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Abstract: The Alternaria mycotoxins such as alternariol (AOH), alternariol monomethyl ether (AME),
and tentoxin (TEN) are mycotoxins, which can contaminate cereal-based raw materials. Today, wheat
is one of the most important crops in temperate zones, and it is in increasing demand in the Western
Balkans countries that are urbanizing and industrializing. This research aimed to investigate the
occurrence and determine the concentration of Alternaria mycotoxins AOH, AME, and TEN in wheat
samples from the Republic of Serbia and the Republic of Albania, harvested in the year 2020 in
the period between 15 June and 15 July. A total of 80 wheat grain samples, 40 from each country,
were analyzed by an QuEChERS (quick, easy, cheap, effective, rugged, and safe) method. From the
obtained results, it can be seen that the mean concentration of AOH was 3.3 µg/kg and AME was
2.2 µg/kg in wheat samples from Serbia, while TEN from both Serbia and Albania was under the
limit of quantification (<LOQ). The maximum of AOH and AME mycotoxins was recorded only in
wheat grain samples collected in the Republic of Serbia (5.3 and 2.3 µg/kg). In conclusion, Alternaria
mycotoxins have concentrations above the LOQ, which could be potentially considered a health
hazard to both humans and animals.

Keywords: fungi; emerging mycotoxin; toxicity; grains; exposure; QuEChERS; Alternaria

Key Contribution: The QuEChERS method allows the detection and quantification of a wide variety
of fungal metabolites in cereals. The AOH and AME mycotoxins in our research have recorded
concentrations above the LOQ, which makes them a potential health hazard to both humans and
animals, while the toxicological significance of the data needs further investigation.

1. Introduction

Wheat has a great deal of economic importance as well as its contribution to the diets
of humans [1–3] and food animals [4], which cannot be ignored. According to official
FAOstat data [5], in the year 2020, recorded wheat production in the Republic of Serbia and
Republic of Albania was 2.8 million and 0.2 million metric tons, respectively. This makes
wheat one of the most important crops in terms of these Western Balkans countries’ annual
production. As a result, wheat is becoming increasingly popular in markets outside its
climatic region [6–10]. Industrialization and westernization have resulted in a growing
demand for unique food products made from wheat and wheat flour [11–15], which
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could be easily contaminated with mycotoxins [16]. A variety of functional ingredients
can be produced from wheat [17] because of the unique properties of the gluten protein
fraction [18]. Traditional foods are more difficult to prepare, and western lifestyles may call
for more convenient products [19,20].

The Alternaria mycotoxins such as alternariol (AOH), alternariol monomethyl ether
(AME), and tentoxin (TEN) (Figure 1) are mycotoxins, which can contaminate cereal-based
raw materials [21–25]. It has been reported that Alternaria fungi produce a total of at least
70 different mycotoxins [26–28]. Most Alternaria mycotoxins in grains have contamination
levels below 100 µg/kg and maximum concentration levels below 1000 µg/kg [29]. In
addition, the seriousness of mycotoxins in the food chain such as milk [30], milk prod-
ucts [31,32], nuts [33,34], and other agricultural products [35,36] must not be forgotten.
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Figure 1. Structure of the Alternaria mycotoxins AOH, AME, and TEN [37]. AOH—alternariol;
AME—alternariol monomethyl ether; TEN—tentoxin.

Since Alternaria species are highly adaptable to environmental conditions, including
their ability to grow and produce toxic secondary metabolites at low temperatures [38],
they can infect every stage of the food chain [39]. Alternaria mycotoxins are prevalent
in a wide range of food and feed commodities [40], from cereals [41,42], fruits [43], and
vegetables to drinks such as juices [44] and wines [45] (Figure 2). Due to this, humans are
easily exposed to Alternaria mycotoxins through the environment and contaminated foods.
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Figure 2. The average values (µg/kg) of worldwide concentrations of detected Alternaria mycotoxins
AOH, AME, and TEN in food and feed commodities, [46]. AOH—alternariol; AME—alternariol
monomethyl ether; TEN—tentoxin.
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Other plant pathogens can live as endophytes on plant tissues asymptomatically, but
Alternaria species generally cause plant diseases. Humans and animals are believed to be
affected by AOH and AME, which are genotoxic, mutagenic, and carcinogenic [47], while
plants are affected by TEN, which inhibits chloroplast production and causes chlorosis [48].
As a result of AOH interaction with deoxyribonucleic acid (DNA) topoisomerase, reac-
tive oxygen species (ROS) are formed, and DNA strands can be broken into single and
double strands. A decrease in cell proliferation is caused by the arrest of the cell cycle in
the G2-phase checkpoint, which may be caused by the attempt to repair DNA damage.
Furthermore, AOH inhibits macrophage differentiation in THP-1 monocytes and decreases
TNF-α secretion [49]. It interacts with steroidogenesis and exhibits an estrogenic response
similar to estradiol. In addition, AME and AOH decreased progesterone formation by
decreasing the abundance of a key enzyme [50]. Recent studies have shown that the Euro-
pean population has exceeded the threshold of toxicological concern (TTC) for AOH and
AME by consuming bakery products, juices, and tomato products [46,51–53]. An in-depth
analysis involving cereals-based products, and juices, resulted in a 95th percentile dietary
exposure exceeding the TTC for TEN, AOH, and AME, with a factor of 1.4, 12, and 60,
respectively [54].

Detecting Alternaria mycotoxins in food and feed products contaminated by it is a
vital part of food and feed safety assessment [55,56]. Mycotoxins from Alternaria can be
measured instrumentally using the following methods: enzyme-linked immunosorbent
assay (ELISA) [57], thin layer chromatography (TLC) [37], gas chromatography (GC) [58]
coupled to a mass spectrometry (MS) detector, liquid chromatography (LC) [59] coupled
to an ultraviolet detector (UV), and mass spectrometry detector (LC-MS), or a diode array
detector (DAD) [60]. On the other hand, the GC and GC tandem MS rarely detect Alternaria
mycotoxins because they are stable and nonvolatile. Solid phase extraction (SPE) or QuECh-
ERS extraction is often necessary to achieve satisfactory sensitivity due to the complexity of
investigated food and feed matrices [61]. The QuEChERS is a quick, easy, cheap, effective,
rugged, and safe sample pretreatment technology based on dispersive SPE and has been
successfully used in detecting Alternaria mycotoxins [62]. Several mycotoxins found in
food and feed samples have already been analyzed using the QuEChERS approach [63–66].

Having in mind that there are remaining knowledge gaps regarding the studied
emerging Alternaria mycotoxins in two important key factors for a proper risk assessment,
including occurrence, and toxicity data, this research aimed to investigate the occurrence
and determine the concentration of Alternaria mycotoxins AOH, AME, and TEN in wheat
samples from the Republic of Serbia and Republic of Albania harvested in the year 2020.

2. Results

The Alternaria mycotoxins AOH, AME, and TEN were quantified using a validated
approach to ensure accuracy and reliability following the Commission Regulation (EC)
No 401/2006 [67] and Commission Recommendation EU/2022/553 [68]. The procedural
standard calibration demonstrated good linearity in the concentration range of 2–40 µg/kg
for all the investigated mycotoxins with a coefficient of linearity (R2) of >0.99.

The limit of detection (LOD) is the lowest concentration of a substance that is detectable
by a given measurement procedure and it was calculated by MassHunter software (Santa
Clara, CA, USA) (signal/noice = 5). The limit of quantification (LOQ) is the lowest spike
level (2 µg/kg) of the validation to fulfil the method’s performance acceptability criteria.
The obtained average recovery values after spiking blank wheat samples at three levels is 2,
4, and 10 µg/kg, with the relative standard deviation (%RSDr) for the repeatability shown
in Table 1.
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Table 1. Validation parameters of AOH, AME, and TEN in wheat.

Mycotoxins Rt, min LOD, µg/kg LOQ, µg/kg R2 Recovery, %
(%RSDr)

AOH 6.25 0.5 2.0 0.9998 107.6 ± 6.5
AME 7.93 0.3 2.0 0.9998 108.0 ± 6.5
TEN 6.26 0.5 2.0 0.9915 110.1 ± 6.5

AOH—alternariol; AME—alternariol monomethyl ether; TEN—tentoxin; Rt—retention time; LOD—limit of
detection; LOQ—limit of quantification; R2—coefficient of linearity; %RSDr—relative standard deviation.

Table 2 represents the results of our investigation of the occurrence and concentration
of Alternaria mycotoxins AOH, AME, and TEN in wheat samples from the Republic of
Serbia and the Republic of Albania. From the presented results it can be seen that the mean
recorded concentration of AOH was 3.3 ± 1.3 µg/kg, AME was 2.2 ± 0.1 µg/kg in the
samples of wheat collected in the Republic of Serbia. The same table shows that in samples
collected from the Republic of Albania, concentrations of AOH, AME, and TEN was under
the LOQ, respectively. The same tendency regarding the concentration of TEN in wheat
samples from the Republic of Serbia were recoded.

Table 2. Occurrence of AOH, AME, and TEN in the investigated wheat grain samples.

AOH AME TEN

Sample Origin Serbia Albania Serbia Albania Serbia Albania

Mean (µg/kg) ± SD 3.3 ± 1.3 - 2.2 ± 0.1 - - -
Minimal concentration (µg/kg) 2.1 - 2.2 - - -
Maximal concentration (µg/kg) 5.3 <LOQ 2.3 <LOQ <LOQ <LOQ

Number of positive samples 4 0 2 0 0 0
Pooled SE 0.2 - 0. 0 - - -

AOH—alternariol; AME—alternariol monomethyl ether; TEN—tentoxin; SD—standard deviation; Pooled SE—
standard error; <LOQ—below the limit of quantification.

The highest recorded concentration of AOH and AME mycotoxins was in wheat grain
samples from the Republic of Serbia (5.3 and 2.3 µg/kg).

From Table 2, it can be seen that the median trend for the concentration of Alternaria
mycotoxins in wheat samples collected from the Republic of Serbia is TEN < AME < AOH.

These results show that the highest percentage of investigated wheat grain samples are
contaminated with AOH mycotoxins, followed by AME in the samples from the Republic of
Serbia, whereas the contamination of AOH, AME, and TEN mycotoxins in wheat collected
from the Republic of Albania was under the LOQ.

3. Discussion

A hexaploid species called “common” or “bread” wheat is the most common wheat
species grown worldwide [69]. Globally, wheat, a tetraploid species (Triticum durum) that
thrives in hot, dry climates around the Mediterranean Sea and similar climates elsewhere,
is produced in quantities of 35–40 million tons.. There are about 150 million tons of
wheat traded annually, making it a global commodity [70]. Wheat consumption has been
found to increase with urbanization and industrialization in countries that have adopted
a “western lifestyle” [1]. A wide variety of food and feed crops such as wheat, corn, or
cereals are contaminated with Alternaria fungi that produce mycotoxins such as AOH, AME,
tenuazonic acid (TeA), and TEN, which are the most significant [71–73]. Our investigation
has focused on the determination of Alternaria mycotoxins AOH, AME, and TEN in wheat
samples from the Republic of Serbia and the Republic of Albania.

Romero Bernal et al. [74] have used an HPLC-DAD methodology to determine the
concentration of AOH and AME mycotoxins in wheat grain, bran, and flour samples. The
LOD in their investigation was 3.4 and 4.5 µg/kg for AOH, and AME, respectively. In com-
parison to our investigation, our LOD for AOH, AME, and TEN was 0.5, 0.3, and 0.5 µg/kg,
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respectively. The concentrations of investigated mycotoxins in Romero Bernal et al. [74]
samples were 3.1, 4.5, and 12 µg/kg for AOH, AME, and TeA, respectively. Our investi-
gation has recorded lower concentrations of AOH, AME, and TEN. Mycotoxin inspection
has recorded a wide range of AOH (5–72 µg/kg), AME (5 µg/kg), TEN (5–27 µg/kg),
citreoviridin (10–57 µg/kg), and mycophenolic acid (10–95 µg/kg), in cereals produced
in different regions of Russia [75]. In comparison to Russia, our results of investigated
wheat grains from the Republic of Serbia and the Republic of Albania have significantly
lower concentrations of these mycotoxins. Furthermore, investigations by Topi et al. [53]
conducted in the Republic of Albania from 2014 to 2015 have shown higher concentrations
of AOH, AME, TEN, and TeA detected by an LC-MS/MS method. In their investigation,
the highest concentration of total mycotoxins in corn was 1283 µg/kg, while the maximum
concentration in wheat was 175.7 µg/kg, and the major recorded mycotoxin was TeA. In
our investigation, the concentrations of AOH, and AME, and TEN mycotoxins in samples
from the Republic of Albania, analysed by the QuEChERS method were under the LOQ.
Additionally, Vuković et al. [76] suggest a “dilute-and-shoot” method for the Alternaria my-
cotoxins determination in wheat grains as a simple method with easy sample preparation,
which has good accuracy and precision.

Argentina’s major producing region has been found to have Alternaria mycotoxins
naturally occurring in malting barley grains. Castañares et al. [77] conducted the study
intending to analyze the occurrence of AOH, AME, and TeA in malting barley grains. As in
our research, with samples from Serbia and Albania where the most dominant mycotoxin
was AOH, in Argentina, the situation was the same with the most frequent mycotoxin, AOH,
in the concentration of 712 µg/kg. The same authors have found a negative correlation
between environmental temperature and AOH mycotoxin concentration [77].

On the other hand, Gashgari et al. [78] investigated the toxicity of different Alternaria
strains in a bioassay with a model bacteria, Bacillus subtilis; they found that all investigated
strains are producing the toxins. Furthermore, they have concluded that the occurrence of
mycotoxins has not always been associated with fungal toxicity.

Molecular identification and mycotoxin production by Alternaria on Durum wheat was
conducted by Masiello et al. [79]. The authors have shown that 84 strains, phylogenetically
grouped in the Alternaria section, produced AOH, AME, and TeA with values of 8064, 14,341,
and 3683 µg/g, respectively [79]. Schiro et al. [80] investigated the differences in distribution
and spore deposition of Alternaria and Fusarium fungi. Based on the obtained results it
appears that the two fungi have different patterns of spore distribution and deposition,
while the abundances were assessed genetically using qPCR-based techniques [80].

In research by Kifer et al. [81] in the neighboring country Croatia, the seven Alternaria
mycotoxins metabolites were detected in cereals collected from two locations. The median
values in Croatian samples ranged from 0.6–0.7 µg/kg (AME), 5.1–6.4 µg/kg (AOH), and
2.4–4.0 µg/kg (TEN). A similar tendency was observed in our obtained results regarding
the AOH mycotoxins concentrations. A study in experimental animals found that TeA was
the most toxic of the Alternaria metabolites, leading to an increased feed conversion ratio,
losses in body weight, and the occurrence of lesions in the digestive tract [82]. In other
research with pigs, AME, and TEN mycotoxins did not cause significant cytotoxicity in
animals’ jejunal epithelial cells, while TeA had an IC50 100 times greater than the median
concentration detected in feed [83]. In their dietary experiment with broiler chickens,
Puvača et al. [84] showed that the wheat contaminated with Alternaria mycotoxins in
broilers’ nutrition negatively affects growth, decreases oxidative protection, and exhibits a
negative influence on overall chicken welfare.

Nevertheless, according to the European Food Safety Authority (EFSA), Alternaria
mycotoxins metabolites have been detected in feedstuffs, and the effects of these metabolites
on animals have not been sufficiently assessed [85]. Therefore, further investigations on the
negative effects of Alternaria mycotoxins contaminated food and feed are necessary.
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4. Conclusions

Based on the obtained results it can be seen that the average concentration of AOH
was 3.3 µg/kg, AME was 2.2 µg/kg, and TEN was under the LOQ, regarding the samples
collected in the Republic of Serbia. Our results have shown that concentrations of all three
investigated Alternaria mycotoxins collected in the Republic of Albania was under the LOQ.
The maximal concentration of AOH and AME mycotoxins was recorded in wheat grain
samples from the Republic of Serbia (5.3 and 2.3 µg/kg, respectively).

Furthermore, using the results obtained in our investigation, food and feed safety
authorities could determine the need for their regulation based on the risk assessment of
exposure to Alternaria mycotoxins. Food and feed supply chains are challenged by the
high variation in the amounts of toxins produced by different Alternaria species and strains.
Even though the QuEChERS method allows for the detection and quantification of a wide
variety of fungal metabolites in cereals, the toxicological significance of the data obtained
needs further investigation.

In conclusion, Alternaria mycotoxins in our research have recorded concentrations
above the LOQ, which could be a potential health hazard to both humans and animals.

5. Materials and Methods
5.1. Chemicals and Reagents

The analytical standards of the AOH, AME, and TEN were purchased from Sigma-
Aldrich (Zwijndrecht, The Netherlands). The standards were dissolved with 1.00 mL of
methanol (MeOH) to obtain 0.1 mg/mL stock solutions. All stock solutions were kept at
4 ◦C. The mixtures of all the Alternaria mycotoxins (working standards) were prepared in
acetonitrile (MeCN) in the final concentrations of 10 and 1 µg/mL. These solutions were
used for spiking the blank samples for the calibration and recovery analyses. The MeOH
and MeCN were HPLC ultra-gradient grade obtained from Sigma-Aldrich (Zwijndrecht,
The Netherlands). The ammonium formate was analytical grade purchased from Merck
(Darmstadt, Germany). The products Dispersive SPE 15 mL, fatty samples (EN) (part
no.5982-51565), and QuEChERS extraction kit original method (part no. 5982-7550) were
purchased from Agilent Technologies (Santa Clara, CA, United States).

5.2. Sample Collection, Spiking, and Extraction

A total of 80 samples of wheat grains, 40 from each country, were analyzed for the
presence of Alternaria mycotoxins, i.e., AOH, AME, and TEN. Wheat grain samples (Triticum
aestivum) were collected in post-harvest time in the season of 2020 from the region of Serbia
(Vojvodina) and Albania (Durrës). Obtained samples were collected with the appropriate
equipment, such as a probe for stationary grain and a diverter-type mechanical sampler,
using a sampling pattern and procedures designed to collect samples from all areas of the
lot. The appropriate size of wheat grain sample, between 1.5 and 2.5 kg, was taken from
a truck with adequately identifiable and labeled bags. Collected samples were handled
in such a way as to maintain representativeness. Samples were stored in a cool and dry
place in triple-lined paper breathable bags to avoid mold growth and an increase in the
sample moisture level over 14%. The sampling was performed following the Commission
Regulation (EC) No 401/2006 [67]. The collected samples were ground into a fine powder
before the analysis. The fine powder of wheat grains was achieved by milling the samples
on an MLU-202 automatic laboratory mill (Bühler, Wuxi, China), with the flour extraction
rate at around 70%.

The Alternaria mycotoxins were extracted from ground wheat powder samples using
the QuEChERS method described in Figure 3.
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5.3. Instrumentation

The HPLC Agilent 1290 Infinity II chromatograph equipped with a quaternary pump,
multi sampler, and column compartment thermostat was used for the Alternaria mycotoxins
detection. The HPLC system was coupled to an Agilent 6470B LC/TQ triple quadrupole
mass spectrometer with AJS ESI (Jet Stream Technology Ion Source). An Agilent Zorbax
Eclipse Plus C18 column was used for the chromatographic separation. The column
temperature was held at 35 ◦C and the injection volume for the LC system was 2 µL. The
chromatographic separation of the AOH, AME, and TEN were carried out with a mobile
phase consisting of water (A) and acetonitrile (B), both containing 10 mM ammonium
formate, in a gradient mode and flow rate of 0.3 mL/min. A gradient elution started at
5% of B and held for 1 min. This composition was increased to 40% B at 7 min, 90% B at
8 min, and then held for 2 min. The composition of the mobile phase returned to the initial
conditions in 1 min and the system was equilibrated for 2 min. The total running time
was 11 min. The ESI source was used with the following settings: drying gas (nitrogen)
temperature of 200 ◦C, drying gas flow rate 16 L/min, nebulizer pressure 30 psi, sheath
gas temperature of 300 ◦C, sheath gas flow 12 L/min, and capillary voltage 3000 V. The
detection was performed using the dynamic multiple reactions monitoring mode (dMRM).
The Agilent MassHunter software (v. B.10.0 SR1 Agilent Technologies, 2006–2019, Santa
Clara, CA, USA) was used for the optimization and quantification.
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