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RNA-binding proteins (RBPs) have been shown to be dysregulated in cancer transcription
and translation, but few studies have investigated their mechanism of action in soft tissue
sarcoma (STS). Here, The Cancer Genome Atlas (TCGA) and Genotype-Tissue
Expression (GTEx) databases were used to identify differentially expressed RBPs in
STS and normal tissues. Through a series of biological information analyses, 329
differentially expressed RBPs were identified. Functional enrichment analysis showed
that differentially expressed RBPs were mainly involved in RNA transport, RNA splicing,
mRNA monitoring pathways, ribosome biogenesis and translation regulation. Through
Cox regression analyses, 9 RBPs (BYSL, IGF2BP3, DNMT3B, TERT, CD3EAP, SRSF12,
TLR7, TRIM21 and MEX3A) were all up-regulated in STS as prognosis-related genes, and
a prognostic model was established. The model calculated a risk score based on the
expression of 9 hub RBPs. The risk score could be used for risk stratification of patients
and had a high prognostic value based on the receiver operating characteristic (ROC)
curve. We also established a nomogram containing risk scores and 9 key RBPs to predict
the 1-year, 3-year, and 5-year survival rates of patients in STS. Afterwards, methylation
analysis showed significant changes in the methylation degree of BYSL, CD3EAP and
MEX2A. Furthermore, the expression of 9 hub RBPs was closely related to immune
infiltration rather than tumor purity. Based on the above studies, these findings may
provide new insights into the pathogenesis of STS and will provide candidate biomarkers
for the prognosis of STS.

Keywords: soft tissue sarcoma, RNA binding proteins, biomarker, prognostic model, nomogram
INTRODUCTION

Soft tissue sarcoma (STS) accounts for less than 1% of all cancers but is highly heterogeneous in
terms of anatomical location, histology, molecular characteristics, and prognosis (1). STS originates
from mesenchyme and can occur anywhere in the body, with approximately 50% to 60% of cases
happening in the extremities (2). In the past few decades, through the use of multidisciplinary
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methods to control diseases, including surgery, radiation therapy
and systemic therapy, the treatment effect among STS patients
has greatly improved (3). However, due to its easy metastasis and
recurrence, the prognosis of advanced patients is still poor. At
present, the diagnosis of STS mainly depends on ultrasound
scanning, imaging examination and tissue biopsy, which
have difficulty meeting the clinical requirements (4). To
reduce the recurrence rate and mortality, enhance quality of
life and improve survival rates in STS patients, early
detection, diagnosis, and treatment are essential. Over the
years, molecular research has shown excellent results in
understanding cellular and molecular mechanisms that drive
tumorigenesis and progression (5). Therefore, it is necessary to
find genes for the occurrence, development and prognosis of STS
to further broaden the research.

RNA binding proteins (RBPs) are involved in various RNA
metabolism and multiple biological processes, and play
an important role in regulating RNA stability, splicing,
modification, localization and protein translation (6, 7). RBPs are
mainly involved in posttranscriptional control (8), and their
disorders are closely related to the occurrence and development of
cancer (9–11). There are numerous human RBPs, but the role of
RBPs in cancer is not fully known. Only a few experiments have
systematically analyzed the RBPs associated with cancer. For
example, RBMS2 plays a role in suppressing cancer in breast
cancer and actively regulates the expression of P21 by stabilizing
its mRNA (12). The overexpression of ESRP1 in ovarian cancer
promotes the transformation of ovarian cancer cells from
mesenchymal phenotype to epithelial phenotype (13). In addition,
some studies focusing on the comprehensive analysis of RBPs found
that DCAF13, EZR, MRPL13, APOBEC3C and EIF4E3 may have a
prognostic value in breast cancer (14). It was reported that PUM2
could partly and competitively bind to STARD13 3’UTR with
miRNAs to achieve the effect of inhibiting osteosarcoma
progression (15). RBM10 was also demonstrated to be tumor
suppressor in osteosarcoma (16). However, few studies have
investigated the different roles of RBPs in STS. Therefore, based
on the above evidence, RBPs may also have a regulatory effect on
STS. This provides a new direction for our study of STS.

The methylation and the resulting abnormal expression of
target gene play an important role in the tumorigenesis in
multiple tumors including STS (17, 18). It was reported that
the methylation status was also associated with prognosis in
STS (19). Furthermore, immune infiltration has the vital
impact on tumor biological behaviors through activating or
suppressing innate and adaptive immunity (20, 21). Hence, in
this study, we investigated the relationship between STS and
RBPs using bioinformatics methods to better investigate the
pathological mechanisms of RBP in STS. We also analyzed the
signaling pathways, potential functions, prognostic value,
gene alterations, methylation levels and immune infiltration
of RBPs in STS. These results not only helped us discover new
genes related to RBPs for diagnosis but also increased our
understanding of STS to further define prognosis and screen
new drug targets to improve the treatment of STS.
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MATERIALS AND METHODS

Data Collection and Processing
Corresponding gene expression profiles and clinical data were
obtained from The Cancer Genome Atlas database (TCGA) and
Genotype-Tissue Expression (GTEx) database using the
University of California at Santa Cruz (UCSC, https://genome.
ucsc.edu) Genome Website. RNA-sequencing data (FPKM
values) of STS in TCGA-SARC cohort (https://xenabrowser.
net/datapages/?cohort=GDC%20TCGA%20Sarcoma%20
(SARC)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.
edu%3A443) and normal fat tissue samples in GTEx database
(https://xenabrowser.net/datapages/?cohort=GTEX&remove
Hub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443)
were included in this study. After downloading gene expression
datasets, ENSEMBLE identifiers were matched to official gene
symbols. We created a unified processing before the two sets of
data were merged for analysis. Because the obtained STS gene
expression profiles have been transformed by log2(x+1), the
normal fat tissue gene expression data were also manipulated
by using log2(x+1) transformation. Then, two gene files were
merged and standardized, and the expression matrix of RBPs was
extracted for differential analysis. Ultimately, differentially
expressed RBPs were identified based on |logfold change (FC)|
> 0.5 and false discovery rate (FDR) < 0.05, using Wilcoxon test
in R software. Wilcoxon test is one of the most common
nonparametric test methods (22).

Functional Enrichment Analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed to find the biological
functions of these differentially expressed RBPs. GO categories
were comprised of three terms: molecular function (MF),
biological process (BP), and cellular component (CC). KEGG
analysis was used to find the key pathways that these genes were
involved in STS. All enrichment analyses were performed based
on background genes from GO or KEGG database using the
“clusterProfiler” package (23) in R software. Both P and FDR
values less than 0.05 were the threshold for the identification of
significant GO terms and KEGG pathways.

Protein–Protein Interaction (PPI) Network
Construction and Module Screening
Differentially expressed RBPs were uploaded to the STRING
database (https://srting-db.org/cgi/input.pl) (24) to obtain a
protein-protein interaction (PPI) network. Subsequently,
Cytoscape3.7.0 software was used to study PPI network. We
used Centiscape 2.2 to obtain centrality indexes of nodes of
network. Molecular Complex Detection (MCODE) (25) was
used to find and visualize the top 3 clusters of the PPI
network. Selection criteria were as follows: degree cutoff = 2,
node score cutoff = 0.2, K - Core = 2. After that, the shared genes
between the PPI network and the differentially expressed RBPs
were extracted for subsequent model construction.
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Prognostic Model Construction
All samples were randomly divided into 2 groups (training set
and test set) with the ratio of 1:1. The training group was used to
construct a prognostic model, while the test group was used to
verify the result of the training group. Since there was little clinical
information in the training and testing groups, we also validated
the prognostic model in the whole population. First, univariate
Cox regression analysis of all samples was performed to screen
differentially expressed RBPs (P < 0.01 was considered statistically
significant). Then, multivariate Cox regression analysis was
performed to find the optimal genes to construct a prognostic
model in the training group. These optimal genes were called as
hub genes. Risk score for STS patients was calculated based on
the following formula: risk score = Sn

i=1(bi*ExpiÞ; where i
represented each gene, n represented the total number of hub
genes in the multivariate Cox regression analysis, bi represented
gene coefficient value and Expi represented the expression value
of each gene. According to the median risk score, STS patients
were divided into a high-risk group and a low-risk group. The
Kaplan-Meier survival curve was drawn to compare the survival
difference between the two groups in the training set. In addition,
we used the “survivalROC” package to draw a receiver operation
curve (ROC) (26) to evaluate the predictive ability of the
prognostic model. To further validate our results, the
prognostic model was also used to calculate the risk score for
each patient in the test group and the whole cohort. Similarly,
Kaplan-Meier survival curve and the ROC curve were plotted to
evaluate the predictive ability of the model in both the validation
and whole cohorts. P < 0.05 was considered statistically significant
for survival differences between the high and low-risk groups.

Identification and Analysis of Independent
Prognostic Factors
Univariate and multivariate Cox regression analyses were used to
evaluate the effect of multiple clinical factors (age, sex, metastasis,
radiotherapy, and risk score) on the prognosis of STS patients to
examine the accuracy of the STS prognostic model and determine
independent prognostic factors (P < 0.05 in both analyses). Finally,
we used the “rms” package in the R software to construct a
nomogram to accurately predict each patient’s survival rate.

Alterations of Hub RBPs
Rates of hub RBP changes in STS were carried out by querying
the online cBioPortal (http://cbioportal.org/), which provides
complex tumor genomics (27). Through this website, we
explored the impact of hub RBP changes on the survival of STS.

Methylation Analyses
HumanDiseaseMethylation Database Version 2.0 (DiseaseMeth2.0
(http://biobigdata.hrbmu.edu.cn/diseasemeth/) was used to
compare the methylation degree of hub RBPs between STS and
normal tissue. This database collects and analyzes DNAmethylation
data in various human diseases (28, 29). In addition, we also used
MEXPRESS (http://mexpress.be) (30) to study the relationship
between hub RBPs and their methylation status.
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Immune Infiltration Analysis
There is evidence that tumor cell immune infiltration is closely
related to prognosis (31). For example, in LUSC, T follicular
helper cells are associated with a good prognosis, and an increase
in neutrophils indicates a poor prognosis (32). Tumor immune
estimation resource (TIMER) is a comprehensive resource for
systematic analysis of various malignant tumors. TIMER
contains molecular characterization of 32 types of cancer and 6
types of immune cells (33). Based on the TIMER database, we
further evaluated the relationship between immune cell types
(CD4+T cells, CD8+T cells, B cells, dendritic cells, macrophages,
neutrophils and tumor purity) and 9 hub RBPs in STS.

Potential Interactions of Hub RBPs
RNA Interactome Database (RNAInter) (http://www.rna-
society.org/rnainter/ or http://www.rna-society.org/raid/.) (34)
is a platform to investigate RNA associated interactions, which
involve many physiological and pathological processes. We used
RNAInter to explore the potential targets of 9 hub RBPs and
RBPs-associated interactions to facilitate the understanding of 9
hub RBPs and further research of RBPs on STS.
RESULTS

The Identification of RBPs in STS Patients
In this study, 263 tumor samples and 517 normal tissue samples
were downloaded from TCGA and GTEx databases, respectively.
Only 259 patients had survival data. There were seven
histological types in 259 patients and specific information was
presented in Supplementary File 1. A total of 1492 RBPs were
extracted for the identification of differentially expressed RBPs
between the STS group and normal fat tissue group
(Supplementary File 2). According to the screening criteria
(FDR < 0.05, |logFC|>0.5), 329 RBPs were obtained in
this study, including 191 upregulated and 138 downregulated
(Figure 1). The detailed information of 329 RBPs was
summarized in Supplementary File 3.

GO Terms and KEGG Pathway Analysis of
the Differentially Expressed RBPs
To elucidate the potential biological functions and mechanisms
related to the differentially expressed RBPs, GO and KEGG
functional analyses were performed. In GO analysis,
downregulated genes were enriched in RNA splicing, nucleic
acid transport, RNA localization, cytoplasmic ribonucleoprotein
granule, nuclear speck, and ribonuclease activity (Figures 2A, B),
and upregulated genes were enriched in ncRNA processing, RNA
modification, tRNA metabolic process, ribonucleoprotein
granule, mRNA 3’−UTR binding, and methyltransferase
activity (Figures 2C, D). In addition, KEGG analysis of these
genes showed that they were mainly involved in the RNA
transport, mRNA surveillance pathway, spliceosome and
ribosome biogenesis in eukaryotes (Figures 2E–H).
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Protein-Protein Interaction (PPI) Network
Construction and Key Module Selection
To explore the interaction relationship between the differentially
expressed RBPs, we constructed a PPI network containing 2110
edges in the STRING database (Figure 3A, Supplementary File
4). These results were further analyzed and visualized by
Cytoscape, and we obtained a PPI network with 302 nodes and
2075 edges (Figure 3B). Supplementary File 5 showed centrality
indexes of nodes in PPI network. To explore the hub RBPs in
STS, the PPI network was analyzed by MCODE in Cytoscape,
and three important modules were selected (Figures 3C–E and
Supplementary File 6). Module 1 contained 21 points and 209
edges, Module 2 contained 27 points and 190 edges, and module
3 contained 44 points and 236 edges (Figures 3C–E and
Supplementary File 6). The genes from three modules were
visualized in a network (Figure 3F). Finally, 272 shared
Frontiers in Oncology | www.frontiersin.org 4
genes (Supplementary File 3) between the PPI network
and 329 differentially expressed RBPs were extracted for
subsequent analyses.

Prognosis-Related RBP Selection
By combining gene expression and survival information, 259
patients were used for subsequent model construction. The 259
patients were randomly divided into two groups: training set
(N = 131) and test set (N = 128). To select RBPs associated with
overall survival (OS), univariate Cox regression analysis was
performed on 272 RBPs in 259 patients. The results showed that
23 differentially expressed RBPs were significantly correlated
with OS (P < 0.01, Figure 4). Then, the above 23 RBPs were
used for further multivariate Cox regression analysis, and finally
9 RBPs highly correlated with STS survival were obtained to
establish a prognostic model in the training group (Figure 5).
A B

FIGURE 1 | The differentially expressed RBPs in STS. (A) Heat map of 329 differentially expressed RBPs between tumor (T) and normal fat tissue (N) samples
based on FDR < 0.05 and |logFC|>0.5; (B) Volcano plot of all RBPs. The red dots represent up-regulated RBPs. The green dots represent down-regulated RBPs.
The black dots represent RBPs with no significant changes between tumor (T) and normal fat tissue (N) samples based on FDR < 0.05 and |logFC|>0.5.
A B D

E F G H

C

FIGURE 2 | Functional enrichment analyses for differentially expressed genes. GO enrichment analysis for down-regulated RBPs (A, B) and up-regulated RBPs (C,
D). KEGG pathways enrichment for down-regulated RBPs (E, F) and up-regulated RBPs (G, H).
May 2021 | Volume 11 | Article 633024

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lin et al. Prognostic RBPs Analyses in STS
Construction and Evaluation of a
Prognostic Model Associated With RBPs
Weobtained 9 RBPs to calculate a risk score and construct a prognostic
model. The patient Risk Assessment formula was as follows (Table 1):

Risk score = (0:821 ∗Exp(BYSL)) + (0:330 ∗Exp(IGF2BP3))

+ (0:683 ∗ Exp(DNMT3B)) + (0:402 ∗Exp(TERT))

− (0:531 ∗ Exp(TLR7)) + (1:114 ∗Exp(CD3EAP))

− (0:983 ∗ Exp(TRIM21)) + (0:887 ∗ Exp(SRSF12))

− (0:740 ∗ Exp(MEX3A))

According to the median risk score, 131 patients in the training
group from TCGA database were divided into the high-risk group
and the low-risk group. Survival analysis showed that high-risk
patients had shorter OS (P = 6.404e-06, Figure 6A). Next, the area
under the ROC curve (AUC) was 0.813, indicating that this model
had high predictive ability in the training group (Figure 6D).
Similarly, the risk score could also predict the survival rate
(P = 5.679e-03 and P = 1.545e-07, respectively; Figures 6B, C)
of patients and had an accurate predictive ability (AUC = 0.668
and AUC = 0.726, respectively; Figures 6E, F) in the test group
and the whole cohort, respectively. These results suggested that the
risk score can predict patient survival well, and the model had
good sensitivity and specificity. Moreover, the expression of hub
RBPs was also significantly different between high- and low-risk
groups (Figures 6G–I).
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Identification of Independent Prognostic
Factors and Construction of the Nomogram
As shown in Figure 7A, the univariate Cox regression analysis
showed that factors including age, metastasis and risk score affected
the survival of STS patients (P < 0.05). Subsequently, multivariate
Cox regression analysis further demonstrated that metastases and
risk scores were independent prognostic factors (P < 0.05, Figure
7B). Based on the above regression analyses, the risk score results
further confirmed the accuracy of the prognostic model. Finally, we
constructed a nomogram to predict 1-year, 3-year, and 5-year
survival rates of patients (Figure 7C).

Relationship Between Hub RBP
Alterations and OS
Here, cBioPortal was used to study the hub RBPs in 261 STS
samples. Figures 8A, B showed that alterations of hub RBPs were
found in 57% (148/261) of the patients. Alterations in these RBPs
led to a poor prognosis (P < 0.05, Figure 8C).

Methylation Analysis of Key RBPs
In this study, we used the DiseaseMeth version 2.0 to further
analyze the methylation of these 9 differentially expressed RBPs.
Figures 9A–C showed significant differences in methylation of
BYSL (P = 1.803e-03), CD3EAP (P = 5.989e-05) and MEX3A
(P = 2.520e-02). Furthermore, using MEXPRESS analysis, we
observed that multiple methylation sites in the RBP sequence
were negatively correlated with their own expression levels (P <
0.05, Supplementary Figure 1).
A B

D E F

C

FIGURE 3 | Protein-protein interaction network and module visualization. (A) Initial protein-protein interaction analysis of 329 differentially expressed RBPs. (B) the
visualization of Protein-protein interaction network of 329 differentially expressed RBPs. Critical module 1 (C), 2 (D), and 3 (E) from PPI network using MCODE in
Cytoscape. Module 1 contains 21 points and 209 edges, Module 2 contains 27 points and 190 edges, and module 3 contains 44 points and 236 edges. (F)
Visualization of the integration of module 1,2 and 3. Green circles represent down-regulated RBPs, red circles represent up-regulated RBPs.
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Hub RBP Immune Infiltration Analysis
Given that immune cells are involved in the composition of the
tumor microenvironment, which is of great significance to the
prognosis of the tumor, we studied the potential connection
between 9 hub RBPs and immune infiltration (purity, B cell,
CD8+T cell, CD4+T cell, macrophage, neutrophil, dendritic cell)
Frontiers in Oncology | www.frontiersin.org 6
in the STS. Figure 10A showed that TLR7 was positively correlated
with B cells (partial. cor = 0.336, P = 1.02e-07), CD8+ T cells
(partial. cor = 0.328, P = 1.98e-07), CD4+ T cells (partial. cor = 0.5,
P = 1.49e-16), macrophages (partial. cor = 0.622, P = 1.56e-26),
neutrophils (partial. cor = 0.571, P = 2.28e-22) and dendritic cells
(partial. cor = 0.564, P = 1.18e-21). Similarly, TRIM21 and
FIGURE 4 | Univariate Cox regression analysis for identification of survival related RBPs. The forest plot of survival related RBPs based on univariate Cox regression
analysis (P < 0.01). Red square, hazard ratio > 1; Green square, hazard ratio < 1.
FIGURE 5 | Multivariate Cox regression analysis to identify prognosis related 9 hub RBPs. The forest plot of 9 hub RBPs based on multivariate Cox regression
analysis. Red square, hazard ratio > 1; Green square, hazard ratio < 1.
May 2021 | Volume 11 | Article 633024
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IGF2BP3 were also positively correlated with most immune cells
(Figures 10I, E). BYSL and MEX3A were negatively associated
with most immune cells (Figures 10H, D). Figures 10A–C
indicated that tumor purity was only significantly correlated
with TLR7 (cor = -0.456, P = 5.8e-14), TERT (cor=-0.185, P =
3.66e-03) and SRSF12 (cor = 0.28, P = 8.31e-06). In addition, we
found that DNMT3B (partial. cor = -0.179, P = 5.63e-03) and
Frontiers in Oncology | www.frontiersin.org 7
CD3EAP (partial. cor = -0.245, P = 1.33e-04) were only negatively
associated with CD4+ T cells (Figures 10F, G).

Identification of Potential Interactions of
Hub RBPs
We displayed potential interactions of RBPs using “Exact Search”
function of RNAInter. Supplementary Figure 2 showed the top 100
A B

D E F

G IH

C

FIGURE 6 | Evaluation of the prognostic model. Survival analyses for the training (A), test (B), and overall (training + test, C) cohorts. Receiver operating
characteristic (ROC) curves of the prognostic model in the training (D), test (E), and overall (F) cohorts. Distribution of risk score, survival time, and expression heat
map between the high (red dots)- and low(green dots)-risk groups in the training (G), test (H), and overall (I) cohorts. AUC: area under the curve.
TABLE 1 | Nine prognosis-associated hub RBPs identified by multivariate Cox regression analysis.

Genes Overall survival

coef HR 95% CI p value

BYSL 0.821 2.272 0.866 5.964 0.096
IGF2BP3 0.330 1.391 1.030 1.880 0.032
DNMT3B 0.683 1.980 1.198 3.273 0.008
TERT 0.402 1.494 1.073 2.080 0.017
TLR7 -0.531 0.588 0.338 1.022 0.060
CD3EAP 1.114 3.048 0.991 9.370 0.052
TRIM21 -0.983 0.374 0.177 0.789 0.010
SRSF12 0.887 2.427 1.262 4.666 0.008
MEX3A -0.740 0.477 0.238 0.956 0.037
May 2021 | Volume 11 | Article
coef, coefficient; HR, hazard ratio; CI, confidence interval.
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potential interactions of RBPs. BYSL, CD3EAP had more
interactions with transcription factors and RBPs. DNMT3B,
IGF2BP3, MEX3A, SRSF12 and ILR7 had more interactions with
microRNA and RBPs. TERT and TRIM21 had more interactions
with microRNA, transcription factors and RBPs.
DISCUSSION

Currently, accurate diagnosis and prediction of biological behavior
have become major challenges because of the STS rarity and
complexity. In the course of tumor development, molecular and
cellular components are considered to be potential prognostic
factors (35). Therefore, finding new treatment targets for STS and
elucidating their mechanisms can improve patient prognosis.
Recently, bioinformatics methods, such as machine learning and
weighted gene co-expression network analysis, have been used in
the identification of diagnostic or prognostic biomarkers, as well as
molecular subtypes to better understand STS (36, 37). Some of
biomarkers have also been validated by basic experiments.
Nevertheless, further research is needed on STS. In addition, there
were numerous studies about RBPs in cancers (10, 38, 39), but few
studies of RBPs in STS. In this study, TCGA and GTEx databases
were used to identify potential prognostic genes associated with
RBPs to explore the pathways and functions of the RBPs involved in
STS. First, we obtained 329 differentially expressed RBPs. Among
them, CDC5L (40) and IGF2BP1 (41) have been indicated to be
Frontiers in Oncology | www.frontiersin.org 8
biomarkers of osteosarcoma and affect the prognosis of
osteosarcoma. To elucidate the underlying biomolecular
mechanism of differentially expressed RBPs, we used GO and
KEGG enrichment analyses. Then, the PPI network was
constructed by STRING and visualized by Cytoscape. Finally,
through univariate and multivariate Cox regression analyses, we
obtained 9 RBPs and a prognostic model with high prognostic
value. To further explore the role of these 9 RBPs in STS, we further
performed the alternation, methylation degree, immune infiltration
analyses and identified potential interactions of RBPs. These
findings may help to identify RBPs associated with STS and be
used for the diagnosis and treatment of STS.

At present, the research of RBPs mainly focuses on
posttranscriptional events, which are extremely related to the
occurrence of tumor. In this study, GO biological process
analysis showed that the differentially expressed RBPs mainly
focused on RNA splicing, ribonucleoprotein granule,
cytoplasmic ribonucleoprotein granule and nuclease activity.
Similar to previous studies, these pathways affected the
progression of human diseases (11, 42, 43). RNA splicing is a
very important biological process in the human body, and
splicing dysregulation is involved in the pathogenesis of
various cancers (44). This mechanism has been reported to
affect the prognosis and biological behavior of STS (45). RNA
modification is a dynamic regulatory process, mainly involved in
biological processes such as cell differentiation, and its
dysregulation is one of the causes of cancer (46). Translation
A B

C

FIGURE 7 | The prognostic value of different clinical factors and nomogram construction. (A) Univariate analysis of different clinical factors of STS. (B) Multivariate analysis of
different clinical factors of STS. (C) A nomogram containing the expression of 9 RBPs and risk score for the prediction of 1-, 3-, and 5-year overall survival in STS patients.
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disorder is common in cancer (47). Both carcinogens and tumor
suppressor factors affect the mechanism of translation, making
translation abnormalities common in cancer. In addition, KEGG
analysis revealed mRNA monitoring pathways, ribosomal
biogenesis, and ribosomal lysis pathways that have been
reported to be associated with cancer. Previous studies have
suggested that ribosomal proteins affect tumor development by
regulating the P53 pathway and mRNA translation (48, 49).
Overall, GO and KEGG analyses suggested that these RBPs
were closely related to the progress of STS through the
abovementioned pathways.
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To identify the key RBPs, 272 shared genes were extracted
from the PPI network and 329 differentially expressed RBPs for
further analysis. Then, 9 key RBPs (BYSL, CD3EP, DNMT3B,
IGF2BP3, MAX3A, SRSF12, TERT, TLR7 and TRIM21) were
obtained using univariate and multivariate Cox regression
analyses. They have been reported to participate in the
progression and play a key role in the prognosis of different
cancers, such as lung cancer, hepatocellular carcinoma, breast
cancer, rhabdomyosarcoma, glioma, etc. BYSL is a nucleolar
protein involved in the biogenesis of ribosomes through 18s
rRNA processing in mammals to affect cell proliferation (50).
A

B

C

FIGURE 8 | Alterations in expression of the 9 hub RBPs. (A) A total of 148 of 261 samples (57%) had alterations of the 9 hub RBPs based on data about
mutations, protein, copy-number alterations and mRNA expression. Missense Mutation(unknown significance): samples had missense mutations of RBPs with
unknown biological significance. Truncating Mutation(putative driver): driver mutation. mRNA High: samples had high mRNA expression of RBPs. (B) Frequencies of
different alterations. (C) Survival analysis for patients with and without alterations in the 9 hub RBPs. Unaltered group had better survival.
A B C

FIGURE 9 | Methylation analyses of STS hub RBPs. The significant changes of methylation level about (A) BYSL, (B) DD3EAP, and (C) MEX3A between STS
and controls.
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It is positively expressed in hepatocellular carcinoma (51),
prostate cancer (52) and ovarian cancer (53). CD3EAP (also
known as ASE1, CAST, ERCC1 antisense) is a component of the
RNA polymerase I complex, which is involved in ribosome
biosynthesis and promotes cell proliferation similar to BYSL
Frontiers in Oncology | www.frontiersin.org 10
(54). CD3EAP has been reported to be involved in the
occurrence and metastasis of lung cancer tissues (55).
Although BYSL and CD3EAP play important roles in human
cancers, their specific mechanisms in STS remain unclear and
need further exploration. DNMT3B, a DNA methyltransferase
A

B

D

E

F

G

I

H

C

FIGURE 10 | Relationships between expression of 9 hub RBPs and tumor immune infiltrations. (A) TLR7, (B) TERT, (C) SRSF12, (D) MEX3A, (E) IGF2BP3,
(F) DNMT3B, (G) CD3EAP, (H) BYSL and (I) TRIM21.
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responsible for de novo methylation during human development
(56), was significantly elevated in osteosarcoma and
rhabdomyosarcoma (57, 58). IGF2BP3 is an embryonic protein
that belongs to the mRNA binding protein family and is
considered an oncogene (59). It is re-expressed in some
cancers and promotes the invasion and migration of tumor
cells. In Ewing sarcoma, IGF2BP3 serves as an effective
indicator of poor prognosis and predicts the recurrence of
patients (60). TERT is a telomerase reverse transcriptase that
participates in various human activities through telomere
elongation and has enzyme activity in tumors (61). Past studies
have confirmed that TERT is upregulated and altered in most
cancer patients (62). Among STS, patients with TERT alternation
have a shorter lifespan (63). TLR7 is a member of the Toll-like
receptor family and plays a key role in the proliferation of tumor
cells. It has been shown to be highly expressed in pancreatic
cancer (64) and lung cancer (65). TRIM21 is a Fc receptor that
can bind IgG, IgM and IgA (66). It has different expressions in
different cancers, such as low expression in diffuse large B-cell
lymphoma and breast cancer (67, 68), and high expression in
human glioma and nasopharyngeal carcinoma cells (69, 70).
Overexpression of TRIM21 makes osteosarcoma more resistant
to various stresses and promotes its proliferation (71). In our
study, TRIM21 expression was one of the reasons for poor STS
prognosis. However, there are few studies on these 9 RBPs. In
particular, it is difficult to find disease-related studies on MEX3A
and SRSF12. Furthermore, we found that 9 RBPs had close
interactions with transcription factors, microRNA and other
RBPs. Previous research demonstrated that RBPs had similar
patterns of somatic copy number analysis to transcription
factors across 15 human cancer (72), which could support
these findings. Therefore, these results might promote further
research of RBPs in STS.

In addition, we compared the prognostic ability of these nine
RBPs and clinical factors for STS. Univariate and multivariate
Cox regression analyses showed that tumor metastasis and risk
scores were independent prognostic factors. To accurately
predict patient survival, we constructed a nomogram
containing 9 RBPs. Previous nomograms have been developed
to predict the OS of patients with STS based on tumor size,
tumor grade, histological subtype and complete surgical
resection (73). However, there are few nomograms for
studying genes. Our study integrated the risk score and
expression of 9 RBPs in the nomogram to further accurately
predict the survival of patients with STS.

Subsequently, we further analyzed the changes of hub RBPs in
STS and found that the alterations of key RBPs in STS patients
are related to the shorter survival time, which further suggested
that these 9 RBPs had high prognostic ability. In addition, we
found that multiple methylation sites of upregulated genes were
negatively correlated with their own expression in STS. These
data showed that methylation changes may cause abnormal gene
expression. The relationship between methylation of these RBPs
and STS has rarely been studied before, and thus our study may
provide a new direction for the treatment of STS.
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Studies have shown that immune infiltration is an important
factor affecting the prognosis of STS (74). We discussed the
relationship between these 9 hub RBPs and immune infiltration.
In this study, we found that most of these 9 hub RBPs have no
correlation with tumor purity. Among them, TLR7 and TRIM21
were positively correlated with most immune cell infiltration, and
MEX3A and SRSF12 were negatively correlated with most immune
cell infiltration. DNMT3B was negatively correlated with CD4+ T
cells, while TERT was positively correlated with CD4+ T cells. Some
studies showed that TLR7 interacts with miR-25-3p, thereby
stimulating the secretion of IL6 by macrophages and promoting
the growth and spread of liposarcoma (75). Activation of TRIM21
expression induced infiltration of most immune cells except
macrophages (76). IGF2BP3 was associated with immune cell
infiltration in patients with liver cancer and affected prognosis
(77). Activation of CD3EAP may cause T cells to produce IL2 to
play an important role in non-small cell lung cancer (78). Therefore,
the abnormal expression of these RBPs may alter the immune
infiltrating components in STS, thereby achieving the purpose of
treatment and improving the survival of patients.

Overall, based on the above series of analyses, the expression,
participation mechanism and prognostic effects of the 9 hub
RBPs were studied. These RBPs can be used as new biomarkers
to predict the prognosis of STS and provide new ideas for the
diagnosis and treatment of STS in the future. As far as we know,
this was the first report to establish a prognostic model for RBPs
related to STS. In short, our results will greatly facilitate the
development of new diagnostic and therapeutic strategies and
provide directions for future research.
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