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Abstract

While multiple studies have reported the accelerated evolution of brain gene expression in the human lineage, the
mechanisms underlying such changes are unknown. Here, we address this issue from a developmental perspective, by
analyzing mRNA and microRNA (miRNA) expression in two brain regions within macaques, chimpanzees, and humans
throughout their lifespan. We find that constitutive gene expression divergence (species differences independent of age) is
comparable between humans and chimpanzees. However, humans display a 3–5 times faster evolutionary rate in
divergence of developmental patterns, compared to chimpanzees. Such accelerated evolution of human brain
developmental patterns (i) cannot be explained by life-history changes among species, (ii) is twice as pronounced in the
prefrontal cortex than the cerebellum, (iii) preferentially affects neuron-related genes, and (iv) unlike constitutive divergence
does not depend on cis-regulatory changes, but might be driven by human-specific changes in expression of trans-acting
regulators. We show that developmental profiles of miRNAs, as well as their target genes, show the fastest rates of human-
specific evolutionary change, and using a combination of computational and experimental methods, we identify miR-92a,
miR-454, and miR-320b as possible regulators of human-specific neural development. Our results suggest that different
mechanisms underlie adaptive and neutral transcriptome divergence, and that changes in the expression of a few key
regulators may have been a major driving force behind rapid evolution of the human brain.
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Introduction

In multicellular organisms, the evolution of novel characteristics

frequently involves gene expression change [1]. Nearly four

decades ago, it was hypothesized that the evolution of the human

brain could similarly be driven by expression changes [2]. In

support of this, early comparative studies of adult human,

chimpanzee, and macaque transcriptomes reported more hu-

man-specific expression changes than chimpanzee-specific changes

in the prefrontal cortex (PFC) of the brain, but no such imbalance

in other tissues such as blood, liver, or heart [3,4]. Several studies

further associated these expression differences with neuron-specific

functions [5–7], and a recent analysis of the human, chimpanzee,

and macaque PFC transcriptomes reported more human-specific

than chimpanzee-specific changes in developmental timing [8].

Together, these studies suggest that the human brain tran-

scriptome has evolved at an accelerated rate compared to that of

the chimpanzee, possibly reflecting the accelerated rate of human

cognitive evolution. Despite the attractiveness of this hypothesis,

the ontogenetic and tissue-specific properties of this phenomenon

have yet to be investigated. For instance, whether human brain

transcriptome acceleration involves species differences that are

constitutive across lifespan, or differences in how ontogenesis

proceeds, is unclear. In addition, as most existing transcriptome

comparisons studied a single brain region, we do not know

whether different brain regions exhibit the same rate and kind of

evolutionary acceleration. Finally, the molecular basis of human

brain transcriptome acceleration, such as the contribution of cis-

and trans-events [9], also remains unknown.

In the present study we analyzed prefrontal cortex (PFC) and

cerebellar cortex (CBC) transcriptomes in humans, chimpanzees,

and rhesus macaques of different ages. Both the PFC and CBC are

brain regions potentially involved in human-specific behaviors.

The cerebellum is important for motor function and memory and
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has been implicated in human language [10], while the PFC is

associated with such functions as abstract thinking, planning, social

intelligence, and working memory [11]. Using a number of

datasets, we found that two types of divergence, both expression

differences that are constitutive throughout lifespan as well as

expression differences involving changes in developmental pat-

terns, have contrasting functional and evolutionary properties.

The accelerated evolution of human brain expression appears to

mainly involve remodeling of developmental patterns, which may

in turn be shaped by microRNA (miRNA) expression changes.

Moreover, this acceleration is not uniform across the human brain

and is particularly pronounced in the PFC.

Results

Using Affymetrix microarrays we measured mRNA expression

in the PFC and CBC of 12 to 26 individuals per species. The

individual ages varied across a large portion of the species’

lifespan, although most samples were chosen from the early

postnatal period (Table S1; Figure S1A). Across the approximately

12,000 genes detected in either brain region, species differences

could explain approximately 45% of total expression variation,

while age could explain 30% (Figure S1B–C). Both effects were

also manifest in principle component analyses (Figure 1A), and

were highly reproducible upon comparison with published gene

expression datasets (Figure S2).

In each brain region and species, we identified genes showing

significant expression changes across the lifespan as well as genes

showing significant expression divergence among species, using

polynomial regression models and analysis of covariance, respec-

tively (p,0.001, false discovery rate ,10%). We then classified

genes showing significant species divergence into the following

three types (Figure 1B): type I, constant expression across lifespan;

type II, variable expression across lifespan, no developmental

pattern differences among species; type III, variable expression

across lifespan and developmental pattern differences among

species (developmental remodeling). We identified approximately

1,000–3,000 genes in each category, with type II being the most

common and type III the rarest (Figure 1C, Table S2).

Human Developmental Expression Patterns Show
Accelerated Evolution

We estimated the expression divergence among species by

calculating distances between species’ expression-age trajectories

and constructing neighbor joining trees (Materials and Methods).

We found that the expression divergence in genes showing

constant expression or no developmental pattern changes (type I

and II), i.e. constitutive divergence, reflected the three species’

known phylogenetic relationship (Figure 1D–E). Furthermore,

human and chimpanzee branch lengths (which represent diver-

gence on the respective lineages) for type I and type II genes were

comparable, with average ratios of the human to chimpanzee

branch lengths ranging between 1.0 and 1.6 (Table S3). Thus, the

evolutionary rate of constitutive expression divergence roughly

reflects the divergence between the two species from their

common ancestor.

By contrast, when we studied species divergence in the shape of

developmental trajectories among genes that underwent develop-

mental remodeling (type III), we found markedly different results.

In the PFC, the human branch was on average 5.260.7 times

longer than the chimpanzee branch (Figure 1D–E, Table S3). The

human branch was even 1.260.1 times longer than the

‘‘macaque’’ branch representing divergence between the common

ancestor of humans and chimpanzees and contemporary ma-

caques. If gene expression was evolving in a similar way to

genomic sequence, the human branch would be expected to be

approximately seven times shorter compared to this ‘‘macaque’’

branch [12]. In the CBC, the median human-chimpanzee branch

length ratio was 3.560.5. Thus, in the CBC, developmental

pattern divergence was also significantly greater on the human

versus the chimpanzee evolutionary lineage, but to a significantly

less extent than in the PFC (p,1028). These results indicate that,

while humans and chimpanzees evolved at similar rates with

respect to constitutive expression differences, human developmen-

tal patterns have become highly differentiated from both

chimpanzee and macaque developmental patterns, with 1.5- to

2-fold greater acceleration in the PFC.

We performed a number of analyses to test the validity of this

conclusion, including (a) sub-sampling to equalize mean expression

level distributions across the three gene types; (b) selecting the

same number of individuals per species, with similar age-

distributions across species’ lifespan; (c) comparing the numbers

of species-specific genes identified by the F test, as an alternative to

our expression distance measure; (d) controlling for life-history

differences among species, such as prolonged childhood and

longer lifespan in humans [13]; and (e) repeating mRNA

expression measurements in newborn and young adult pooled

samples from each species by sequencing RNA with the Illumina

platform (Text S1).

The excess of human developmental pattern divergence was

found to be significant across all tests (Figure S3B–D, Table S3).

Importantly, despite the limited sample size of the RNA-

sequencing dataset, type III genes showed significantly more

human-specific expression changes compared with the other two

types in both brain regions (p,0.001; Figure S4) and this excess

was significantly higher in the PFC than in the CBC (p,0.001).

Considered together, these results indicate that the accelerated

pace of developmental remodeling on the human evolutionary

lineage is not caused by sampling or technical biases, and cannot

be explained by life-history differences among species.

Author Summary

Species evolution is often depicted as a slow and
continuous process punctuated by rapid changes. One
example of the latter is the evolution of human cognition–
emergence of an exceedingly complex phenotype within a
few million years. What genetic mechanisms might have
driven this process? Nearly 40 years ago, it was proposed
that human-specific gene expression changes, rather than
changes in protein sequence, might underlie human
cognitive evolution. Here we compare gene expression
throughout postnatal brain development in humans,
chimpanzees, and macaques. We find that simple changes
in gene expression levels, plausibly driven by mutations in
cis-regulatory elements, accumulate at similar rates in all
three evolutionary lineages. What sharply distinguishes
humans from other species is change in the timing and
shape of developmental expression patterns. This is
particularly pronounced in the prefrontal cortex, where
4-fold more genes show more human-specific develop-
mental changes than chimpanzee-specific ones. Notably,
our results indicate that this massive developmental
remodeling of the human cortex, which affects hundreds
of genes, might be driven by expression changes of only a
few key regulators, such as microRNAs. Genes affected by
this remodeling are preferentially associated with neural
activity, thereby suggesting a link to the evolution of
human cognition.

Developmental Divergence in the Primate Brain
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Genes Showing Developmental Pattern Divergence Are
Neuron-Related and Evolutionarily Conserved

Could the accelerated evolution of brain developmental

patterns on the human lineage reflect adaptive changes underlying

human cognitive evolution? To address this possibility, we

investigated the functional properties of type I, II, and III genes.

Using the Gene Ontology [14] and Kyoto Encyclopedia of Genes

and Genomes (KEGG) databases [15], we detected significant

enrichment of PFC type III genes in neuron-related functional

processes, including ‘‘neuroactive ligand-receptor interaction’’ and

‘‘behavior’’ (Table S4, p,0.05). CBC type III genes did not show

significant associations with neural functions, but were enriched in

more general processes such as ‘‘response to hormone stimulus’’

and ‘‘response to hypoxia,’’ while type I genes were enriched in

mRNA processing and splicing-related processes in both brain

regions. Type II genes showed no significant functional associa-

tions. Further, with respect to expression breadth, type III genes

showed the greatest tissue-specificity, and significantly overlapped

with neuron-related genes, but not glia-enriched genes (Figure 2A,

Figure S5). In contrast, expression breadth was significantly above

the genome average for type I genes and close to average for type

II genes, with no significant enrichment among neuron- or glia-

specific genes for either gene type (Figure 2A). Notably, PFC genes

associated with neural function through Gene Ontology had ,1.5

times larger human-chimpanzee branch ratios than non-neural

type III genes (p,0.002). In accordance with the general

conservation of neuron-related genes [16], regulatory and coding

sequences of type III genes, but not the other gene sets, were

significantly conserved compared to all genes expressed in the

brain (Figure 2B). Overall, developmental remodeling in the PFC
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Figure 1. Gene expression variation in the PFC and CBC. (A) Principle components of the two brain regions’ transcriptomes based on all
expressed genes (CBC:12,853; PFC:12,447). Each individual is represented by a circle; colors represent species (red, human; blue, chimpanzee; green,
macaque), and lighter shades indicate younger age. The proportion of variance explained by each component is shown in the axes labels. In both
regions, the first component corresponds to macaque-hominid divergence, the second to age differences, while the third component (z-axis)
separates humans and chimpanzees. (B) Examples of the three types of divergence in the PFC dataset. Each point represents an individual (red,
human; blue, chimpanzee; green, macaque), while lines show cubic spline curves. The x-axis shows individuals’ age in log2 scale. Gene names are
shown on top of each panel. (C) Numbers of genes assigned to the three divergence types (Table S2). (D) Example neighbor-joining (NJ) representing
constitutive and pattern divergence, based on expression profiles of PFC type II and type III genes. Trees were constructed per gene, using Euclidean
distances between expression-age trajectories between each pair of species (Text S1). The figure reflects the mean divergence per gene set. (E)
Distributions of log2-transformed human-chimpanzee branch ratios estimated from NJ trees across gene sets. Ratios ,|10| are only shown for
illustrative purposes. See Table S3 for additional analyses on the distributions.
doi:10.1371/journal.pbio.1001214.g001
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Figure 2. Cis-effects on expression divergence. (A) Mean expression breadth or nervous system specificity among divergent gene types in PFC,
relative to all expressed genes in PFC. Expression breadth indicates the number of cell types in which a gene is expressed (Text S1). Neuron/glia-
specificity measures were obtained from Gene Ontology [14] or a mouse experiment (mouse) [47]. Note that the mean specificity reflects the
proportion of cell type-specific genes in a gene set. (B) Median sequence divergence among divergent gene types in the PFC, relative to all expressed
genes in PFC. Promoter (6200 bp around the transcription start site), 39UTR, and H3K4me1-enriched enhancer region divergence (Materials and
Methods) divergence was estimated from pan-mammalian Phastcons scores [46]. Coding divergence reflects human-mouse or human-rhesus
macaque dN/dS. Error bars represent 95% bootstrap intervals. Median values used as sequence divergence distributions are highly skewed. (C)
Correlations between human-specific expression divergence in PFC (the human branch length based on an expression distance NJ tree) and human-
specific promoter mutations (estimated from human, chimpanzee, and macaque alignments) across genes. For illustrative purposes, expression
divergence measures were log-transformed. For full results see Table S5. (D) Correlation between species-specific type III expression divergence and
pan-mammalian sequence divergence (negative Phastcons scores). ‘‘Total’’ denotes total expression divergence, or NJ tree size, per gene. u p,0.10,
* p,0.05, ** p,0.01; based on Spearman correlation tests. The same calculation based on alternative region definitions is shown in Figure S9. (E)
Correlations between species-specific expression divergence in the PFC and CBC among the three gene sets in humans, using genes showing the
same divergence type in both regions. See Figure S6 for chimpanzee and macaque data. To control for the influence of expression level on
conservation or expression breadth, we used gene subsets with equalized mean expression level distributions (panels A–D).
doi:10.1371/journal.pbio.1001214.g002
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showed a clear association with brain-specific functional processes,

while no such association could be detected for the other

divergence types.

Cis-Regulation of Gene Expression Divergence
We next examined the possible mechanisms underlying PFC

expression divergence for the three gene types. Expression

divergence could be caused either by cis-changes that accumulate

in regulatory regions over time and tend to affect each gene

independently, or by altered expression, or function, of a few trans-

regulators affecting the expression of hundreds of genes in a

coordinated manner. To determine which mechanism played the

more dominant role in human expression evolution, we first tested

the correlation between gene expression divergence and sequence

divergence in cis-regulatory regions on the human, chimpanzee,

and macaque evolutionary lineages. To this end we analyzed the

proximal promoter, the 39UTR, and putative enhancer regions,

using Ensembl [17] gene annotation, as well as regions defined

using histone modification data derived from human cell lines [18]

or human and mouse brain tissue (Materials and Methods)

[19,20].

On the macaque lineage, which contained the greatest number

of sequence changes, we detected a significant positive correlation

between promoter sequence divergence and expression divergence

for the type I and type II genes (rho,0.10, p,0.05, Table S5).

Similarly, we detected a significant and positive correlation

between human-specific promoter sequence divergence and

human-specific expression divergence across the type I genes,

and a positive correlation trend for type II genes (Figure 2C).

However, we found no significant correlations between promoter

divergence and expression divergence on the chimpanzee lineage,

or for the type III genes on any lineage (Table S5). This

observation may be due to the paucity of species-specific mutations

resulting in insufficient power in our tests. To overcome this

limitation, we tested correlations between regulatory region

sequence divergence across mammalian species (pan-mammalian)

and species-specific expression divergence. For type III genes, both

macaque- and chimpanzee-specific expression divergence corre-

lated significantly and positively with pan-mammalian regulatory

sequence divergence. Notably, human-specific expression diver-

gence did not correlate positively with pan-mammalian regulatory

sequence divergence, but showed a significant negative correla-

tion, albeit marginally (Figure 2D). In other words, whereas

regulatory regions of type III genes diverging on the macaque and

chimpanzee lineages are less conserved, those diverging on the

human lineage are more conserved. This trend of positive

association between type III expression divergence and sequence

divergence in chimpanzees and macaques, and negative associa-

tion in humans, was also observed in 39UTR and enhancer regions

(Figure 2D, Table S5). Thus, the expression divergence of type I

and II genes on all evolutionary lineages, as well as the divergence

of type III genes on the chimpanzee and macaque lineages, may

well be linked to sequence divergence in cis-regulatory regions. By

contrast, type III expression divergence (developmental remodel-

ing) on the human evolutionary lineage does not reveal any such

trend. This suggests that mutation accumulation in cis-regulatory

regions might not have been the major contributor to the extensive

remodeling of the developmental expression patterns observed in

the human PFC.

The cis- and trans-expression divergence mechanisms can also be

indirectly discerned through their tissue-specificity. While muta-

tions in cis-regions tend to affect multiple tissues, trans-factor-driven

changes tend to be more tissue-specific [21]. Indeed, we found

constitutive divergence (type I and II genes) to be highly correlated

between PFC and CBC in all three species, while developmental

pattern divergence (type III genes) showed no such correlation

(Figure 2E, Figure S6). This result further supports the notion that

constitutive divergence (type I and II) is driven largely by changes

in cis-elements, but this is not the case for developmental pattern

divergence in the human PFC.

MicroRNA Contribute to Human-Specific Developmental
Pattern Divergence

We hypothesized that type III divergence and, in particular,

human-specific developmental pattern divergence in the PFC

could be driven by trans-factors. In support of this notion, we found

that type III genes, in comparison to the other gene sets, carry a

higher density of predicted miRNA and transcription factor (TF)

binding sites [22,23] in their regulatory regions, even when

accounting for conservation level differences among genes

(Figure 3A). We next considered whether trans-regulators,

specifically TFs and miRNAs, also show an increased divergence

in developmental patterns on the human lineage. For this, we used

expression profiles for 105 TFs from mRNA microarray data that

had target prediction information. In addition, we measured

expression of ,200 miRNAs in the PFC and CBC of humans,

chimpanzees, and rhesus macaques, in 7 to 12 individuals of

different age per species, using Agilent microarrays (Figure 3B,

Figure S7A). We found that although TFs showed comparable

human divergence to other genes, for 19 PFC-expressed type III

miRNAs the median branch length was 24 times longer for

humans than for chimpanzees (Figure 3C–D). This effect was

stable after correcting for life-history differences among species

(Table S3). By contrast, the median human-chimpanzee branch

ratio based on 15 CBC-expressed type III miRNAs was found to

equal 3.9. Thus, miRNAs in the PFC show an even greater excess

of human-specific developmental remodeling than other tran-

scripts. Despite the limited power of available target prediction

algorithms, we also detected greater human-chimpanzee branch

ratios among predicted targets of type III TF and type III miRNAs

compared to non-target genes (p,0.05; Figure 3D). Hence,

evolutionary changes in these trans-regulator expression trajecto-

ries could underlie the excess of developmental pattern divergence

in the human PFC.

Focusing on PFC type III genes, we next directly tested possible

associations between regulators and predicted target genes. We

found a significant excess of negative correlations between

miRNAs and their predicted targets’ expression profiles

(r,20.9, p,1026; Figure 3E), consistent with the inhibitory role

of miRNAs on expression. For TFs, we observed a modest excess

of positive correlations (r.0.9, p = 0.08; Table S6). As variation in

expression profiles reflects both age effects and species differences,

we also calculated regulator-target correlations based only on

species’ expression differences across the lifespan. Again, in the

PFC, species differences in miRNA expression showed a

significantly negative association with differences in their predicted

targets’ profiles (Figure 3F, Table S6).

To estimate the effect of miRNA regulation on developmental

pattern divergence in the PFC, we searched for miRNAs with

significant target site enrichment among PFC type III genes.

Screening all 157 expressed miRNAs using TargetScan predic-

tions [23], we detected 39 miRNAs with significantly more

predicted targets among PFC type III genes than among other

gene sets (p,0.05). Importantly, detection of only five miRNAs

would be expected by chance (permutation test p,0.001). Of the

39 miRNAs identified, 12 showed an excess of negative

correlations with their type III targets, compared to the 118

miRNAs with no target enrichment in PFC type III genes (one-
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sided binomial test p,0.05; Table S7, Table S8). The 140 target

genes associated with these miRNAs constitute approximately

10% of the developmental remodeling events identified in the

PFC. Notably, the majority of these miRNAs (90%), as well as

their targets (89%), showed more divergence in humans than

chimpanzees.

Experimental Validation of miRNA-Target Relationships
To validate some of the predicted miRNA regulatory effects, we

conducted an additional set of experiments with the miRNAs

miR-92a, miR-454, and miR-320b. These miRNAs showed not

only significant enrichment of predicted targets among type III

genes, but also the strongest excess of negative correlations with

their predicted targets in our analyses (Figure 4). At the same time,

even though these miRNAs have been associated with malignan-

cies [24] and angiogenesis [25] in the brain, to our knowledge,

none of them have yet been implicated in brain developmental

regulation.

First, we directly tested predicted miRNA-target associations by

transfecting two human neuroblastoma cell lines with miRNA

constructs containing mature sequences for the three miRNAs

(Materials and Methods). The regulatory effects were determined

by comparing gene expression in cell lines transfected with

miRNA constructs or transfected with negative controls, using

Affymetrix microarrays. In all cases, we detected a strong

inhibitory effect of the miRNA on target genes predicted by

TargetScan [23], compared to non-target genes (Figure 5A, Figure

S8). We also found that genes inhibited in the miRNA transfection

experiment, irrespective of TargetScan annotation, showed a

trend of negative associations with miRNA expression in our time

series dataset (Figure 5B–C). Thus, based on miRNA targets

experimentally identified in neuroblastoma cell lines, we con-

firmed the validity of TargetScan predictions used in our

computational analysis, and directly demonstrated negative

associations between miRNA expression and the expression of

their type III target genes.

We then asked whether the verified type III target genes of the

three miRNAs, i.e. the targets predicted by TargetScan that

showed negative correlations in our time series and expression

inhibition in the transfection experiments, might also be associated

with particular functions and/or cell types. We found that targets

of all three miRNAs were neuron-related when compared to other

miRNA targets (p,0.05 in each case, Figure 5D). Furthermore,

targets of two out of the three miRNAs tested, miR-454 (n = 18)

and miR-92a (n = 20), showed enrichment in the same KEGG

term: ‘‘calcium signaling’’ pathway (Figure 5E, Table S9). This is

noteworthy, since miR-454 and miR-92a do not share common

targets except for one gene, and finding such a functional overlap

between two such miRNA target sets is unlikely (p = 0.021).

Intriguingly, calcium signaling is a major biological processes

involved in neuronal plasticity [26,27], implying a role of miR-92a

and miR-454 in regulating genes associated with neurodevelop-

mental plasticity.

Figure 3. Trans-effects on developmental pattern divergence in the PFC. (A) Median density of conserved TF and miRNA binding sites (BS)
among divergent gene types in the PFC, relative to all genes with relevant information. TFBS were identified in the proximal promoter and miRNA-BS
in the 39UTR divergence using Transfac [22] and TargetScan databases [23], respectively. Error bars represent 95% bootstrap intervals. To control for
influence of expression levels, for each type we used gene subsets with equalized mean expression level distributions. We further removed the
overall sequence conservation effect on BS density using linear regressions (Text S1). (B) Principle components of the PFC miRNA transcriptome based
on 198 detected miRNAs. Proportion of variance explained by each component is shown in the axes labels in parentheses. Each individual is
represented by a circle; colors represent species (red, human; blue, chimpanzee; green, macaque), while lighter shades correspond to younger age.
(C) Mean NJ trees for 68 TFs and 19 miRNA of type III, as in Figure 1D. (D) Median log2 human-chimpanzee branch ratios among genes showing the
three types of divergence (I, II, and III), for mRNA, TFs, and miRNA, and for genes either targeted by miRNA (miRNA-tar.) or TFs (TF-tar.) of the same
type of divergence, and all other genes (non-tar.). Error bars show 95% bootstrap confidence intervals. *** p,0.001, ** p,0.01, * p,0.05, n.s., not
significant; based on Wilcoxon tests. (E) Excess of negative correlations between miRNAs and their predicted targets. The colored line shows the
distribution of correlations between miRNA-target pairs relative to miRNAs and non-target pairs (observed excess). The grey lines depict the random
expectation estimated by 100 permutations of miRNA-non-target pairs. See Table S6 for similar analyses including TFs and CBC. (F) Same as panel E,
but here we use species differences (across expression-age trajectories) to calculate regulator-target correlations.
doi:10.1371/journal.pbio.1001214.g003
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In a second experiment, we investigated the histological

expression patterns of miR-320b, the miRNA showing the

strongest enrichment in neuron-related genes (Figure 5D). By

means of in situ hybridizations with an LNA-containing probe

complementary to the mature sequence of this miRNA in human

and macaque prefrontal cortex sections (Materials and Methods),

we found that miR-320b preferentially co-localized with neurons

in both species (Figure 6). These results are consistent with the

proposed regulatory relationship between this miRNA and its

neuron-related target genes.

Discussion

Constitutive and Developmental Pattern Divergence
Exhibit Distinct Characteristics

Our analysis marks constitutive divergence (represented by type

I and II genes) as the most dominant form of expression difference

among species. In the primate brain, 85%–90% of genes showing

significant expression divergence between humans and chimpan-

zees fall within this category. Expanding our analysis to a

published brain transcriptome time series from two mouse species

(Mus musculus and Mus spretus) [8], 99% of genes with significant

expression divergence can be classified as showing constitutive

expression divergence.

Constitutive expression divergence affects the two brain regions

analyzed in a similar manner. Genes showing constitutive

divergence tend to have high expression breadth, show no

association with tissue-specific functions, and their regulatory

sequences evolve as fast as, or faster than, those of other genes.

Notably, humans and chimpanzees show approximately equal

levels of constitutive divergence in both brain regions studied.

Thus, while some constitutive expression differences may underlie

adaptive changes in primate brain evolution, the majority could

represent transcriptomic drift [28], driven by mutations in cis-

regulatory regions, and affecting multiple tissues. This result

supports a previously proposed transcriptome evolution model, in

which a large portion of expression divergence among species is

shaped by cis-changes [29].

Developmental pattern divergence (type III genes), as identified

in this study, shows a very different evolutionary mode. First, this is

the least frequent divergence type, with less than 15% of genes

differentially expressed between human, chimpanzee, and ma-

caque brains showing developmental pattern differences. This

might be expected given the general conservation of developmen-

tal expression trajectories among primates (Figure S2) [8]. Second,

developmental pattern divergence differs substantially between the

two brain regions analyzed, PFC and CBC. Third, developmental

pattern differences found in the PFC are associated with neurons

and neuronal functions. Fourth, in contrast to type I and II genes,

type III genes have highly conserved regulatory and coding

sequences. Furthermore, human-specific developmental pattern

divergence in PFC shows negative correlation with cis-regulatory

changes. This is striking, given that evolutionary expression

divergence, including both quantitative and developmental pattern

differences, is generally positively associated with regulatory and/

or coding divergence [9,29–32]. These results support a scenario,

where tissue-specific changes in the expression of trans-regulators,

such as miRNA, rather than sequence changes in cis-regulatory

regions, are the driving force underlying developmental remod-

eling across hundreds of genes.

A Role for miRNAs in Shaping Developmental Divergence
among Species

While divergence in transcription factor expression and activity

has been shown to underlie evolutionary divergence in various

contexts (e.g., [33,34]), relatively little is known about the role of

miRNA in transcriptome evolution. It is, therefore, of note that the

strongest trans-regulatory signal associated with developmental

pattern divergence in the primate brain could be associated with

miRNAs rather than with TFs. The regulatory effects of the top

three miRNAs identified by computational predictions could be

further supported by cell line transfections and in situ hybridiza-

tion experiments. Our analysis further implicates two of these

miRNAs in the regulation of genes involved in the calcium

signaling pathway in neurons. Given the role played by calcium

signaling in neuronal plasticity [26,27], this result raises the

possibility that the observed human-specific developmental

expression patterns in the PFC could underlie human-specific

cognitive functions such as learning and memory. It would be

interesting to test miR-454 and miR-92a as potential regulators of

neurodevelopmental plasticity in vivo.

Another noteworthy aspect of the miRNA experimental results

is the spatial expression patterns identified by in situ hybridization.

These indicate substantial variation among neurons in the

miRNAs’ expression (Figure 6), raising the possibility that the

identified miRNAs are specific to different neuron subpopulations.

Differential miRNA activity among species may thus contribute to

brain organization differences, which have been suggested as a

major distinction between human and chimpanzee brains [35].

Meanwhile, our work has a number of limitations. First, as our

main analysis is based on human microarrays, we exclude any

probes that do not match each of the three species’ genomes

perfectly and uniquely (Materials and Methods). Thus, we ignore

regions that show copy number variation among species, or are

species-specific. Likewise, our analysis is restricted to regulators

conserved across the three species. This is important, because fast

evolving or human-specific genes, TFs [36], or miRNAs [37] may

have significant contributions to the evolution of primate brain

development and species divergence [38]. Second, when analyzing

the effects of cis-regulation on expression divergence, we are

Figure 5. Regulatory effects of miRNA tested in cell lines. (A) Gene expression shifts in miRNA-transfected cell lines. The colored and grey lines
show the cumulative density (y-axis) of the expression change magnitude upon transfection (x-axis), for target genes predicted by TargetScan among
PFC type III genes, and all other type III genes, respectively. The x-axis is calculated as the expression level difference between miRNA-transfected and
negative control-transfected neuroblastoma cell lines, per gene (Materials and Methods). The p values were calculated by one-sided Wilcoxon tests.
(B) Excess of negative correlations between miRNAs and their targets identified based on inhibition in the cell line experiments. The colored line
shows the distribution of correlations between miRNA-target pairs relative to miRNAs-non-target pairs (observed excess). The grey lines depict the
random expectation estimated by 100 permutations of miRNA-non-target pairs. This analysis does not include information from TargetScan
predictions. The p values were calculated by one-sided Wilcoxon tests. (C) Same as panel C, but using species differences (across expression-age
trajectories) to calculate regulator-target correlations. Panels B–C are analogous to Figure 3E–F. (D) Proportion of neuron-related genes, based on
Gene Ontology [14], among the three miRNAs’ verified gene sets. The fourth column indicates the proportion of neuron-related genes among all PFC-
expressed miRNA target genes, which was used as background in the enrichment tests. ** p,0.01, * p,0.05, u p,0.10; based on one-sided Wilcoxon
tests. (E) KEGG pathways enriched among verified targets of miR-454 and miR-92a. ** p,0.01, * p,0.05, u p,0.10; based on one-sided
hypergeometric tests, Bonferroni-corrected.
doi:10.1371/journal.pbio.1001214.g005
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constrained by the limited annotation of cis-regulatory regions, and

it is conceivable that mutations in a yet unidentified class of neural

enhancers drive a substantial portion of developmental pattern

divergence in humans. Third, our study is restricted to species

differences in postnatal development. This is a critical period in

brain ontogeny, when multiple processes, including synaptic

maturation and myelination, take place [39]. Accordingly,

expression differences in this period can readily generate

phenotypic differences between species. Meanwhile, human-

specific expression changes in earlier developmental stages could

have at least as strong effects on the brain phenotype [40]. The

evolution of fetal brain gene expression remains to be studied.

Despite these limitations, our results extend earlier observations

on accelerated evolution of gene expression in the human brain.

Specifically, we show that compared with chimpanzees and

macaques, humans exhibit extreme developmental remodeling in

the PFC and, to a lesser extent, in the CBC. Accelerated

divergence of human developmental patterns cannot be explained

by neutral drift, and cannot be attributed to life-history differences

among species. Mechanistically, these human-specific changes

Figure 6. In situ staining of miR-320b in prefrontal cortex. First row: Human newborn prefrontal cortex sections were hybridized with miR-
320b LNA-probes (far left); anti-NeuN antibodies staining neuron nuclei (center left) and DAPI staining DNA (center right); and a merged image
showing LNA probes in yellow (far right). The LNA picture was taken under bright field at 406magnification, and the DAPI and anti-NeuN pictures
used the fluorescent channel. For the merged image the LNA signal was modified to a green color scale. Second row: Rhesus macaque prefrontal
cortex sections processed and displayed in the same way as human. Third and fourth rows: Human and rhesus macaque sections were treated the
same way as described, but using LNA probes with scrambled miRNA sequences as a negative control. The scale bar indicates 50.0 mm. See Materials
and Methods for details.
doi:10.1371/journal.pbio.1001214.g006
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appear driven by changes in expression of trans-acting regulators,

and specifically miRNA, rather than accumulation of cis-

regulatory mutations. Assuming a link between gene expression

pattern divergence and phenotypic changes in the human brain,

these results suggest that our cognitive abilities might be traced to a

handful of key regulatory changes that remodeled cortical

development.

Materials and Methods

Sample Collection
We collected prefrontal cortex (PFC) and cerebellar cortex

(CBC) samples from postmortem brains of humans, chimpanzees,

and rhesus macaque individuals of different ages (Table S1).

Human samples were obtained from the NICHD Brain and

Tissue Bank for Developmental Disorders at the University of

Maryland (USA), the Netherlands Brain Bank (Amsterdam, the

Netherlands), and the Chinese Brain Bank Center (Wuhan,

China); chimpanzee samples from the Yerkes Primate Center

(Georgia, USA), the Anthropological Institute & Museum of the

University of Zürich-Irchel (Switzerland), and the Biomedical

Primate Research Centre (the Netherlands); and the macaque

samples from the Suzhou Experimental Animal Center (China).

All subjects were healthy and had suffered sudden deaths.

Informed consent for use of human tissues for research was

obtained in writing from all donors or their next of kin. All non-

human primates used in this study suffered sudden deaths for

reasons other than their participation in this study, and without

any relation to the tissue used. Detailed information on sample

sources can be found in Text S1.

Gene Expression Experiments
For details of experimental methods and quality assessment, see

Text S1. For mRNA profiling we used postmortem brains of a

total of 33 human (aged 0–98 years), 14 chimpanzee (aged 0–44

years), and 34 rhesus macaque individuals (aged 0–28 years). Total

RNA extracted from 100 mg of dissected CBC and PFC samples

(humans, n = 22/23; chimpanzees, n = 12/12; macaques, n = 24/

26, respectively; Table S1) was hybridized to Affymetrix Gene1.0

ST human microarrays following standard protocols. Data

analysis was conducted using probes matching all three species’

genomes perfectly and uniquely, as determined using BLAT [41].

MicroRNA expression was measured among 14 humans, 11

chimpanzees, and 8 macaques using the Agilent Human

microRNA Microarray (v3), containing probes for 866 human

microRNAs. As the miRNA microarray probes are designed based

on human mature miRNA sequences, we removed miRNA

showing any sequence difference in their mature sequences, using

BLAT [41] and aligning mapped sequences by ClustalW2 (http://

www.ebi.ac.uk/Tools/msa/clustalw2). Five hundred human

miRNA showing 100% conservation across the three species were

included. Only samples with .200 detected miRNA were used. In

total, 8 human, 11 chimpanzee, and 8 macaque PFC samples and

12 human, 7 chimpanzee, and 7 macaque CBC samples were

retained. Only miRNAs that could be detected in .50% of

samples per species were used. All microarray gene expression

datasets were log2 transformed and quantile normalized. RNA-

sequencing was conducted in pooled samples from newborn and

young adults from the three species in each brain region, using the

Illumina Genome Analyzer II system. Chimpanzee and rhesus

macaque gene annotations were constructed from human gene

annotation using the UCSC ‘‘Liftover’’ tool (http://www.genome.

ucsc.edu/cgi-bin/hgLiftOver). Gene annotations were filtered to

only include transcripts with a similar size in all three species.

Transcript expression levels were calculated using ‘‘Cufflinks’’

(http://cufflinks.cbcb.umd.edu/), based on ‘‘Tophat’’ mapping of

conserved exons [42]. The mRNA microarray datasets are

available at NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/)

(accession number GSE22570). The miRNA datasets have been

submitted to NCBI GEO (accession number GSE29356) and are

available in processed form at the following locations for PFC and

CBC, respectively: http://www.picb.ac.cn/Comparative/data_

methods/data_ms_mirna_age_pfc_2011.txt and http://www.picb.

ac.cn/Comparative/data_methods/data_ms_mirna_age_cbc_2011.

txt.

The processed RNA-sequencing datasets are available at the

following locations for PFC and CBC, respectively: http://www.

picb.ac.cn/Comparative/data_methods/age_divergence_2010/

rnaseq_hcm_PFC1.txt and http://www.picb.ac.cn/Compara

tive/data_methods/age_divergence_2010/rnaseq_hcm_CBC1.txt.

Statistical Tests
For detailed descriptions of the tests applied, justifications of

statistics, and detailed results, see Text S1. We used polynomial

regression to model expression changes with age (age-test) and

analysis of covariance (ANCOVA) to model species differences

(differential expression test). In both tests, we fit data to families of

models including linear, quadratic, and/or cubic terms [8,43].

The F test was used to assess significance. We used a log2-age scale

to model expression changes with age. When indicated, we also

used ages transformed using linear models of life-history

landmarks in order to normalize life-history differences among

species. For identifying developmental pattern divergence among

species, we used the ANCOVA test on datasets where mean

(constitutive) expression differences among species had been

subtracted, such that the only remaining difference was differences

in trajectory shapes. False discovery rates were estimated by

permuting individuals’ age or species identity. Confidence ranges

for the median ratio reported in the text indicate 95% bootstrap

confidence intervals. In the RNA-sequencing experiment, genes

were binary coded to show higher divergence in human or

chimpanzee lineages; we therefore used the binomial test to

compare distributions between gene sets. We used the Wilcoxon

signed rank test for comparing log2-transformed human-to-

chimpanzee branch length ratio distributions between the two

gene sets, testing for a median .0 in the distribution. For testing

enrichment of a gene set in functional categories or among targets

of regulators, we used the hypergeometric test. In functional

analyses the p values were corrected using the Bonferroni method.

We used Spearman rank correlation for comparing sequence and

expression divergence estimates. For identifying candidate miR-

NAs regulating specific gene expression patterns, we used the

approach described in [44]. Briefly, we first test an association

between targets of each miRNA and a gene set showing a

particular gene expression pattern, using the hypergeometric test.

Second, we test if the significantly enriched miRNAs show a

higher frequency of negative correlations (Pearson r,20.75) with

their targets in the gene set, compared to the mean frequency for

miRNAs without enrichment in the gene set. The frequencies were

compared using the binomial test. The negative correlations were

calculated by (a) using interpolated points from spline curves fit to

the miRNA and mRNA expression profiles, using all three species

together, and (b) calculating differences between species’ curves at

interpolated points, for miRNA and mRNA, using all three pairs

of differences (Text S1). For comparing expression change

distributions and correlation distributions for Figure 5A–C, we

used one-sided Wilcoxon tests.
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Definition of the Three Divergence Types
Type I, constitutive divergence among constant genes: genes

showing constant expression (age-test p.0.01 in all three species)

and constitutive divergence across lifespan (differential expression

test p,0.001 in at least one pair of species). Type II, constitutive

divergence among developmental genes: genes showing age-

related change (age-test p,0.001 in minimum one species) and

constitutive divergence across lifespan (differential expression test

p,0.001 in at least one pair of species), but no evidence for

developmental pattern divergence (pattern divergence test p.0.01

in all species comparisons). Type III, divergence in developmental

patterns: genes showing developmental regulation (age-test

p,0.001 in at least one species) and differences in developmental

expression patterns among species (both differential expression test

and pattern divergence test p,0.001 in at least one pair of species).

Expression Divergence Estimates
To estimate expression divergence, we first reduced the

influence of individual variation within a species by fitting

expression trajectories to each species’ data points, for each gene

independently. We next calculated Euclidean distances among

these trajectories and constructed neighbor joining trees based on

these distances (Text S1). Finally, expression divergence on each

lineage was estimated as the length of the corresponding neighbor

joining tree branch. Importantly, for type III genes we removed

average expression level differences among species from the

expression divergence calculation. Therefore, our estimates of

expression divergence for type III genes purely reflect develop-

mental pattern differences among species (Figure 1B).

Processing of TF and miRNA Datasets
The TF expression profiles were obtained from the Affymetrix

arrays. For the average TF expression divergence patterns shown

in Figure 3C–D, we used all 1,071 genes annotated within

the Gene Ontology category ‘‘transcription factor activity’’

(GO:0003700). Using alternative definitions, such as the list

described in [45], or restricting the analysis to TFs annotated in

TRANSFAC yielded similar results (unpublished data). miRNA

profiles were measured using Agilent arrays and processed as

described above.

TF and miRNA Target Predictions
The procedure to define conserved human miRNA and TFBS

target sites is described in [44]. For miRNA target prediction we

used the Conserved Site Context Score Table from TargetScan

(v5.0) [23]. We identified conserved TF binding sites (TFBS) in

proximal promoters (62,000 b.p. around the transcription start

site) for each Ensembl human gene (v54), using the Match

algorithm which uses binding site matrices from the TRANSFAC

database (v11.2) [22]. We chose TFBS with average Phastcons

scores $0.6 using the 17-way vertebrate Conserved Element

Table [46]. TFBS were linked to transcription factor genes using

two paths described in Text S1, which resulted in 426 TFBS

mapped to $1 gene that were annotated with ‘‘transcription factor

activity’’ (GO:0003700). For the analysis presented in Figure 3A,

we removed the overall sequence conservation effect on BS

density, using residuals from linear regressions between TFBS/

miRNA-BS density and promoter/39UTR mean Phastcons scores,

respectively.

Functional Analyses
For functional pathway analyses, we used Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway annotation [15] and

Gene Ontology (GO) annotation [14] for humans. To estimate

expression breadth per gene we used cell type information from

the GNF dataset available from Ensembl (v54) [17]. For estimating

the neural-enrichment per gene, we used a mouse cell type-specific

gene expression experiment with expression profiles containing the

terms ‘‘neuron,’’ ‘‘axon,’’ and ‘‘synapse’’ [47]. In addition, we used

all genes containing the terms ‘‘neuron,’’ ‘‘axon,’’ and ‘‘synapse’’

in GO. Data were preprocessed as described in [44]. See Text S1

for details.

Sequence Divergence Estimates
For estimating pan-mammalian regulatory site conservation, we

used the mean Phastcons 18-way Placental Mammal Conservation

Track [46] values. Mean scores were calculated for (a) proximal

promoters and (b) 39UTRs based on Ensembl (v54) annotation; (c)

proximal promoters defined by H3K4me3 marks in a human PFC

age-series ChIP-Seq experiment, combining all 14 samples

together and choosing peaks with posterior possibility $0.95

[19]; (d) putative enhancer sites based on the presence of

H3K4me1 ‘‘broad’’ peaks, presence of DNAseI hypersensitive

sites, and the absence of H3K4me3 ‘‘broad’’ peaks (which is a

promoter mark) identified in the Encode project, in an epithelial

cell line (Hmec) (http://hgdownload.cse.ucsc.edu/goldenPath/

hg18/encodeDCC/) [18] and assigned to nearest human Ensembl

gene within 100 kb; (e) putative enhancer sites defined similar to

(d) but showing peaks in a minimum of three cell lines among the

seven main cell lines used in the Encode project; and (f) putative

enhancer sites bound by the transcriptional activator CBP in a

mouse brain ChIP-Seq experiment [20]. For estimating species-

specific mutations for each of these regions, we extracted the

corresponding regions from the human (hg18) genome, projected

these onto chimpanzee (panTro2) and rhesus macaque (rheMac2)

genomes using ‘‘Liftover,’’ and aligned the corresponding

sequences with MUSCLE (v3.7, http://www.drive5.com/muscle).

As inflated mutation estimates can arise due to homology or

genome alignment problems, we removed the 5% upper fraction

of mutation estimates. In Figure 2A–B, the variables (divergence

or cell type specificity) were scaled by subtracting the average

value across all expressed genes in the tissue, to represent deviation

from the transcriptome average. To improve visualization within

the same barplot, each variable was also further rescaled by

multiplying with a constant.

Cell Line Transfections
Construct sequences used and the details of the transfection

experiment are provided in Text S1. Briefly, we transfected two

human neuroblastoma cell lines, SH-SY5Y and SK-N-SH, with

three miRNA constructs containing mature sequences for miR-

92a, miR-454, and miR-320b, based on miRBase [48], as well as

two negative controls. Cells were incubated in DMEM (Hyclone) +
10% FBS (Hyclone) medium and transfected using the Lipofecta-

mine 2000 (Invitrogen) standard protocol (Text S1). Twenty-four

hours after transfection, cells were washed twice with PBS and

RNA was isolated using Trizol (Invitrogen). Total RNA was

labeled and hybridized to Affymetrix HG U133Plus2.0 arrays

following standard protocols. Microarray expression data were

processed as described above for other datasets. Expression levels

for the negative control-transfected cell lines were subtracted from

the expression of miRNA-transfected cell line, for each miRNA

and cell line type separately, yielding a measure of miRNA effect

size. For Figure 5A, we calculated the mean effect size per gene

per miRNA across the two cell lines. Treating each cell line

separately, as well as together, gave us significant results, and

targets verified in each cell line (i.e. TargetScan targets that show
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inhibition upon transfection) also showed significant overlap

(Figure S8).

In Situ Hybridizations
Hybridizations were performed following [49], and details can

be found in Text S1. Briefly, tissue sections were collected on

Superfrost/plus slides (Fisher). Tissue was fixed with formaldehyde

and subsequently treated with proteinase K [50]. After washing by

PBS, sections were acetylated and incubated in humidified

bioassay trays for prehybridization at 50uC for 4 h in hybridiza-

tion buffer [49,51]. This was followed by an overnight hybridiza-

tion step using the DIG-labeled LNA oligonucleotide probes

complementary to the target miRNAs. Sections were rinsed at

50uC and washed multiple times in SSC buffer. The in situ signal

was detected by incubation with alkaline phosphatase (AP)-

conjugated anti-DIG antibody, using NBT/BCIP as substrate.

Supporting Information

Figure S1 Age distributions and variance analysis. (A) Age

distribution of subjects used in the gene microarray analysis. Each

point represents an individual; technical replicates are shown as

additional points below. Only one of the two replicates was used in

the main analysis. Vertical arrows indicate 10 individuals per

species used to control sample size biases (Text S1). Colors indicate

species (red, human; blue, chimpanzee; green, macaque). The x-

axis represents individuals’ age in fourth root (age1/4) scale. (B)

Sources of total variation in the PFC and CBC microarray

datasets, estimated as random effects in a mixed linear model

[52,53]. RIN, RNA integrity number; Batch, the batch informa-

tion of samples. The graph shows the mean values across all

detected genes in a dataset.

(PDF)

Figure S2 Expression-age trajectory correlations among species

and comparison to published datasets. (A) Correlation of

expression-age trajectories between each pair of species across

age-related genes (i.e. genes with significantly varying expression

throughout lifespan; Text S1): n = 6,234 in PFC and n = 5,526 in

CBC. The y-axis shows the relative frequency of Pearson

correlations between interpolated trajectories of each species. (B)

Comparison of age-related expression changes in the PFC

microarray dataset with two published age-series. We chose

6,234 age-related genes identified in the PFC dataset and all

corresponding detected genes in the second dataset: 5,671 genes in

a human lifespan comparison [8], 4,131 genes in a chimpanzee

lifespan comparison, 1,751 genes in a macaque lifespan compar-

ison, and 5,292 genes in a human aging comparison [54]. (C)

Comparison of human-chimpanzee and human-macaque differ-

ences across lifespan with a published primate PFC expression

age-series [8]. The y-axis shows the relative frequency of Pearson

correlations between interpolated expression-age trajectories from

two datasets, calculated for each commonly expressed gene: 7,271

genes in the human-chimpanzee comparison, and 2,740 genes in

the human-macaque comparison. Note that these species

differences represent combinations of constitutive and pattern

divergence.

(PDF)

Figure S3 Human versus chimpanzee expression divergence.

(A–D) Leftmost graphs show the number of genes assigned to

different types of divergence in the two brain regions analyzed.

The middle and rightmost graphs show distributions of log2

human-chimpanzee branch ratios across three divergent gene sets

in PFC and CBC, respectively. The results are based on an

analysis using (A) the full dataset and chronological age, as

presented in the main text; (B) sub-sampling the three gene sets to

equalize mean brain expression level distributions (Text S1); (C)

choosing the same number of individuals (n = 10) with similar age

distributions across lifespan for all three species (see Figure S1a);

and (D) transforming ages in order to correct for life-history

differences (Text S1). For median branch length ratios and

significance testing of the distributions’ skewness, see Table S3. (E)

The numbers of genes showing significant divergence among all

species (‘‘unspecific’’) or showing significant divergence (F test

p,1-e3) in only one species; e.g. a human-specific gene shows

significant difference in both human-chimpanzee and human-

macaque comparisons, but not in the chimpanzee-macaque

comparison. Note that this result supports the analysis based on

expression difference NJ trees, with comparable human-chimpan-

zee divergence among constitutive genes, and extreme human

divergence among type III genes, particularly pronounced in the

PFC.

(PDF)

Figure S4 Analysis of the mRNA-sequencing dataset. (A)

Principle components of PFC and CBC RNA-seq datasets.

Proportion of variance explained by each component is shown

in axes labels in parentheses. Each point represents a sample,

represented as ‘‘h,’’ human; ‘‘c,’’ chimpanzee; ‘‘m,’’ macaque;

‘‘1,’’ new born; ‘‘2,’’ young adult. In total, 15,183 and 14,941

Ensembl human genes were detected in PFC and CBC datasets,

respectively. (B) Proportions of detected genes showing a higher

human-macaque expression distance compared to chimpanzee-

macaque distance (Text S1), suggesting a trend of higher

divergence on the human lineage. The genes are chosen from

gene sets identified in the microarray analysis; the gene numbers

are shown inside the bars. Error bars indicate 95% bootstrap

confidence intervals.

(PDF)

Figure S5 Expression breadth and sequence divergence in CBC.

The panels contain the same information as in Figure 2, but it uses

gene sets defined using CBC expression instead of PFC expression.

(A) Mean expression breadth or nervous system specificity among

divergent gene types in CBC, relative to all expressed genes in

CBC. Expression breadth indicates the number of cell types in

which a gene is expressed (Text S1). Neuron/glia-specificity

measures were obtained from Gene Ontology (‘‘GO’’) [14] or a

mouse experiment (‘‘mouse’’) [47]. (B) Median sequence diver-

gence among divergent gene types in the CBC, relative to all

expressed genes in CBC. Promoter (6200 bp around the

transcription start site) and 39UTR divergence is estimated from

pan-mammalian Phastcons scores [46]; coding divergence reflects

human-mouse or human-rhesus macaque dN/dS. Error bars

represent 95% bootstrap intervals. In both panels, to control for

influence of expression level on conservation or expression

breadth, we used gene subsets with equalized mean expression

level distributions. The y-axis is not to scale among different

variables.

(PDF)

Figure S6 Correlations between species-specific divergence in

PFC and CBC. We used genes showing the same divergence type

in both regions. For each gene, species-specific expression

divergence was estimated from the branch lengths on the NJ tree.

The trees were constructed using Euclidean distances between a

pair of species’ expression-age trajectories. Spearman correlation

coefficients (rho) and p values are indicated below the panels.

(PDF)
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Figure S7 CBC miRNA transcriptome PCA and quality

control. (A) Principle component analysis results for the CBC

miRNA transcriptome (207 detected miRNAs). Each point

represents a sample, with its age in days or years (‘‘1d’’ denoting

1 day, ‘‘12’’ denoting 12 years). Colors represent species (red,

human; blue, chimpanzee; green, macaque). (B) Correlation

between 167 age-related expression profiles or human-macaque

differences between miRNA microarray and RNA-sequencing

datasets in the PFC, using a published PFC miRNA-seq dataset

[44]. The y-axis shows the relative frequency of Pearson

correlations between interpolated expression-age trajectories from

the two platforms, calculated for each commonly detected

miRNA.

(PDF)

Figure S8 Gene expression shifts in miRNA-transfected cell

lines. (A) The colored and grey lines show the cumulative density

(y-axis) of the expression change magnitude upon transfection (x-

axis), for target genes predicted by TargetScan among PFC type

III genes, and all other type III genes, respectively. The x-axis is

calculated as the expression level difference between miRNA-

transfected and negative control-transfected neuroblastoma cell

lines, per gene (Materials and Methods). The p values were

calculated by one-sided Wilcoxon tests. Columns on the right and

left show results for SK-N-SH and SH-SY5Y, respectively. In

comparison, Figure 4B shows the mean expression change across

the two cell lines. (B) Overlap between PFC type III genes showing

down-regulation upon transfection in the two cell lines. The p

values are based on one-sided hypergeometric tests and use genes

showing up-regulation as background.

(PDF)

Figure S9 Sequence conservation and sequence-expression

divergence correlations. The same analysis was done as in

Figure 2B and 2D, but using definitions of regulatory regions

not based on Ensembl annotation. (A) Average divergence per

PFC gene set using different measures, normalized to average of

all expressed genes. (B) Spearman correlation coefficient between

pan-mammalian sequence divergence and type III gene expression

divergence on each lineage. Promoter (neuron): proximal

promoter based on regions identified by H3K4me3 marks in

human PFC [19]; Enhancer (Hmec): putative enhancer sites based

on the chromatin modification marks (presence of H3K4me1 and

DNAseI hypersensitive sites and absence of H3K4me3 sites

identified by the ENCODE project in an epithelial cell line (Hmec)

[18]); Enhancer (Encode-union): putative enhancer sites defined as

Hmec, but showing peaks in minimum three ENCODE cell lines;

Enhancer (mouse): putative enhancer sites bound by the

transcriptional activator CBP in a mouse brain ChIP-Seq

experiment [20].

(PDF)

Table S1 Sample information. PMI, post-mortem interval in

hours; RIN, RNA integrity number (Agilent 2100 Bioanalyzer

system); RNA array, Affymetrix Human Gene 1.0 ST array;

miRNA array, Agilent Human MicroRNA Microarray (G4471A,

Agilent Technologies); RNA-seq, mRNA profiling using Illumina

Genome Analyzer II; PFC, dorsolateral prefrontal cortex; CBC,

cerebellar cortex. The ‘‘Experiments’’ column indicates in which

experiments an individual’s tissue samples were used. a, RNA

microarray for PFC; b, RNA microarray for CBC; e, RNA-seq for

PFC (pool); f, RNA-seq for CBC (pool); h, miRNA microarray for

PFC; I, miRNA microarray for CBC. In the columns containing

microarray information, b1 and b2 indicate which individuals

were included in the 1st and 2nd experimental batches for that

experiment, respectively. In the columns containing RNA-seq

information, ‘‘newborn,’’ ‘‘young,’’ and ‘‘old’’ indicate of which

age pool an individual sample was a part: newborns, young adults,

or old adults. ASCVD, arteriosclerotic cardiovascular disease;

HASCVD, hypertensive arteriosclerotic cardiovascular disease.

(XLS)

Table S2 Numbers of differentially and non-differentially

expressed genes. Genes were sorted into categories based on three

tests: (a) age-test, applied per species; (b) differential-expression

test, applied for each species comparison; and (c) differential-

expression test using standardized data (removing constitutive

expression differences among species), applied for each species

comparison (Text S1). All p values are based on the F test. ‘‘No

difference’’ indicates genes with no evidence for divergence.

(XLS)

Table S3 Comparison of human versus chimpanzee divergence.

Median human-chimpanzee branch length ratios across different

divergent gene sets. Positive values indicate longer human

branches, and negative values indicate longer chimpanzee

branches. We tested log2 transformed branch length ratio

distributions for median = 0 using the Wilcoxon test. The upper

and lower bounds of the 95% confidence interval for the median

were estimated by bootstrapping genes within each set 1,000

times. The test was applied under various conditions: using all

samples, the full gene sets, chronological ages (‘‘full’’); using gene

sets equalized for mean brain expression level differences

(‘‘equalized expression’’); after correcting for life-history differenc-

es among species (‘‘normalized life-history’’); and using the same

number of individuals per species (‘‘same number of indv.’’). The

first two rows show results for all expressed; in this case, both

constitutive and pattern differences contribute to species diver-

gence.

(XLS)

Table S4 Functional characteristics of divergent gene types.

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology biological process (GO) categories in which a divergent

gene set shows enrichment, compared to the other categories (the

background). ‘‘Test’’ and ‘‘Other’’ indicate the number of genes in

a functional category belonging to the tested gene set or the

background, respectively. HT, one-sided hypergeometric test.

(XLS)

Table S5 Expression divergence-sequence divergence correla-

tions in PFC. Spec., species-specific divergence represents the

number of mutations assigned to one of three species in a regulatory

region; Pan-mam., pan-mammalian divergence, calculated as the

negative Phastcons score; Prom, proximal promoter based on

Ensembl; Prom2, proximal promoter based on regions identified by

H3K4me3 marks in human PFC [19]; 3utr, 39UTR based on

Ensembl; Enhmec and Enhuni, putative enhancer based on the

chromatin modification marks identified by the Encode project in

Hmec or multiple cell lines, respectively [18]; Enhmus, putative

enhancer based CBP ChIP-Seq experiments in the mouse brain

[20]. See Materials and Methods for details. Significant correlations

are marked bold. No correction for multiple testing was performed.

Brown marked rows show correlation between type III divergence

in PFC and pan-mammalian sequence divergence.

(XLS)

Table S6 Excess of predicted regulator-target correlations.

Correlations between regulator versus predicted target pairs’

expression profiles were compared to correlations between

regulator versus non-target pairs (genes that are predicted to be

targeted by other regulators), using the hypergeometric test (HT).

We tested excess of negative and positive correlations for miRNA-
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target and TF-target pairs, respectively. We used two correlation

cutoffs, and also two types of correlation: (1) is based on raw

expression profiles and reflects both age and species effects, while

(2) is based on expression differences among species (Text S1).

(XLS)

Table S7 Micro RNAs with target enrichment among PFC type

III genes. Micro RNAs showing predicted target enrichment

among PFC type III genes, compared to the other divergent gene

types (the background). In total 596 miRNAs in the TargetScan

table were tested (Text S1) and only those passing the p,0.05

cutoff are shown. ‘‘Test’’ and ‘‘Other’’ indicate the number of

genes in a functional category belonging to the tested gene set or

the background, respectively. HT, one-sided hypergeometric test;

FDR, false discovery rate estimated from 1,000 permutations,

indicating the average number of genes expected to appear

significant at a p value cutoff by chance.

(XLS)

Table S8 Candidate miRNA regulators of PFC developmental

remodeling. Micro RNAs and their targets predicted by (i)

enrichment of a miRNA targets among PFC type III genes,

compared to other divergent gene types (HT p,0.05), (ii) excess of

negative correlations between the miRNA’s expression profile and

its type III targets’ expression profiles, compared to negative

correlations (r,20.75) between miRNAs that are not enriched

among type III genes and their type III targets (one-sided binomial

test p,0.05). We used two kinds of correlation, one based on raw

expression profiles, and the other based on expression differences

between pairs of species. See Text S1 for details.

(XLS)

Table S9 Functional characteristics of verified miRNA targets.

Kyoto Encyclopedia of Genes and Genomes (KEGG) categories in

which verified targets of an miRNA show enrichment, compared

to the other categories (the background). ‘‘Test’’ and ‘‘Other’’

indicate the number of genes in a functional category belonging to

the tested gene set or the background, respectively. HT, one-sided

hypergeometric test. Verified targets are defined using TargetS-

can, negative correlations in the time series, and inhibition by

miRNA-transfection in cell lines. miR_320b targets do not show

significant enrichment. Only miR-454 targets show significant

enrichment using GO annotation (unpublished data). ‘‘Union’’

indicates the union of verified targets for the miR-320b, miR-454,

and miR-92a.

(XLS)

Text S1 Supporting methods.

(DOC)
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