focuses on controlling the network to reach difficult-to-achieve 
states. Scatter plots r e v eal a strong negative correlation between the weighted degree and modal controllability, indicating that regions with lo w er 
connectivity are crucial in driving the network to hard-to-r eac h states. (E, F) Boundary contr ollability quantifies the ability to decouple or integr ate 
network modules. Correlation scatter plots indicate a weak positive correlation between the weighted degree and boundary controllability, suggesting 
that regions with slightly greater connectivity may play a role in the dynamics of network module integration (Gu et al., 2015). 
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egions contribute to overall cognitive flexibility and control but
lso lay the foundation for future studies into the relationships
etween individual differences in network controllability and be-
avior al, cognitiv e, clinical, and genetic variables (Gu et al., 2015 ).

Bo x 1 Contr olla bility 
Controllability in NCT refers to the capacity of specific brain 

r egions, via contr ol inputs, to guide brain states along a des- 
ignated trajectory—i.e. to move from an initial state to a target 
state following a predetermined path (Cai et al., 2021 ; Gu et al., 
2015 ). This concept introduces possibilities for understanding 
the mechanisms of cognitive control. To explore this, the first 
essential question is whether the brain is controllable in prin- 
ciple . T his is a foundational inquiry within the NCT fr ame work, 
as it provides a basis for determining whether interventions can 

indeed alter the system’s state. 
To address this question, the concept of global controllability 

is introduced to assess whether the brain network can be guided 
to a target state through inputs to a single node, effectively alter- 
ing the ov er all network state. Furthermore, we must determine 
whic h br ain r egions ar e most influential in either constr aining 
or facilitating changes in brain state trajectories . T hree diag- 
nostic measures of regional controllability provide insights into 
this question: av er a ge contr ollability, modal contr ollability, and 
boundary contr ollability. Eac h of these methods ca ptur es dis- 
tinct contr ol objectiv es (Gu et al., 2015 ; Karr er et al., 2020 ; Tang 
& Bassett, 2018 ). 

Av er a ge contr ollability identifies r egions ca pable of driving 
the system to a variety of easily accessible states with minimal 
effort (i.e. low input ener gy). Centr al nodes in the brain often 

exhibit high av er a ge contr ollability, allowing br ain states to shift 
with minimal energy input. In cognitive terms, such regions are 
crucial for tasks involving multitasking or low cognitive load, 
as they enable efficient switching between different functional 
states. 

Modal contr ollability, in contr ast, assesses a r egion’s ability 
to drive the system to difficult-to-reach states, typically requir- 
ing higher energy inputs. Regions with high modal controlla- 
bility ar e usuall y not cor e network hubs but ar e instead lo w er 
connectivity nodes that facilitate shifts in high-cognitive-load 
scenarios, such as intense concentration or focused attention. 

Boundary controllability identifies brain regions situated at 
the edges of network communities , pla ying a pivotal role in in- 
tegr ating cognitiv e systems . T hese boundary regions enable co- 
ordination acr oss differ ent cognitiv e systems, assisting in the 
sync hr onization and transfer of information between distinct 
pr ocesses, suc h as auditory and language or visual and motor 
functions. 
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After establishing the fundamentals of network controllabil- 
ity of the human brain, the field moved on to explore whether 
such a tool can help model specific dynamic processes of the hu- 
man mind, i.e. if we treat the brain as a complex netw ork, ho w do 
we guide it to shift its state from one particular starting point to 
another destination through quantifiable inputs? Pasqualetti and 

collea gues de v eloped a ne w quantitativ e a ppr oac h to this network 
contr ol pr oblem by examining the r elationship between the num- 
ber of control nodes and energy demand during the transition 

of system states in a complex network, and they introduced this 
energy demand as “control energy” (see Box 2 ) (Pasqualetti et al.,
2014 ). Furthermore, Betzel et al. applied NCT to the human brain,
r e v ealing the control energy associated with transitions among 
differ ent cognitiv e states . T hey found that the rich-club struc- 
ture plays a k e y role in brain state transitions and that disrupting 
these structur es significantl y incr eases the r elated ener gy costs 
(Betzel et al., 2016 ). Additionally, Gu and colleagues focused on the 
optimal trajectories of brain state transitions, particularly during 
cognitive functions such as attention and executive control, and 

sho w ed ho w the brain’s white matter structur e constr ains and 

supports these state transitions (Gu et al., 2017 ). Together, these 
studies demonstrate how NCT can help model brain dynamics,
advancing our understanding of such energetic processes. 

Bo x 2 Contr ol energy 
Contr ol ener gy r efers to the amount of ener gy r equir ed to driv e 
a brain network from one state to a target state within the NCT 

fr ame work. Anal ysis of control energy encompasses identify- 
ing optimal pathways and minimizing energy consumption to 
ac hie v e state tr ansitions, r e v ealing the unique roles of various 
network nodes in facilitating these transitions. 
Optimal contr ol ener gy r epr esents the minim um internal cog- 
nitiv e contr ol or external stim ulation needed to driv e the br ain 

from an initial state x (0) = x 0 to a target state x ( T ) = x T . This 
process considers not only energy consumption but also the 
length of the state transition path, aiming to minimize the com- 
bined cost of path length and control input energy. When transi- 
tions involv e gr eater distances or gr eater task complexity—suc h 

as moving from a resting state to a complex working memory 
task—mor e contr ol ener gy is needed. Minimal contr ol ener gy 
is a specific form of optimal contr ol ener gy that focuses solely 
on minimizing energy costs without considering path length. 
In this case, the control function aims to minimize the energy 
r equir ed for the transition from x (0) = x 0 to x ( T ) = x T with- 
out accounting for the path distance (Karrer et al., 2020 ). Con- 
tr ol ener gy quantifies the ener gy r equir ed for br ain state tr an- 
sitions, which can be emplo y ed to compare the effort r equir ed 
to ac hie v e v arious cognitiv e states and to assess the extent to 
whic h br ain disorders or external stimuli impact the transition 

between brain states (Luppi et al., 2024 ; Singleton et al., 2022 ). 
The foundation for calculating control energy lies in the con- 
tr ollability Gr amian matrix, a matrix deriv ed fr om the system’s 
dynamics that quantifies the control energy needed to drive the 
system from an initial state to a target state. Smaller eigen- 
values of the Gramian indicate lo w er control energy require- 
ments for state tr ansitions, wher eas lar ger eigenv alues indicate 
higher energy demands . T herefore , the size of the controllability 
Gramian determines the feasibility of arbitrary state transitions 
and the associated energy costs. 
Se v er al factors influence the amount of control energy required 
(Parkes et al., 2024 ), such as the size of the control set. Con- 
tr ol ener gy decr eases significantl y as the number of nodes in- 
volved in control increases, meaning that a greater number of 
control nodes can reduce the overall energy required to achieve 
the target state . T his indicates that under multinode collabora- 
tiv e contr ol, state tr ansitions become mor e ener gy efficient. The 
difficulty of the state transition also plays a role, and the “dis- 
tance” between states has a pronounced effect on the control 
ener gy, with gr eater distances r equiring mor e ener gy for tr an- 
sition. For example, shifting from a low-cognitive-load state to 
a high-load state consumes more control energy (Braun et al., 
2021 ), which has practical implications for understanding the 
energy demands of brain regions involved in complex tasks. 

 ide applica tions of br ain network contr ol 
heory 

s a po w erful tool for decoding brain dynamics, NCT has been
idely adopted to address neuroscientific inquiries related to hu- 
an cognition, brain development, neurological and psychiatric 

iseases , and neuromodulations . 
The first application in understanding human cognition with 

CT tar gets the r ealm of cognitiv e contr ol. Cognitiv e contr ol is
n intricate cognitiv e–neur al pr ocess involving the tr ansition of
ognitiv e states (Meda glia et al. , 2016 ). W ith NCT, r esearc hers
an quantify the controllability of nodes within brain structural 
nd functional netw orks, specifically b y examining how differ-
nt br ain r egions theor eticall y influence the br ain’s tr ansitions
nto various cognitive states during cognitive control. For exam- 
le, Medaglia et al. found that the modal and boundary control-

ability of regions involved in cognitive control were significantly
orrelated with performance on tasks such as the continuous per-
ormance attention test, color/shape switching task, Stroop inhi- 
ition task, and spatial n-back working memory task (Medaglia 
t al., 2016 ). Additionally, by assessing av er a ge and modal con-
rollability metrics in healthy adult brains, Lee et al. revealed the
ssociations between cognitive functions and regional controlla- 
ility, offering a ne w perspectiv e on how the br ain r egulates dy-
amic changes in cognitive states (Lee et al., 2020 ). Building on
hese studies, NCT has also been emplo y ed to explore the criti-
al roles of specific “hub” regions, such as the anterior insula and
orsolater al pr efr ontal cortex, in cognitiv e tasks (Cai et al., 2021 ).
hese r egions typicall y serv e as crucial outflow and inflow hubs
ithin the network. By analyzing the network c har acteristics of

hese hub regions, we can gain a deeper understanding of how
he controllability of brain networks changes under high cogni- 
ive load and how this affects cognitive performance. Further ex- 
anding on the application of NCT, Luppi et al. ( 2024 ) defined 123
ogniti ve acti vation maps, referred to as cognitive topographies,
sing data from the NeuroSynth database, which encompasses a 
ide range of cognitive and behavioral terms such as “attention”,

emotion”, and “memory”. By constructing the human structural 
onnectome and modeling control inputs, the research team cal- 
ulated the control energy required to transition between these 
iffer ent cognitiv e topogr a phies, r e v ealing how br ain structur e in-
uences the transitions of cognitive states. 

Another fruitful application of NCT has been in the field
f neur al de v elopment. Tang and collea gues demonstr ated that
s individuals age, the controllability of brain networks signifi- 
antl y incr eases in young individuals. Specificall y, this study high-
ighted how the de v elopment of the white matter network ef-
ectiv el y maximizes contr ollability, including both av er a ge and

odal controllability, while simultaneously reducing synchroniz- 
bility. These findings indicate that the capacity of the brain net-
ork has been structur all y optimized to control dynamic changes,

hereby facilitating the development of cognitive abilities (Tang et 
l., 2017 ). Additionally, Lee and colleagues investigated how the
ontrollability of individual brain regions in structural networks 
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ffects cognitive function performance in individuals . T hey calcu-
ated two primary control metrics , a verage and modal controlla-
ility, and validated that these region-specific controllability indi-
ators exhibit both r epr oducibility and heritability (Lee et al., 2020 ).
hese findings not only supported the genetic basis of controlla-
ility as a neural network characteristic but also revealed the over
resentation of high-controllability regions in high-order resting-
tate networks. Extending these insights, Cui et al. examined the
aturation of structural brain networks during youth, using NCT

o quantify the energetic cost of activating the frontoparietal net-
ork necessary for executi ve function. The y found that this cost
ecreases as structural networks mature, facilitating more effi-
ient state transitions at a r educed ener getic expense . T his op-
imization correlates with enhanced executive function, specifi-
all y thr ough the modulation of energy costs in k e y br ain ar eas
uch as the cingulate cortex (Cui et al., 2020 ). Additionally, recent
ndings have indicated that cortical variations in c ytoar chitec-
ure form a sensory −fugal axis that shapes regional profiles of
xtrinsic connectivity and guides signal pr opa gation and integra-
ion across the cortical hier arc hy. Using a minim um contr ol en-
rgy model within the framework of NCT, Parkes and colleagues
xamined the amount of energy required to propagate dynamics
cross this sensory −fugal axis, revealing an asymmetry in energy
emands; bottom −up transitions were easier to complete than
op −down transitions were . T his asymmetry is underpinned by
 connectome topology that supports efficient bottom-up signal-
ng. Furthermor e, these asymmetries ar e corr elated with differ-
nces in communicability and intrinsic neuronal time scales and
essen throughout youth (Parkes et al., 2022 ). Collectiv el y, these
tudies not only underscore the adaptability and efficiency im-
r ov ements of br ain networks with a ge but also offer a new per-
pective on how the brain’s structural connectivity evolves to
upport higher cognitive functions during critical de v elopmental
eriods. 

Third, as expected, NCT is also used to unr av el the patholo-
 ies of neurolog ical and psychiatric diseases. Meyer-Bäse and col-
ea gues explor ed the a pplication of NCT in dementia. They a p-
lied av er a ge and modal contr ollability to determine the mini-
um set and location of driver nodes in structural brain net-
orks throughout the disease’s progression. They found that

his a ppr oac h could accur atel y describe the v arying r oles of dif-
erent nodes in controlling the trajectories of brain networks,
emonstrating shifts in some driver nodes while conserving oth-
rs throughout the disease course . T his study underscores the
otential of NCT in decoding the complex neural dynamics in-
olv ed in neur odegener ativ e diseases (Meyer-Bäse et al., 2020 ).
öller and colleagues emplo y ed NCT to assess structural con-
r ol ener gy in r esting-state functional br ain states among pa-
ients with 22q11.2 deletion syndrome (22q11DS), a genetic dis-
rder associated with a high risk of psychiatric conditions. Com-
ared with healthy controls, patients with 22q11DS presented dis-
inct patterns of sustained contr ol ener gy acr oss m ultiple br ain
tates. Further anal ysis r e v ealed a negativ e corr elation between
ustained contr ol ener gy and r esting-state activ ation time, sug-
esting that the brain typically reduces energy expenditure by
inimizing the time spent in high-energy states . T his energy-

aving mechanism was less effective in patients with 22q11DS, in-
icating a reduced dynamic efficiency in brain function associated
ith the disease (Zöller et al., 2021 ). Tang and colleagues further

ompared the differences in controllability between first-episode,
edication-naïv e sc hizophr enia patients and healthy contr ols,

xploring how these differences evolve with age . T hey found that,
nlike healthy controls, patients with schizophrenia sho w ed no
 ge-r elated decline in av er a ge contr ollability within the default
ode network (DMN) or the right pr efr ontal cortex, suggesting an

typical matur ation pr ocess in these ar eas. Additionall y, patients
ith sc hizophr enia exhibited an acceler ated a ge-r elated decline

n av er a ge contr ollability within the subcortical network, support-
ng the neur odegener ativ e model of sc hizophr enia. This study r e-
 ealed a ge-r elated c hanges in the contr ollability of white matter
ipelines in patients with sc hizophr enia, supporting both de v el-
pmental and degener ativ e hypotheses of the disease and indi-
ating that the DMN and subcortical networks may be partic-
larly susceptible to schizophrenia-related dysfunction (Tang et
l. , 2022 ). W ilmsk oetter et al. a pplied NCT to study aphasia re-
ov ery after str okes, focusing on langua ge-r elated r egions. They
ound the av er a ge and modal contr ollability of the inferior fr ontal
yrus significantl y pr edicted langua ge impr ov ements post ther-
py, suggesting a targeted approach for personalized rehabilita-
ion strategies (Wilmskoetter et al., 2022 ). These studies collec-
iv el y emphasize the potential of NCT in advancing our under-
tanding of the complex neural dynamics underlying both neu-
ological and psychiatric disor ders. Additionally, resear ch b y Sin-
leton and colleagues indicated that psychedelics, such as lyser-
ic acid diethylamide (LSD) and psilocybin, increased the diver-
ity and complexity of brain function by reducing the control
ner gy r equir ed for state transitions . T his study emplo y ed NCT
nd functional magnetic resonance imaging (fMRI) data to quan-
ify the impact of psychedelics on brain states, revealing how
hey alter brain functionality. These findings provide a new per-
pective for understanding the effects of psychedelics on con-
ciousness and may open new avenues for the treatment of psy-
hiatric disorders in the future. Research has shown that LSD
nd psilocybin optimize brain dynamics by modulating control
nergy, complementing the applications of NCT in the study of
eur ological and psyc hiatric disorders and ther eby deepening
ur understanding of complex neural dynamics (Singleton et al.,
022 ). 

Finally, NCT is instrumental in modeling neuromodulatory pro-
esses, enabling tar geted interv entions that optimize br ain func-
ions and ther a peutic outcomes. Pr e vious studies, whic h typicall y
elied on heuristic methods to select specific regions for stim-
lation signals (Kumar et al., 2022 ), hav e been significantl y en-
anced b y emplo ying NCT to construct models of interregional in-
uence . T his a ppr oac h has enabled the design of more optimized
r eatment str ategies acr oss v arious neur ological conditions. For
nstance, Muldoon and colleagues utilized a data-driven com-
utational model of nonlinear brain dynamics to systematically
xplore the effects of targeted stimulation. Their findings vali-
ated predictions from NCT regarding the relationship between
 egional contr ollability, including av er a ge and modal contr olla-
ility, and the focal versus global impact of stimulation, form-

ng a crucial step to w ar d the de v elopment of personalized stim-
lation protocols by revealing how different regions impact over-
ll brain dynamics (Muldoon et al., 2016 ). Sanchez-Rodriguez et
l. de v eloped a contr ol fr ame work that uses external stim ulation
nputs to r e v erse pathological electr oencephalogr a phy (EEG) ac-
ivity in neur odegener ativ e diseases such as Alzheimer’s disease,
r oviding a pr omising av enue for tar geted interv entions in neu-
ological diseases (Sanchez-Rodriguez et al., 2018 ). Additionally,
edaglia et al. explored how the network controllability of brain

 egions, specificall y in r elation to the inferior fr ontal gyrus, influ-
nces the effects of tr anscr anial ma gnetic stim ulation (TMS) on
ognitiv e contr ol. Their study demonstr ated that contr ollability
etrics , including a v er a ge and modal contr ollability, significantl y

redict the efficacy of TMS interventions in enhancing cognitive
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performance . T his work underscores the potential of NCT to refine 
neur omodulation str ategies by identifying whic h br ain r egions ar e 
most r esponsiv e to stim ulation, ther eby facilitating tar geted inter- 
ventions that could improve cognitive functions (Medaglia et al.,
2018 ). Subsequently, Stiso and colleagues illustrated the applica- 
tion of NCT in modeling neural dynamics to predict and manage 
the br ain’s r esponse to grid stim ulation in patients with e pile psy.
They utilized both av er a ge and modal controllability metrics to 
understand how structural properties of the brain influence its 
dynamic responses to stimulation. Their findings revealed a sig- 
nificant shared variance between the predicted and observed ac- 
tivity state transitions, supporting the validity of the model. Fur- 
thermore, using an optimal control framew ork, resear chers have 
proposed testable hypotheses about which brain states and struc- 
tur al c har acteristics could effectiv el y enhance memory encoding 
during stimulation (Stiso et al., 2019 ). 

In summary, the evolving field of neuroscience has created new 

needs for NCT, driving it to expand and deepen in response to a 
variety of specific challenges. By actively exploring and addressing 
these emerging issues, NCT is shaping our understanding of brain 

dynamics, demonstrating its great potential for future research 

and practical applications in neuroscience. 

Pr actical implementa tion of NCT 

As the theoretical foundation of NCT has been refined and widely 
applied in neuroscience research, it has become an invaluable 
fr ame work for inv estigating how the topological pr operties of the 
br ain’s structur al connectome influence and constr ain neur al dy- 
namics. Owing to its ability to predict external control signal prop- 
agation and model the control potential of specific regions, NCT 

offers unique insights into brain function and network control 
mechanisms. 

To facilitate empirical r esearc h on NCT, P arkes and collea gues 
r ecentl y intr oduced a Python pac ka ge, nctpy, to standardize the 
implementation of NCT pathways (Parkes et al., 2024 ). This pack- 
a ge pr ovides a structur ed w orkflo w, str eamlining NCT a pplica- 
tions and enabling r esearc hers to calculate k e y metrics, such as 
contr ol ener gy and av er a ge contr ollability, with r elativ e ease. 

This section outlines two main pathways for implementing 
NCT using the nctpy pac ka ge: P athway A, whic h calculates the 
contr ol ener gy r equir ed to ac hie v e specific neur al state tr ansi- 
tions , and Pathwa y B, which measures average controllability to 
assess a brain region’s capacity for global network influence. To- 
gether, these pathways support a compr ehensiv e anal ysis of net- 
work control characteristics, both locally and globally, whereas 
model comparison techniques (e.g. the use of null models) in- 
cr ease r obustness and inter pr etability. 

Pathway A: Control Energy 

Pathwa y A in volves the calculation of the control energy neces- 
sary for state transitions within the brain network. The process 
begins by selecting a time system, where researchers must decide 
between discrete-time or continuous-time systems to model neu- 
ral dynamics. Next, the adjacency matrix is normalized to ensure 
system stability, with adjustments based on the chosen time sys- 
tem. Control tasks are then defined by specifying target states for 
eac h br ain r egion involv ed. To optimize ener gy usa ge for efficient 
state transitions, methods such as gradient descent are emplo y ed.
T his pathwa y pro vides valuable insights into the energy required 

to drive specific brain state changes, with the option of visualizing 
contr ol ener gy using heatma ps or matrices. 
athway B: Average Controllability 

athway B focuses on measuring a brain region’s potential to in-
uence network-wide dynamics without the need to specify a tar- 
et state . T he k e y component of this pathway is the av er a ge con-
r ollability metric, whic h quantifies eac h node’s ability to affect
he network. Higher values of this metric indicate greater control
otential for that region. To facilitate anal ysis, contr ollability v al-
es can be visualized, allowing for comparisons across different 
egions . T his pathwa y allows for understanding how specific re-
ions contribute to ov er all network contr ol, helping to identify k e y
odes in brain networks. 

onsider a tions 

onsiderations for both pathways include several important fac- 
ors. First, model constr aints r equir e car eful normalization of the
djacency matrix to ensure stability across both continuous and 

iscrete-time systems for both pathwa ys . Additionally, the choice
f control set plays a crucial role in the effectiveness of the anal-
sis; r esearc hers ar e encour a ged to experiment with various con-
gur ations, suc h as full, partial, or weighted control sets, to iden-
ify the most efficient a ppr oac h for their specific r esearc h goals.
inall y, when inter pr eting r esults fr om P athway A, it is essential to
onsider energy asymmetries, as energy variations may arise de- 
ending on the direction of state transitions . T hese factors must
e taken into account to ensure accurate and meaningful inter-
retation of the results. 

oubts and challenges 

he pioneering work of Gu and his collaborators has inspired ex-
ensiv e follow-up r esearc h aimed at better understanding and
apturing the controllability of brain netw orks. Ho w ever, this
heory is not accepted without constraints. After reviewing the 
r ame work for a ppl ying contr ol theory to complex networks, Tu et
l. argued that brain networks cannot be controlled by a single re-
ion (in a statistically significant sense) and that the random null
odel bears no biological resemblance to the structure of brain

etworks, highlighting the crucial roles of a ppr opriate experimen- 
al control and assumptions (Tu et al., 2018 ). Similarly, P opo va et
l. also questioned findings by Wilmskoetter et al. regarding the
pplication of NCT in predicting language recovery for stroke pa-
ients (P opo va et al. , 2022 ; W ilmskoetter et al. , 2022 ). They argued
hat NCT itself still assumed the control of individual nodes and
gnored the relevance of the controllability of excluded brain re-
ions to treatment outcomes . Furthermore , even if it were theo-
 eticall y possible to control the entire brain from a single brain
 egion, the ener gy r equir ed would be enormous. Taken together,
oubts about NCT seem to stem mainly from the lack of empiri-
al evidence for the effectiveness of these control principles. 

To address these challenges, earlier studies hav e a pplied NCT
n simpler biological systems to provide empirical validation. Yan 

nd collea gues a pplied NCT to pr edict and experimentall y v ali-
ate the functional roles of neurons in Caenorhabditis elegans . They
e v eloped a mathematical fr ame work that links neur onal con-
rollability to motor behavior, identifying twelve neuron classes 
ritical for controlling muscles or motor neurons, including the 
r e viousl y undescribed PDB neur on (Yan et al., 2017 ). Similarly,
ichler et al. emplo y ed NCT to elucidate the intricate dynam-
cs of neural networks within the Drosophila larv al m ushr oom
ody, a critical learning and memory center. They meticulously 
apped the connectome at synaptic resolution, revealing how 

 en yon cells integrate sensory input from various projection
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Figure 2: Associations between regional control energy consumption and glucose metabolism in patients with temporal lobe e pile psy. (A–E) Significant 
corr elations wer e identified between the later ality indices of glucose uptake and contr ol ener gy consumption acr oss differ ent br ain r egions, notabl y in 
limbic areas, indicating that regions with lo w er metabolic rates demanded more control energy. This was established through Pearson correlations 
adjusted for multiple comparisons, with significant results highlighted. (F) Mediation analysis in the hippocampus revealed that the laterality of 
glucose uptake fully mediated the relationship between gray matter volume laterality and control energy consumption (He et al., 2022). 

n  

m  

a  

l  

t  

a  

v  

w  

l
 

t  

H  

l  

s  

r  

g  

t  

c  

c  

p  

g  

W  

a  

N  

d  

2
 

l  

s  

a  
eur ons, whic h encode div erse stim uli, including olfactory, ther-
al, and visual signals. By demonstrating the structured yet

da ptable inter actions within these networks, their findings high-
ighted the utility of NCT in comprehending complex neural ac-
ivities across different organisms. Such insights are pivotal for
dvancing our understanding of brain network responses to en-
ir onmental c hanges and stim uli, thus pr oviding a r obust fr ame-
ork for potential translational neuroscience applications (Eich-

er et al., 2017 ). 
Another challenge lies in the absence of a biological basis for

his theory, i.e. what exactly controls energy in the human brain.
e and colleagues used unilateral temporal lobe e pile psy as a

esion model, integrating multimodal neuroimaging techniques
uch as diffusion-weighted imaging and positron emission tomog-
 a phy (PET), to r e v eal the association between contr ol ener gy and
lucose metabolism (He et al., 2022 ). By modeling various state
ransitions in the brain with NCT, this work linked the increased
ontr ol ener gy demands associated with disease-related ineffi-
iency to glucose hypometabolism and gray matter loss in the hip-
ocampus , offering a no v el theor etical fr ame work that integr ates
ray matter integrity, metabolism, and neural dynamics (Fig. 2 ).
ith the biological basis provided for NCT, this study not only laid

 solid foundation for the further application and development of
CT in neuroscience but also provided strong support and vali-
ation for pr e vious works (Menar a et al., 2018 ; P asqualetti et al.,
019 ). 

In summary, despite existing sk e pticism, this growing bod y of
iter atur e highlights the potential of NCT to enhance our under-
tanding of neural dynamics and responses to changes. Ho w ever,
s NCT has broader applications, it is crucial to continue rigor-
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ousl y v alidating its principles and assumptions to ensur e r obust 
and biologically relevant outcomes. 

Future prospects 

One interesting notion is that neural dynamics are not linear. Nev- 
ertheless, the current application of NCT is based on linear mod- 
els. Although in some cases nonlinear behaviors can be accur atel y 
a ppr oximated by linear behaviors (Muldoon et al., 2016 ; Honey et 
al., 2009 ), how to strike a good balance between model complexity 
and study ability and how to further describe the controllability of 
the brain by constructing more appropriate nonlinear models are 
important topics for futur e r esearc h. Futur e r esearc h should focus 
on de v eloping network contr ol models ca pable of ca pturing non- 
linear dynamics, integr ating mac hine learning and m ultimodal 
data fusion to enhance the understanding of br ain contr ollabil- 
ity. Furthermor e, empirical v alidation of these nonlinear models 
in clinical interventions will provide new insights into brain dy- 
namics. 

Second, unlik e the descripti ve statistics of networks such as 
gr a ph theory, NCT explains how changes in the activation of a sin- 
gle node can cause spatially distributed and system-wide effects 
throughout the system, with a specific pattern depending on the 
structure of the anatomical network connecting all nodes (Kim 

et al., 2018 ). In addition, as a dynamic system, the brain’s state 
stability lar gel y depends on the le v el of cognitiv e effort (Br aun 

et al., 2021 ). In computational neur oscience, an elusiv e goal is to 
describe the brain as a dynamic system with predictable natu- 
r al tempor al e volution and r esponses to inputs (Cornblath et al.,
2020 ). Ther efor e, taking into account temporal information and 

exploring how to account for the effects of external signals over 
time on stimuli and the brain in the absence of inter activ e ef- 
fects are also important directions for the future of NCT. Future 
r esearc h can utilize emerging time series analysis techniques, in- 
cluding models of delay effects and instantaneous responses, to 
focus on the time-dependent relationship between external stim- 
ulation signals and brain dynamics. At the same time, de v elop- 
ing dynamic system models that reflect the temporal evolution 

of brain states will enhance the ability to predict the brain’s re- 
sponses during different cognitive tasks . Furthermore , exploring 
the impact of cognitive load on the dynamic stability of brain net- 
w orks, as w ell as anal yzing br ain contr ollability under v arious ex- 
ternal stimulation conditions, will provide important insights for 
r esearc h. 

Third, although NCT has emerged as a promising framework 
for understanding structure −function relationships in the brain, 
with widespread attention given to both health and disease (Kar- 
rer et al., 2020 ), its application in explaining the effects of neu- 
r omodulation on br ain networks r emains some what limited. In 

clinical applications, it will be crucial to design interventions that 
can effectiv el y and safel y influence br ain dynamics and modulate 
neural circuits . T his will r equir e optimizing the selection of stim- 
ulus targets based on an individual’s unique connectome and ad- 
justing stimulus dosages accordingly. One of the k e y ad vantages 
of the NCT is its ability to predict the effects of multipoint control,
particularly in how altering the activity of multiple control points 
can influence brain states . T his capability could offer valuable 
contributions to the de v elopment of multipoint neuromodulation 

tec hniques (Br aun et al., 2018 ). NCT is especiall y r ele v ant for the 
study and treatment of various neurological and psychiatric disor- 
ders, suc h as sc hizophr enia and Alzheimer’s disease, whic h ar e of- 
ten associated with disruptions in brain network connectivity and 

pathological changes. In the context of clinical neuromodulation, 
CT plays a pivotal role in guiding personalized treatment inter-
 entions. By pr ecisel y identifying the most effectiv e stim ulation
ites, NCT can help optimize the use of neuromodulation tech-
iques, such as TMS or deep br ain stim ulation, ensuring that in-
erv entions ar e both safe and effectiv e. Furthermor e, NCT can aid
n tailoring individualized treatment plans based on the unique 
r ain network c har acteristics of eac h patient, ther eby incr easing
he precision and therapeutic outcomes of neuromodulation. This 
ot only improves treatment effectiveness but also expands the 
otential applications of neuromodulation technologies in clini- 
al ther a py and cognitiv e enhancement. 

Fourth, a crucial step in advancing NCT is the validation of the
r ain dynamics pr edicted by the theory. A pr omising a ppr oac h in-
olves combining complementary neuroimaging techniques, such 

s EEG and fMRI, which offer high temporal and spatial resolu-
ion, r espectiv el y, for ca pturing br ain activity. This integr ation can
rovide a robust validation of the predictive capabilities of NCT.
dditionally, combining fMRI with PET can offer a more compre-
ensiv e vie w of br ain activity, with fMRI ca pturing dynamic state
hanges and PET measuring the associated energy consumption.
or eov er, futur e r esearc h should focus on integr ating NCT with

pecific neuromodulation strategies, such as TMS experiments, to 
ir ectl y test and refine the model’s predictive po w er. By emplo y-

ng these a ppr oac hes, r esearc hers can further deepen their under-
tanding of NCT and lay a solid foundation for the de v elopment
f personalized neuromodulation interventions. 

By outlining the potential of the nascent and burgeoning field
f brain NCT, we aim to engage more researchers and intensify
fforts to w ar d the vital goal of modulating the dynamics of brain
etworks, a pursuit of paramount importance for improving hu- 
an health and cognitive function. 
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