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ABSTRACT
Vitamin D is known to elicit many biological effects in diverse tissue types and is thought to act 
almost exclusively upon its canonical receptor within the nucleus, leading to gene transcriptional 
changes and the subsequent cellular response. However, not all the observed effects of vitamin 
D can be attributed to this sole mechanism, and other cellular targets likely exist but remain to be 
identified. Our recent discovery that vitamin D is a partial agonist of the Transient Receptor 
Potential Vanilloid family 1 (TRPV1) channel may provide new insights as to how this important 
vitamin exerts its biological effects either independently or in addition to the nuclear vitamin 
D receptor. In this review, we discuss the literature surrounding this apparent discrepancy in 
vitamin D signaling and compare vitamin D with known TRPV1 ligands with respect to their 
binding to TRPV1. Furthermore, we provide evidence supporting the notion that this novel 
vitamin D/TRPV1 axis may explain some of the beneficial actions of this vitamin in disease states 
where TRPV1 expression and vitamin D deficiency are known to overlap. Finally, we discuss 
whether vitamin D may also act on other members of the TRP family of ion channels.
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Introduction

Vitamin D is a lipophilic hormone that is essen-
tial in regulating calcium transport processes in 
many different tissues. Calcifediol (25-hydroxy 
vitamin D or 25OHD) and calcitriol (1,25- 
hydroxy vitamin D or 1,25OHD) are the major 
circulating forms of vitamin D present in the 
human body. Clinically, vitamin D levels are 
a measurement of circulating 25OHD in blood, 
with concentrations >70 nmol being considered 
optimal [1,2]. In addition to rickets, vitamin 
D deficiency is associated with many inflamma-
tory and autoimmune diseases and neurological 
disorders, including arthritis [3,4], psoriasis [5], 
multiple sclerosis [6,7], Alzheimer’s disease, and 
Parkinson’s disease [8]. Last year, vitamin 
D became a popular yet controversial topic 
since low levels of 25OHD are correlated with 
severe complications and increased mortality 
observed in the SARS-CoV-2/COVID-19 pan-
demic [9,10]. Studies suggest that adequate 
levels of vitamin D may prevent the initiation 
of a “cytokine storm” by suppressing the hyper- 
activation of the adaptive immune system and 

enhancing the innate immune system’s response 
to viral load [10–12]. Vitamin D is generally 
considered eliciting its effects by activating the 
nuclear vitamin D receptor (VDR), resulting in 
gene transcriptional changes that alter cellular 
behavior. However, a number of cellular effects 
have been observed that cannot be fully 
accounted for by the exclusive actions of vita-
min D on the VDR alone. For example, VDR is 
not expressed in naive T-cells [13–15]. 
Therefore, alternative molecular targets that 
underlie the effects of vitamin D likely exist, 
but these targets remain to be elucidated.

With respect to vitamin D and ion channel 
function, our laboratory has recently provided 
strong evidence that vitamin D can also directly 
act on the Transient Receptor Potential (TRP) 
Vanilloid family 1 (TRPV1) channel, a member 
of the TRP superfamily of ion channels [16]. 
Vitamin D has been shown to negatively regulate 
N-methyl-D-aspartate (NMDA) receptors, kainate 
receptors, and neuronal L-type voltage-sensitive 
calcium channels and may therefore confer neuro-
protection [17,18]. Our observations suggest that 
TRPV1, and perhaps other TRP channels, may be 
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novel cell-surface receptors for the biological 
actions of vitamin D. TRP channels are a family 
of nonselective cation channels that are distributed 
in most tissues throughout the body, and their 
activity can be modulated by environmental sti-
muli such as temperature, taste, pH, light, and 
nociception that regulate intracellular calcium 
levels and membrane excitability in many tissues 
[19–21]. Due to their crucial roles in diverse tissue 
types, TRP channels have attracted significant 
pharmaceutical interest [22–26] .

TRPV1 is a calcium-selective channel that is 
activated by heat, low pH, and various endogenous 
and exogenous agonists [27]. Interestingly, TRPV1 
is expressed in various tissues throughout the 
human body, including neurons, immune T-cells, 
nociceptive C fibers that innervate airways, and 
airway epithelial cells [24,28]. Therefore, TRPV1 
channels may mediate some of the biological 
actions of vitamin D that cannot be explained by 
its actions on the nuclear VDR alone [29]. In this 
review, we discuss the historical evidence for the 
actions of vitamin D, the mechanisms by which it 
may regulate TRPV1 channel activity, and the 
evidence for other TRP channel family members 
being potential targets for vitamin D.

The discovery of vitamin D

Initially sourced from cod liver oil, vitamin D’s 
discovery represented a breakthrough in the treat-
ment of rickets, a disease of impaired bone calci-
fication [30–32]. Further research revealed that 
children who suffered from rickets could also be 
cured by exposure to artificial ultraviolet (UV) 
light or summer sunlight [31,33]. This led to the 
concept that UV light induces vitamin D synthesis 
[34]. Vitamin D2 and D3 were subsequently iso-
lated and then identified as the major molecules 
that carry these antirachitic properties [35,36], 
confirming rickets as a disease of vitamin 
D deficiency resulting in hypocalcification of 
bone. Interestingly, bones from patients with rick-
ets could still calcify if sufficient calcium and 
phosphate were provided in the diet [32,37,38]. 
Therefore, it was concluded that vitamin 
D deficiency results in impaired calcium absorp-
tion and active transport of calcium required for 
bone mineralization [39,40], indicating that 

vitamin D directly facilitates intestinal calcium 
absorption. However, the precise cellular mechan-
ism by which vitamin D induces active calcium 
transport still remains a subject of debate.

Vitamin D, calcium transport, and 
unanswered questions

Early studies investigated the underlying cellular 
mechanisms by which vitamin D facilitates cal-
cium transport from the intestinal lumen to the 
bloodstream. It was initially proposed that vitamin 
D might act as a calcium carrier, where calcium 
and vitamin D form a complex that is then 
absorbed into the blood [41]. However, subse-
quent research determined that vitamin D must 
be metabolized into 25OHD and 1,25OHD within 
the body after absorption to become biologically 
active. Thus, this theory was insufficient to fully 
explain the link between vitamin D and intestinal 
calcium transport. A second concept was intro-
duced whereby vitamin D alters passive calcium 
permeability via a paracellular mechanism [42] as 
vitamin D increases paracellular calcium flux in 
both directions [43–45], via alteration in gap- 
junctional permeability [46,47]. Although the pre-
cise mechanisms by which calcium permeability is 
altered by vitamin D still remain unclear, a third 
theory suggests that vitamin D can increase active 
calcium transport across the intestinal membrane 
[45,48]. Collectively, these concepts indicated that 
vitamin D regulates endogenous calcium transport 
processes in the intestine [40,41,49]. However, 
precisely how this occurs remained to be eluci-
dated and was partially explained by the subse-
quent discovery of the VDR.

In search of the VDR

The discovery of the canonical nuclear VDR can 
be traced back to early observations of animal 
models of rickets treated with a high dose of vita-
min D. These animals could achieve an optimum 
calcium absorption in 3–5 h. In contrast, animals 
treated with a lower dose of vitamin D (100 IU) 
required 12–15 h to reach maximum calcium 
absorption [50,51]. This notable time lag between 
the oral vitamin D administration and the max-
imum enhancement of calcium absorption 
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suggested that vitamin D either induced the 
expression of crucial transport enzymes or altered 
plasma membrane structures necessary for calcium 
absorption. Subsequent experiments revealed that 
vitamin D promotes protein synthesis in the 
mucosal cells of the intestine [50–53], and the 
VDR was located in the nuclei of enterocytes [-
54–56]. By the late 1980s, the complete human 
VDR cDNA was cloned and expressed [57]. 
Many of the observed actions of vitamin D are 
generally considered occurring through an inter-
action between the nuclear VDR and the retinoid 
X receptor that initiates downstream gene tran-
scription and protein synthesis to elicit the cellular 
response [58,59].

Although the now-established classical 
1,25OHD/VDR signaling axis can reasonably 
explain the longer-term changes in intestinal cal-
cium absorption, it still cannot fully explain the 
phenomenon of the rapid calcium flux induced by 
vitamin D. In this regard, it has been shown that 
1,25OHD increases calcium uptake within 30 min 
of administration in an ex vivo intestinal perfusion 
model [60]. Furthermore, 1,25OHD induces acute 
calcium uptake into intestinal lysosomes or iso-
lated enterocytes within 10–20 min of administra-
tion [61,62]. These findings imply that other as yet 
unidentified targets for vitamin D may exist, as the 
classical 1,25OHD/VDR signaling axis involves 
gene transcriptional changes that require many 
hours to manifest. Therefore, it is plausible that 
vitamin D may directly act on ion channels/trans-
porters, explaining the observed rapid changes in 
calcium flux. This concept is supported by the 
observation that 25OHD binds to the plasma 
membrane, implying that 25OHD has the poten-
tial to localize and interact with membrane pro-
teins [56].

TRPV1 as a novel VDR

In addition to vitamin D’s classical role in regulat-
ing calcium absorption, more recent studies have 
confirmed that this vitamin also possesses a direct 
regulatory role in the human immune system 
[63,64]. In this regard, vitamin D deficiency is 
associated with autoimmune diseases such as 
inflammatory bowel disease, type 1 diabetes, and 
multiple sclerosis [6,7,65,66], with 1,25OHD 

inhibiting the progression of these diseases 
[3,67,68]. Interestingly, very recent research sug-
gests that vitamin D deficiency is associated with 
severe symptoms and a high fatality rate in 
COVID-19 patients [10], with sufficient vitamin 
D levels required to oppose the initiation of an 
immune cell-mediated cytokine storm [11]. It is 
thought that vitamin D may dampen the over- 
reactive Th1/CD4+ immune cells by reducing 
their production of pro-inflammatory cytokines 
such as interferon gamma (INFγ), IL17, and 
tumor necrosis factor alpha (TNFα) [69,70]. Of 
note is the fact that naive T-cells do not express 
any VDRs, indicating that vitamin D may act 
through additional, as yet undiscovered, pathways 
to regulate cellular responses in the immune 
system.

While the classical 1,25OHD/VDR axis under-
lies many of the observed effects of vitamin D, the 
evidence presented above indicates that additional 
cellular targets may mediate some of the docu-
mented effects of this vitamin. In this regard, our 
group recently discovered that TRPV1 channel 
activity is regulated by physiological nanomolar 
concentrations of both 25OHD and 1,25OHD, 
where they act as partial agonists of TRPV1 [16].

The potential importance of this discovery is 
supported by the substantial overlap in the disease 
profiles associated with vitamin deficiency and 
the expression profile of TRPV1. These include 
metabolic [65,71] and nociceptive disorders 
[72,73], inflammation, autoimmune disease 
[74,75], multiple sclerosis [7,76], Parkinson’s dis-
ease [8,77,78], psoriasis [79,80], and inflammatory 
lung disease [81,82]. With respect to the immune 
system, TRPV1-mediated calcium influx is a key 
step required for CD4+ T-cell activation and pro-
liferation [83]. In our recent study, we observed 
that physiological concentrations of either 
25OHD or 1,25OHD significantly reduce TNFα 
and INFγ production resulting from the T-cell 
receptor (TCR) activation of CD4+ T-cells [16]. 
These results suggest that 25OHD and 1,25OHD 
may downregulate the activation of naive T-cells 
via a VDR-independent mechanism by suppres-
sing TRPV1 activity. Since anti-CD3 and anti- 
CD28 were used to activate the TCR pathway, 
we suggested that 25OHD and 1,25OHD may 
reduce the protein kinase C (PKC)-mediated 
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potentiation of TRPV1, reducing cytokine pro-
duction [84,85].

Numerous studies indicate that TRPV1 is 
related to neuropathic pain caused by inflamma-
tory disease and cancer [86]. Of note, vitamin 
D deficiency is also associated with chronic pain 
experienced in cancer and metabolic diseases and 
may contribute to its progression [87,88]. 
Surprisingly, topical application of capsaicin, 
a full TRPV1 agonist, or vitamin D demonstrates 
promising results in relief of neuropathic pain 
[89,90]. This may seem counterintuitive although 
excessive activation of nociceptive neurons with 
capsaicin is thought to lead to chronic desensitiza-
tion of TRPV1 and a subsequent reduction in 
neuronal activity. Of direct relevance to nocicep-
tive disorders, our recent results demonstrated that 
25OHD acutely reduced the capsaicin-induced cal-
cium influx into trigeminal neurons within min-
utes of application. This finding also provides 
further evidence that the mechanism involved is 
independent of its actions on the nuclear VDR and 
does not involve transcriptional regulation in this 
system. Taken together, our findings support the 
concept that vitamin D may act directly on TPRV1 
to modulate channel activity and therefore be 
a potentially new mechanism involved in the reg-
ulation of nociceptive neuronal activity.

Vitamin D as an endogenous partial agonist 
of TRPV1

TRPV1 acts as a transducer of chemical and ther-
mal stimuli such as heat and acidity, as well as 
responding to endogenous and exogenous ligands 
[19–21]. TRPV1 was first identified as the cellular 
receptor for capsaicin, the major active compound 
found in hot chili peppers [73,91]. Since this dis-
covery, a number of endogenous lipophilic com-
pounds have been shown to regulate TRPV1 
activity. These include oxidized linoleic acid meta-
bolites [92,93], N-acylethanolamines and 
N-acyldopamines (e.g. oleoyl dopamine, OLDA) 
[94,95], anandamide [96], phosphoinositides 
[97,98] and long-chain acyl CoA esters [97,99]. 
Many of these endogenous ligands likely play 
a role in mediating inflammatory hyperalgesia 
and thermal allodynia [94,95,100–102] (Table 1). 
It is worth noting that most of these ligands are 

full TRPV1 agonists or modulators, whereas there 
are very few examples of antagonists or partial 
agonists that may negatively regulate TRPV1 activ-
ity, provide basal TRPV1 activity, or oppose the 
actions of full agonists.

Our recent research has now identified the vita-
min D metabolites 25OHD and 1,25OHD as endo-
genous partial agonists of TRPV1 [16]. The 
application of physiological nanomolar concentra-
tions of 25OHD or 1,25OHD alone evoked small 
but measurable TRPV1 currents that were ~10% of 
the capsaicin- or OLDA-induced currents, but 
unlike full agonists such as capsaicin, these small 
currents did not desensitize. Conversely, the 
TRPV1 stimulatory effects of the full agonists cap-
saicin and OLDA were reduced in the presence of 
25OHD or 1,25OHD, indicating that these vitamin 
D metabolites are partial agonists of TRPV1. To 
further elucidate the mechanism by which 25OHD 
modulates TRPV1, our group studied TRPV1 sin-
gle-channel activity TRPV1 in the presence of 
25OHD, as this vitamin D metabolite is the most 
common circulating form of this vitamin. We 
found that 25OHD augments TRPV1 open prob-
ability by stabilizing the open state and increasing 
the frequency of opening events. 25OHD also 
reduced TRPV1 open probability in the presence 
of the full agonist capsaicin. These results further 
confirm that 25OHD is a partial agonist of TRPV1 
and, therefore, can oppose the actions of endogen-
ous full agonists of TRPV1.

Where does 25OHD bind to TRPV1?

Previous research on endogenous TRPV1 ligands 
might provide clues as to how and where 25OHD 
acts upon TRPV1. For example, the endogenous 
cannabinoid anandamide is recognized as a low- 
affinity agonist of TRPV1 [96,103]. In trigeminal 
neurons, the application of anandamide can sig-
nificantly reduce capsaicin-induced TRPV1 cur-
rents. Anandamide can also augment the low-pH 
–induced calcium uptake mediated by TRPV1 
[104]. In contrast, we demonstrated that 25OHD 
did not alter the low-pH–induced TRPV1 activity. 
Therefore, 25OHD does not seem to act in the 
same manner as anandamide and may interact 
with TRPV1 via a different mechanism.
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Table 1. A list of identified agonists, partial agonists, and modulators of TRPV1

Name and type of 
agonist 
[full agonist, 
partial agonist, or 
modulator]

TRPV1 overexpression systems

Biological effects
PKC potentiation 

effects In silico docking
Source of 

agonist
Direct activation 

of TRPV1

Effect on 
capsaicin/low- 

pH–induced 
TRPV1 activities

Capsaicin 
[full agonist]

Yes, EC50 = 34 nM [94], 
26 nM [125]; EC50 

= 0.23 µM [92] in 
HEK293 cells

ND Produces thermal 
hyperalgesia in 
rodents [27,94]

Potentiates 
capsaicin- 
induced TRPV1 
activities 
[106,107]

Vanilloid-binding 
pocket in the “head- 
down, tail -up” 
configuration [126]

Exogenous 
compound from 
hot chili 
peppers [27]

Resiniferatoxin 
(RTX) 
[full agonist]

Yes, EC50 

= 0.15–0.2 nM 
[127,128]

Reduces 
capsaicin- 
induced TRPV1 
activity [127]

Produces transient 
or chronic thermal 
hyperalgesia in 
rodents [129]

Activates PKC 
[130] and 
reduces PKC- 
potentiated 
capsaicin- 
induced TRPV1 
activities [127]

Vanilloid-binding 
pocket [91,131]

Tricyclic 
diterpene from 
the Moroccan 
cactus, 
Euphorbia 
resinifera [132]

25-OHD and 
1,25OHD 
[partial agonist]

Yes, 100 nM 25OHD or 
1,25OHD induces 
TRPV1-mediated 
currents [16]

Reduces 
capsaicin- 
induced 
sustained 
currents [16]

Reduces 
capsaicin-induced 
current in TRG; 
reduces T-cell 
activation and 
cytokine 
production [16]

Inhibits PKC 
potentiation 
requiring S502 
[16]

Vanilloid-binding 
pocket, perpendicular 
to capsaicin-binding 
position [16]

UVB-mediated 
synthesis, 
hepatic and 
renal 
metabolism

N-Arachidonoyl- 
ethanolamine 
(anandamide, 
AEA) 
[partial agonist]

Yes, EC50 = 5.3 µM 
[103], EC50 = 0.55 µM 
[125]

Reduces effects 
of capsaicin but 
increases low-pH 
–induced 
calcium influx in 
DRG [104,133]

Induces arterial 
relaxation [103]

Potentiates AEA- 
induced TRPV1 
activity [134]

Binds in regions 
formed by S1–S4 in 
TRPV1, with head 
group interacting 
with Y554 [135]

CNS [103] and 
macrophages 
[136]

N-arachidonoyl- 
dopamine 
(NADA) 
[full agonist]

Yes, EC50 = 63 nM [94]; 
≈50 nM [125]

Alters capsaicin- 
induced 
desensitization of 
TRPV1 currents 
[125]

Increases 
intracellular 
calcium in rat DRG 
[125]; produces 
thermal 
hyperalgesia in 
rodents [94]

Potentiates 
effects of NADA. 
Requires both 
S502 and S800 
[137]

ND CNS: striatum, 
hippocampus, 
cerebellum, and 
dorsal root 
ganglia [138]

N-oleoyldopamine 
(OLDA) 
[full agonist]

Yes, EC50 = 36 nM [94] 
in HEK293 cells

ND Produces thermal 
hyperalgesia in 
rodents [94]

Potentiation of 
OLDA-induced 
TRPV1 activity 
[101]

ND CNS: striatum, 
hippocampus, 
cerebellum, and 
dorsal root 
ganglia [138]

N-oleoyl- 
ethanolamide 
(OEA) 
[full agonist]

No measurable 45Ca2+ 

uptake by OEA in HT5-1 
cells [139]. No 
measurable current in 
Xenopus oocytes [140]

Reduces 
capsaicin- 
induced 45Ca2+. 
[139] Enhances 
low-pH–induced 
TRPV1 currents 
[140]

Increases DRG Ca2 

+ influx in a PKC- 
dependent 
manner [140]

Potentiates OEA- 
induced TRPV1 
activity [140]

ND Gastrointestinal 
tract [141]

2-Arachidonoyl- 
glycerol (2AG) 
[full agonist]

Yes, EC50 = 0.85 µM in 
HEK293 cells [142,143]

Reduces 
capsaicin- 
induced Ca2 

+-influx [142]

Induces 
vasorelaxation in 
rat mesenteric 
arteries [143]

PKC inhibition 
does not affect 
2-AG-induced 
TRPV1 activity 
[143]

ND 2-AG is 
a metabolite of 
diacylglycerol 
and 
biosynthesized 
in the DRG 
[143]

20(S)-HETE 
[full agonist]

Yes, EC50 = 12 µM in 
HEK293 cells [92]

Rescues 
capsaicin- and 
low-pH–induced 
TRPV1 current 
desensitization 
[92]

10 µM 20-HETE 
induces currents 
and Ca2+ influx in 
mouse DRG 
neurons [92]

PKC and PKA 
inhibitors reduce 
20-HETE-induced 
TRPV1 activities 
[92]

ND Arachidonic 
acid metabolite 
[92]

12(S)-HpETE 
[full agonist]

Yes, EC50 = 8 µM in 
HEK293 cells [93]

ND ND ND ND Initially found in 
platelets [144]

(Continued )
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Our computer modeling of the human TRPV1 
predicts that 25OHD binds to TRPV1 in the same 
vanilloid-binding pocket as the agonist capsaicin 
and the antagonist capsazepine. However, 25OHD 
seems to adopt a different binding conformation 
than either of these two TRPV1 ligands within this 
binding pocket. These findings suggest that 
25OHD may interact with intracellular, not extra-
cellular, binding residues. As the pH sensitivity of 
TRPV1 is determined by extracellular binding 
sites, our modeling results may help explain why 
25OHD does not modulate low-pH–induced 
TRPV1 currents, as is the case with anandamide. 
With respect to the binding location for 25OHD, 
our modeling predicts that 25OHD binds in the 
upper region of the vanilloid-binding pocket per-
pendicular to the binding sites for capsaicin and 
capsazepine. 25OHD is positioned parallel to the 
S4-S5 linker, whereas capsaicin and capsazepine 
are positioned perpendicular to the S4-S5 linker. 

The previously published cryoEM structure of 
TRPV1 indicates that the vanillyl ring and amide 
bonds of capsaicin exhibit van der 
Waals interactions and hydrogen bonding with 
the T511, S512, T550, and E570 residues. The 
flexible acyl tail of capsaicin also interacts with 
F543, M547, F587, and L669 through van der 
Waals force [91,105]. These same interacting resi-
dues are involved in the binding of resiniferatoxin, 
another full agonist of TRPV1 [91]. Although the 
TRPV1 antagonist capsazepine possesses more 
complex aromatic groups next to its aryl ring in 
the head region, its amide neck and lipophilic acyl 
tail regions adopt the same configuration as cap-
saicin, with capsazepine side-chain atoms interact-
ing with the same TRPV1 residues involved in 
capsaicin-binding site. In contrast to capsaicin 
and capsazepine, 25OHD possesses cyclohexane 
and cyclopentane rings with a hydroxyl group at 
the end of each molecule (Figure 1). 25OHD also 

Table 1. (Continued). 

Name and type of 
agonist 
[full agonist, 
partial agonist, or 
modulator]

TRPV1 overexpression systems

Biological effects
PKC potentiation 

effects In silico docking
Source of 

agonist
Direct activation 

of TRPV1

Effect on 
capsaicin/low- 

pH–induced 
TRPV1 activities

15(S)-HpETE 
[full agonist]

Yes, EC50 = 8.7 µM in 
HEK293 cells [93]

ND ND ND ND Airway 
epithelial cells, 
eosinophils, 
blood vessels, 
and 
reticulocytes 
[144]

5(S)-HpETE 
[full agonist]

Yes, EC50 = 9.2 µM in 
HEK293 cells [93]

ND ND ND ND Neutrophils 
[145]

Phospho-inositide 
PtdIns(4)P (PIP) 
[modulator]

Yes, EC50 = 4.9 µM 
(+100 mV)/11.1 µM 
(−100 mV) in HEK293 
cells [98]

Reduces 
capsaicin- 
induced 
desensitization of 
TRPV1 currents 
[98]

Increases Ca2+ 

influx in DRG 
leads to depletion 
of PIP2 [146]

ND ND Phospholipid 
component of 
cell membranes 
[146,147]

Phospho-inositide 
PtdIns(4,5)P2 
(PIP2) 
[modulator]

Yes, EC50 = 32.4 µM 
(+100 mV)/70.2 µM 
(−100 mV) in HEK293 
cells [98]

Reduces 
capsaicin- 
induced 
desensitization of 
TRPV1currents 
[98]

Increases Ca Ca2+ 

influx in DRG, 
leading to 
depletion of PIP2 

[146]

ND ND Lipid 
component of 
cell membrane 
[146,147]

Long-chain acyl 
CoA esters (LC- 
CoAs) 
[modulator]

No, LC-CoAs do not 
activate TRPV1 directly 
but potentiate 
capsaicin-induced 
TRPV1 activity and 
rescue desensitization. 
[99]

Rescues 
capsaicin- and 
low pH 
desensitization of 
TRPV1 currents 
in [99]

ND ND Predicted to interact 
with R702 and K711 
on the TRP domains 
adjacent to the 
cytoplasmic 
membrane interface 
[99]

Ubiquitous 
[148,149]

ND: not determined; EC50: concentration that activated 50% of the maximum TRPV1 activity; agonists, partial agonists and modulators of TRPV1 . 
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Figure 1. Structures of several known TRPV1 ligands compared to the structure of 25OHD.

a. 
                                            522                        543  547 
TRPV1  RP---SMKTLFVDSYSEMLFFLQS---LFMLATVVLYFSHLKEYVASMVFSLALGWTNML  553 
TRPA1  KRN-YFMD-----ISNVLEWIIYTTGIIFVLPLFVEIPAHL—-QWQCGAIAVYFYWMNFL  847 
TRPV5  GASRYFGKTILGGPFHV-IIITYA---SLVLVTMVMRLTNTNGEVVPMSFALVLGWCSVM  466 
TRPV6  GVTRFFGQTILGGPFHV-LIITYA---FMVLVTMVMRLISASGEVVPMSFALVLGWCNVM  506 

b. 

TRPV1 TRPA1 equivalent     
residue 

TRPV5 equivalent     
residue 

TRPV6 equivalent     
residue 

F522 F818 L435 M475 

F543 I837 F456 F496 

L547 F841 L460 L500 

Figure 2. (a) Amino acid sequence alignments of TRPA1, TRPV1, TRPV5, and TRPV6, illustrating that the predicted 25OHD-interacting 
residues within TRPV1 (F522, F543, and L547) are well conserved in the other three TRP channels (bold). (b) Amino acid numbering 
of the three TRPV1 residues predicted to interact with 25OHD and the equivalent residues in TRPA1, TRPV1, and TRPV6.
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does not possess the planar aromatic ring in the 
head region and an amide group in the neck 
region in the structure of capsaicin. Instead, the 
chair conformation rings of 25OHD likely result in 
loss of rigidity and also weaken any interactions 
with the same binding residues as full agonists of 
TRPV1. However, this lack of rigidity is predicted 
to allow 25OHD to move more freely within the 
vanilloid-binding pocket, such that the head and 
tail of 25OHD reside in the upper portion of the 
pocket. The 25OHD/TRPV1 in silico model pre-
dicts that 25OHD interacts with F522, F543, and 
L547 (Figure 2). Interestingly, the known capsai-
cin-binding sites F543 and L547, but not Y511, 
S512, T550, or E570, were predicted in the list of 
the proposed interacting residues in the 25OHD/ 
TRPV1 model, further supporting the notion that 
25OHD resides in the vanilloid-binding pocket, 
but not precisely at the same location as capsaicin 
and capsazepine. This unique property of 25OHD 
may allow 25OHD to weakly activate TRPV1 yet 
interfere with capsaicin binding within the vanil-
loid-binding pocket and explain the effects of 
25OHD as a TRPV1 partial agonist.

In our recent study, we further investigated 
the relationship between 25OHD and capsaicin 
binding at TRPV1 by generating alanine point 
substitutions at predicted capsaicin-interacting 
residues Y511, S512, T550, L553, and E570 resi-
dues. Consistent with previous studies, all of 
these alanine mutants, except for L553, signifi-
cantly reduced TRPV1 capsaicin sensitivity 
[91,105]. Interestingly, only the Y511A and 
S512A substitutions abolished the weak stimula-
tory effect of 25OHD on TRPV1. Overall, these 
results are in good agreement with the predicted 
binding of 25OHD within the vanilloid-binding 
pocket, but not at the same location as capsaicin 
and capsazepine. Due to the flexible nature of 
the 25OHD molecule, additional interacting resi-
dues likely exist as the in silico modeling cannot 
take into account the full range of binding con-
firmations possible with such a flexible ligand. 
Therefore, further structure–function studies are 
necessary to fully characterize and map the pre-
cise residues participating in 25OHD binding to 
TRPV1.

Vitamin D regulates PKC-mediated 
potentiation of TRPV1

TRPV1 activity is potentiated through phosphor-
ylation by PKC, with residues S502 and S800 being 
identified as the major phospho-acceptor sites 
within TRPV1 [106–108]. We also demonstrated 
that 25OHD attenuates the PKC-mediated poten-
tiation of capsaicin-induced TRPV1 current by 
significantly reducing TRPV1 open probability. 
Furthermore, we identified the S502, but not 
S800, as the phospho-acceptor residue playing 
a key role in this effect of 25OHD. Our in silico 
model predicts that S502 is located near the 
entrance of the capsaicin-binding pocket and in 
close proximity to the Y511 and S512 residues that 
are important in mediating the effects of 25OHD 
on TRPV1. It is suggested that these three residues 
may play a role in guiding 25OHD toward its 
binding sites, i.e., 25OHD may require all three 
residues as initial contact points to induce 
a conformational change in TRPV1, allowing 
25OHD to reach its optimal position within the 
binding pocket.

Does vitamin D regulate other TRP channels?

Our findings on TRPV1 provide direct evidence 
that vitamin D is capable of regulating calcium 
homeostasis via a novel mechanism in addition 
to its actions on the well-documented canonical 
nuclear VDR pathway. These results also raise the 
intriguing possibility that vitamin D may also reg-
ulate other TRP family members. For example, 
TRPV6 is crucial for active calcium transport in 
the intestine [109,110] and 1,25OHD has been 
shown to alter TRPV6 expression in gut epithelial 
cells [111]. Interestingly, the overexpression of 
TRPV6 in VDR knockout mice maintains calcium 
absorption, indicating that calcium absorption 
through TRPV6 can occur independently of the 
VDR [112]. Furthermore, TRPV5 is responsible 
for calcium uptake in the kidneys, and its expres-
sion level is also influenced by 1,25OHD levels 
[113]. TRPV5 and TRPV6 also possess high selec-
tivity for calcium over sodium ions, with 
a permeability ratio (P) of PCa>PNa of ~100, 
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while others TRP channels display more selectivity 
for sodium over calcium ions [114,115]. As the 
activity of TRPV5 and TRPV6 are known to be 
modulated by a variety of lipophilic ligands, it is 
plausible that vitamin D may also regulate the 
activity of these two TRP family members. 
Therefore, further investigation into this possibi-
lity is warranted as it may shed new light on the 
mechanisms by which this important vitamin eli-
cits its biological effects. Although TRPV1 is 
involved in a multitude of cellular pathways, it 
has been shown that TRPV1 knockout mice exhi-
bit a relatively normal phenotype compared to 
wild-type mice, suggesting that other TRP family 
members may be present and compensate for the 
loss of TRPV1 [116–118]. For example, TRPA1 is 
thought to act in concert with TRPV1, with both 
channel types being expressed in a majority of 
sensory nerves as well as other tissue types in the 
human body [81,119–122]. Given that TRPA1 is 
also regulated by lipophilic ligands, this TRP 
family member may also be regulated by vita-
min D.

Our docking simulations predict a weak inter-
action of 25OHD within the vanilloid-binding 
pocket of TRPV1 due to the flexibility of the 

25OHD structure. This apparent flexible nature 
of the atomistic interaction between 25OHD and 
TRPV1 provides additional evidence supporting 
the concept that vitamin D may regulate addi-
tional TRP family members’ activity. This flexibil-
ity of binding is in direct contrast to the higher 
affinity interaction of TRPV1 with other TRPV1- 
specific ligands such as capsaicin that are more 
rigid in their structure. If this is indeed the case, 
then vitamin D has the potential to be pharmaco-
logically promiscuous, also modulating the activity 
of other TRP family members. This notion is 
further supported by the analysis of the amino 
acid sequences of the above mentioned TRP chan-
nels, TRPA1, TRPV1, TRPV5, and TRPV6, where 
three of the predicted 25OHD interacting residues 
within TRPV1 (F522, F543 and L547) are either 
the same or possess similar side-chain properties 
to the equivalent residues in these other TRP 
channels (Figure 2). Furthermore, we performed 
in silico homology modeling to compare the puta-
tive vitamin D–binding pocket structure within 
TRPV1 with the structures of TRPA1, TRPV5, 
and TRPV6. This modeling revealed that there is 
a very good agreement for the location of these 
predicted interacting residues within the structure 

Figure 3. In silico homology modeling comparing the structure and 25OHD-interacting residues in TRPV1 with the equivalent 
residues (Figure 2) and structures of TRPA1 (a), TRPV5 (b), and TRPV6 (c). TRPV1 (light blue [16]), TRPA1 (red, PDB# 6V9W), TRPV5 
(light green, PDB# 6B5V), and TRPV6 (orange, PDB# 62EF). The predicted binding site location for the 25OHD structure (gray ball and 
stick) within TRPV1 [16] is also included for reference.
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of all four TRP channels (Figure 3). Taken 
together, these results support the notion that 
vitamin D may also modulate the activity of 
other TRP family members, and future studies 
are warranted to further investigate this fascinating 
possibility.

Conclusions

The major vitamin D metabolites such as 25OHD 
and 1,25OHD should now be added to the list of 
known endogenous ligands for TRPV1. This obser-
vation may have important implications for fully 
understanding the biological actions of this vitamin 
in the human body. On its own, vitamin D may act 
as a partial TRPV1 agonist that may promote 
a small but sustained calcium influx into cells with-
out initiating calcium-induced desensitization. 
Conversely, vitamin D can also act as an antagonist 
in the presence of a full agonist, therefore decreasing 
TRPV1-mediated calcium influx and may act to 
oppose excessive calcium influx and over- 
activation of calcium-dependent cellular signaling. 
This dual function of vitamin D on TRPV1 activity 
may provide an elegant means to not only generate 
a tonic basal calcium signal but also prevent over- 
activation or calcium-induced damage in the pre-
sence of a full agonist. Future research on this topic 
will contribute to a greater understanding of dis-
eases where vitamin D deficiency and TRPV1 activ-
ity have been associated, such as chronic pain 
[87,123], and autoimmune diseases including multi-
ple sclerosis and type 1 diabetes [11,66,75,82,124].
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