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Abstract
Although most women with luminal breast cancer do well on endocrine therapy alone, some will develop fatal recurrence
thereby necessitating the need to prospectively determine those for whom additional cytotoxic therapy will be beneficial.
Categorical combinations of immunohistochemical measures of ER, PR, HER2, and KI67 are traditionally used to classify
patients into luminal A-like and B-like subtypes for chemotherapeutic reasons, but this may lead to the loss of prognostically
relevant information. Here, we compared the prognostic value of quantitative measures of these markers, combined in the
IHC4-score, to categorical combinations in subtypes. Using image analysis-based scores for all four markers, we computed
the IHC4-score for 2498 patients with luminal breast cancer from two European study populations. We defined subtypes
(A-like (ER+ and PR+ : and HER2- and low KI67) and B-like (ER+ and/or PR+ : and HER2+ or high KI67)) by
combining binary categories of these markers. Hazard ratios and 95% confidence intervals for associations with 10-year
breast cancer-specific survival were estimated in Cox proportional-hazard models. We accounted for clinical prognostic
factors, including grade, tumor size, lymph-nodal involvement, and age, by using the PREDICT-score. Overall, Subtypes
[hazard ratio (95% confidence interval) B-like vs. A-like= 1.64 (1.25–2.14); P-value < 0.001] and IHC4-score [hazard ratio
(95% confidence interval)/1 standard deviation= 1.32 (1.20–1.44); P-value < 0.001] were prognostic in univariable models.
However, IHC4-score [hazard ratio (95% confidence interval)/1 standard deviation= 1.24 (1.11–1.37); P-value < 0.001;
likelihood ratio chi-square (LRχ2)= 12.5] provided more prognostic information than Subtype [hazard ratio (95%
confidence interval) B-like vs. A-like= 1.38 (1.02–1.88); P-value= 0.04; LRχ2= 4.3] in multivariable models. Further,
higher values of the IHC4-score were associated with worse prognosis, regardless of subtype (P-heterogeneity= 0.97).
These findings enhance the value of the IHC4-score as an adjunct to clinical prognostication tools for aiding chemotherapy
decision-making in luminal breast cancer patients, irrespective of subtype.

Introduction

Breast cancer is the most common malignancy and the
leading cause of cancer-related mortality among women

worldwide [1]. With the advent and increasing uptake
of screening programs, the incidence of early stage, hor-
mone receptor positive (HR+ )/luminal-like [estrogen
receptor positive (ER+ ) and/or progesterone receptor
positive (PR+ )] breast cancer has continued to rise [2, 3].
Accounting for almost 70% of all cases, luminal-like
tumors comprise the majority of breast cancers in Western
populations [4]. These tumors are notably heterogeneous,
encompassing subtypes with distinct molecular profiles
and clinical outcomes [5–8]. Based on gene expression
profiling, two main subtypes of luminal-like tumors
have been identified. Denoted as luminal A and B, these
subtypes are differentiated by their relative expressions
of hormone and proliferation-related genes and, in a
subset of luminal B tumors, by the amplification of the
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human epidermal growth factor receptor 2 (HER2/neu)
gene [5, 9].

Although most women with luminal-like disease do well
on endocrine therapy alone, some of them develop fatal
recurrence thereby necessitating the need for additional
cytotoxic therapy. Owing to the debilitating side-effects
associated with chemotherapy, the need to prospectively
distinguish women for whom its addition will be beneficial
from those for whom this may not be needed remains
a challenge in translational breast cancer research [10].
Several prognostic tools have been developed to address
this, including those that rely on standard clinical prognostic
factors [11–13] and others, such as the IHC4-score, that
are based on immunohistochemical measures on ER, PR,
HER2, and KI67 [13]. In addition, some international
guidelines have endorsed the use of immunohistochemistry-
based (i.e., luminal A-like and B-like) subtypes together
with multiparameter molecular tests [14–17] to aid che-
motherapy decision-making [18–20]. However, because
standard immunohistochemistry-based luminal A-like/
B-like subtype definition is based on dichotomous cate-
gories of the individual immunohistochemical markers,
this may lead to the loss of prognostically relevant infor-
mation. Nonetheless, it remains unclear whether quantita-
tive measures of ER, PR, HER2, and KI67 provide more
prognostic information than categorial combinations in
breast cancer subtypes.

Multiparameter molecular testing is one method of
quantification of hormone and proliferation-related genes
that has been shown to be prognostic in breast cancer
[14–17], but this is expensive, and it remains unclear
whether it improves the prognostication of clinical tools
such as PREDICT. PREDICT [11, 12] is a popular, breast
cancer prognostication, and treatment benefit tool that
remains the only breast cancer prognostication tool to
be endorsed by the American Joint Committee on Cancer
to date. Like traditional clinical prognostic factors in
PREDICT, immunohistochemical markers are cheap to
perform, widely available, and are typically assessed as
part of the routine workup for most breast cancer patients.
It has previously been shown that combined visual assess-
ments of ER, PR, HER2, and KI67 in the IHC4-score
provided additional prognostic information to standard
clinicopathological factors and contained comparative
prognostic information to the 21-gene (Oncotype DX) panel
test [13].

Owing to the limitations of visual scoring, particularly
for KI67 [21, 22], automated methods have been suggested
as potential alternatives. We have previously demonstrated
the independent prognostic value of automated scores for
ER, PR, HER2, and KI67 separately, but it remains unclear
whether combining these in the IHC4-score algorithm
will provide additional prognostic information to

immunohistochemistry-based subtypes or other clinical
prognostic factors. Further, although patients with luminal
A-like breast cancer generally have better clinical outcomes
than those with luminal B-like disease [5, 9, 16], it is
unknown if the dynamic range of the IHC4-score could be
leveraged to further stratify these patients into clinically
relevant subgroups for treatment decision-making.

Our primary aim in this study was, therefore, to inves-
tigate the comparative prognostic performance of image
analysis-based, quantitative, measures of ER, PR, HER2,
and KI67, combined in the IHC4-score, vs. categorical
combinations of these markers in luminal (A-like/B-like)
breast cancer subtype. As a secondary aim, we evaluated the
prognostic significance of the image analysis-based IHC4-
score in relation to clinical prognostic factors, combined in
the clinical treatment score (C-score) and PREDICT-score.

Materials and Methods

Study population

The current analysis included 2498 patients with luminal-
like invasive breast cancer from two study populations from
Poland (N= 558) and the United Kingdom (N= 1940). The
analysis comprised of women with luminal-like, i.e., ER+
and/or PR+ tumors and for whom we also had complete
data on image analysis-based scores for ER, PR, HER2, and
KI67 (Fig. 1). These scores were obtained by digital image
analysis of tissue microarrays and analyzed as part of other
projects [23–25] within the Breast Cancer Association
Consortium. Details of both study populations have
been previously described [26, 27], but in brief: The Polish
Breast Cancer Study is a population-based study in Poland
that enrolled women 20–74 years with histologically or
cytologically confirmed breast cancer at five participating
hospitals in Warsaw and Lodz over a three-year period
between 2000 and 2003 [27]. The Study of Epidemiology
and Risk Factors in Cancer Heredity (SEARCH) is
a population-based study that began in the UK in 1996
[26]. Patients were ascertained through the Eastern
Cancer Registration and Information Center and included
women < 55 years of age diagnosed with invasive breast
cancer between 1991 and mid-1996 who were alive at the
start of the study and those < 70 years who were diagnosed
from mid-1996 onwards.

Data on relevant clinicopathological characteristics,
including ER, PR, HER2, histologic grade, tumor size,
nodal involvement, endocrine therapy, and systemic therapy
were obtained from clinical records. Patients were followed
up from recruitment for the development of outcomes
of interest, i.e., breast cancer-specific deaths. Among the
patients included in this analysis, a total of 316 breast
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cancer-specific deaths (N= 255 and 61, for the SEARCH
and Polish breast cancer studies, respectively) occurred over
a median follow-up period of 7.05 years (8.01 and 5.0 years
for the SEARCH and Polish study populations, respec-
tively). In both studies, deaths were ascertained through
linkage to registries, as well as by curating clinical records.
Ethical approvals were obtained from local ethics commit-
tees and all participants provided written informed consent.

Immunostaining and scoring of tissue microarrays
for ER, PR, HER2, and KI67

Staining for all four markers was performed in the respec-
tive study groups by using standard laboratory techniques
(Supplementary Table 1). Tissue microarray sections for ER
and PR were stained by using mouse monoclonal antibodies
6F11/2 (Novocastra) and PR636 (Dako) clones, respec-
tively, while tissue microarrays for HER2 and KI67 were
stained using Herceptest kit K5207 (Dako) and MIB-1
(Dako), respectively. Dichotomous categories (positive and
negative) of ER, PR, and HER2 were obtained from clinical
records. ER and PR were scored using the Allred scoring
method and values > 2 ( > 10% positive cells) were con-
sidered positive. For HER2, 3+ on immunohistochemistry
or HER2 amplification on fluorescent in situ hybridization
were HER2+ . Quantitative measures on these markers
were generated by using digital pathology image analysis
performed in two institutions in the UK: the Cancer
Research Institute in Cambridge and the Institute of Cancer

Research (ICR) in London. ER, PR, and HER2 were scored
in Cambridge while KI67 was scored at the ICR. Both
institutions used the Ariol machine (Leica Biosystems,
Newcastle UK) for scoring. Ariol has functionality for the
automatic separation of malignant and non-malignant cells
based on their shape and size characteristics and, by using
color deconvolution, it can detect (3–3'-diaminobenzidine)
positive and negative (hematoxylin) staining malignant
epithelial cells. Details of the optimized Ariol algorithms
and protocols that were used for the scoring of each of these
four markers have been previously described [23, 24]. In
brief, for ER, PR, and KI67 nuclear staining, the Ariol
system was tuned to distinguish between malignant and
non-malignant cells and to count positively and negatively
staining malignant cells. Based on the number of positive
and number of negative tumor nuclei presented by the
machine, the percentage of cells stained (0–100%) was
calculated as the ratio of positive nuclei to the sum of
positive and negative nuclei per tissue core. For HER2, the
US Food and Drug Administration-approved Herceptest
score [28] (0, 1+ , 2+ , 3+ ), generated to American
Society of Clinical Oncology/College of American Pathol-
ogists guidelines was calculated by the system. As pre-
viously reported [23, 24], we observed good agreement with
standardized pathologists scores for ER (observed agree-
ment= 90%; kappa= 0.76), PR (observed agreement=
84%; kappa= 0.66), HER2 (observed agreement= 90%,
kappa= 0.69), and KI67 (observed agreement= 87%;
kappa= 0.64).

Fig. 1 Consort diagram indicating the total number of patients inclu-
ded in this analysis. The patients were women with clinically deter-
mined invasive luminal-like breast cancer from two study populations
in Europe (the Polish Breast Cancer Study (PBCS) in Poland and the

Study of Epidemiology and Risk Factors in Cancer Heredity
(SEARCH) in the United Kingdom) with complete information on
image analysis-based scores of ER, PR, HER2, and KI67, as well as
other relevant clinicopathological and follow-up data
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Subtype definition based on binary categories of ER,
PR, HER2, and KI67

Subtypes were defined according to the published St Gallen
criteria [18] as follows: Luminal A-like: tumors that
homogeneously expressed ER and PR (i.e., ER+ and
PR+ ) in addition to being HER2– and low proliferating
(image analysis-based KI67 ≤ 12%). We have previously
reported a cutoff point of 12% for image analysis-based
KI67, which corresponded to a visual score of 25%, to
provide the best discrimination in terms of survival in
this population [25], hence its adoption here. The luminal
B-like subtype comprised tumors that were: (a) ER+ and/or
PR+ and high proliferating (image analysis-based KI67 >
12%); (b) ER+ and/or PR+ and HER2+ .

Quantitative IHC4-score generation

The average score for ER, PR, HER2, and KI67 across the
total number of cores per patient was taken as the patient’s
score on each marker. IHC4-scores were generated using
the published algorithm [13]:

IHC4� score ¼ 94:7� �0:100 ER10ð Þ þ �0:079 PR10ð Þf
þ 0:586 HER2ð Þ þ 0:240 ln 1þ 10� Ki67ð Þ½ �g

The ER10 variable was calculated by dividing the ER%
score for each patient by a factor of 10 to generate a range
of values 0–10. In the original algorithm, the ER10 variable
was generated by dividing the H-score (30–300) by a factor
of 30 to give values ranging from 1–10. All other compo-
nents of the IHC4-score were the same as in the published
algorithm [13].

Clinical prognostic factors

We accounted for standard clinical prognostic factors,
including age at diagnosis, tumor size, histologic grade, and
number of lymph nodes involved using two methods. The
first was based on the C-score reported by Cuzick et al. [13]:

C � score ¼ 100� f 0:417N1�3ð Þ þ 1:566N4þð Þ
þ ½0:930� 0:497T1�2ð Þ þ 0:882T2�3ð Þ þ ð1:838T>3Þ
þ 0:559Gr2ð Þ þ 0:970Gr3ð Þ þ 0:130Age�65

� �þ 0:149AIð Þ�g

Where N is the number of nodes (0, 1–3, 4+ ), T is
tumor size ( ≤ 1 cm, > 1 to ≤ 2 cm, > 2 to ≤ 3 cm, > 3 cm),
Gr is grade (1–3) and Age being the patients age at
diagnosis ( < 65, ≥ 65 years). Data on specific treatment
regimen received by each patient were not available; as
such, the aromatase inhibitor (AI) vs. tamoxifen component
was not computed.

The second was based on the parameters used for the
PREDICT prognostication model:

PREDICT� scoreðERþÞ ¼ ð34:53ðAge=10Þ�2 � 0:0287Þ
þ ð�34:20ðAge=10Þ�2 � logðAge=10Þ � 0:0510Þ
þ ð0:7531� logðSize=100Þ þ 1:5452Þ
þ ð0:7069� logððNodesþ 1Þ=10Þ þ 1:3876Þ
þ ð0:7467ðGradeÞÞ þ ð�0:2763ðScreen� detectedÞÞ

We did not have information on mode of detection,
therefore, could not compute the screen-detected vs. interval
(or non-screen-detected) component of the PREDICT-
score. Notably, organized mammography screening was
not available in Poland during the study. All other com-
ponents were as in the original equation.

Statistical analysis

Participant’s ages were categorized as < 35, 35–50, 50–65,
and > 65 years. Chi-square, for categorical variables, and
non-parametric Kruskal–Wallis tests, for continuous vari-
ables, were used to assess the frequencies of tumor clin-
icopathological characteristics (including age at diagnosis,
histologic grade, stage, morphology, size, lymph-nodal
status, and treatment), overall and by study population.
Histograms and box plots were used to assess the dis-
tribution of the IHC4-score, overall and by study popula-
tion. In univariable Cox proportional hazard regression
models, we assessed the associations between subtype (B-
like vs. A-like) and continuous measures of the IHC4-score,
C-score, and PREDICT-score with 10-year breast cancer-
specific survival. Additionally, for subtypes (luminal A-like
and B-like) and quartiles (Q1–Q4) of the IHC4-score,
we examined 10-year breast cancer-specific survival in
Kaplan–Meier survival curves. For the IHC4-score this
analysis was further stratified by nodal status (i.e., node-
negative and node-positive). In multivariable Cox propor-
tional models, we adjusted for study population (in com-
bined analysis), treatment, and other standard clinical
factors, including age at diagnosis, tumor size, histologic
grade, and lymph-nodal involvement. These features were
combined by means of the C-score and PREDICT-score.
The relative contributions of the C-score and PREDICT-
score to a prognostic model were determined by assessing
the change in likelihood ratio chi-square (ΔLRχ2) when
either of these was removed from the full model. We
used loglikelihood and LRχ2 values to compare model fit
between prognostic scores. All analyses were performed
overall and following stratification by study population.
In subtype-specific analysis, we examined the prognostic
value of the IHC4-score within each of the luminal-like
breast cancer subtypes. To determine whether automated
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IHC4-score can be used to further stratify luminal-like
breast cancer patients into prognostically relevant sub-
groups, we dichotomized the IHC4-score at the mean+
1 standard deviation threshold and examined associations
with 10-year breast cancer-specific survival in Kaplan–
Meier curves and in multivariable Cox proportional hazard
models. Violations of the proportionality assumption of the
Cox model were assessed by modeling the predictors
as time-varying covariates. As part of sensitivity analysis,
we redefined luminal-like breast cancer subtype by using
a cut-off point of ≥ 1% on ER and PR [20] and examined
the prognostic value of the IHC4-score in the resulting
luminal A-like and B-like subtypes. Owing to the low
prevalence of chemotherapy in this population (~7%), we
could not perform analyses stratified by chemotherapy;
instead, the few women who received chemotherapy
(N= 178) were excluded from the survival analysis. All
tests were two-sided, and analyses were conducted using
Stata statistical software version 14.1 (StataCorp, Lakeway
Drive, TX, USA).

Results

Description of study population

As shown in Table 1, the majority (86%) of the patients
were between the ages of 35 and 65 years at diagnosis, with
women from the SEARCH study being younger than those
from the Polish study on average (P-value < 0.001). Overall,
and in both study populations, most of the tumors (82%)
were of intermediate or low histologic grade and fewer
(18%) were high grade. Similarly, most (~97%) of the
tumors from both study populations were stage I and II.
Small ( < 2 cm) and intermediate (2–5 cm) size tumors were
predominant in both studies (98% and 97% for SEARCH
and Polish studies, respectively). The majority (70%) of the
tumors were invasive ductal carcinomas; however, the
Polish study had a substantially higher frequency of ‘other’’
non-ductal or lobular invasive carcinomas than the
SEARCH study (28% vs. 7%; P-value < 0.001). A higher
proportion (61%) of the patients had node-negative than
positive (39%) disease, which was slightly fewer in the
Polish (56%) than the SEARCH (62%) study population.
Only 9% of the patients were HER2+ and this did not
differ by study population (P-value= 0.12).

Dynamic range of image analysis-based scores for
immunohistochemistry markers in the IHC4-score

Image analysis produced quantitative scores (0–100%) for
each of the three nuclear markers (Supplementary Fig. 1)
with median (standard deviation) scores of 62% (34), 57%

(38), and 9% (11) for ER, PR, and KI67, respectively.
When combined with data on HER2 in the IHC4 algorithm,

Table 1 Clinicopathological characteristics of participants in the
Polish and SEARCH study populations and overall

Study population

Overall
(N= 2498)

Polish
study
(N= 558)

SEARCH
study
(N= 1940)

Characteristic N % N % N % P-value*

Age at diagnosis, years

<35 41 1.6 3 0.5 38 2.0 <0.001

35–50 804 32.2 148 26.5 656 33.8

50–65 1342 53.7 272 48.7 1070 55.2

>65 311 12.4 135 24.2 176 9.1

Grade

Low 590 26.1 148 26.5 442 26.0 <0.001

Intermediate 1259 55.7 342 61.3 917 53.8

High 412 18.2 68 12.2 344 20.2

Stage

I 1168 48.9 233 48.8 935 48.9 0.45

II 1154 48.3 231 48.4 923 48.3

III 50 2.1 12 2.5 38 2.0

IV 17 0.7 1 0.2 16 0.8

Morphology

Ductal 1632 68.6 281 50.3 1351 74.2 <0.001

Lobular 464 19.5 121 21.7 343 18.8

Othera 284 11.9 156 28.0 128 7.0

Size

<2 cm 1571 65.5 331 59.3 1240 67.4 0.002

2–5 cm 770 32.1 210 37.6 560 30.4

>5 cm 58 2.4 17 3.0 41 2.2

Node status

Negative 1370 60.9 308 56.0 1062 62.5 0.007

Positive 880 39.1 242 44.0 638 37.5

Breast cancer subtype

Luminal A-like 1198 55.7 206 38.0 992 61.7

Luminal B-like 951 44.3 336 62.0 615 38.3 <0.001

Endocrine therapy

No 394 19.6 191 35.6 203 13.8 <0.001

Yes 1614 80.4 346 64.4 1268 86.2

*P-values were from chi-square tests comparing the distributions of
the clinicopathological characteristics between the two study
populations
aIn the Polish study, “Other” morphology comprised invasive ductal
carcinoma with lobular carcinomatous components (71%), tubular
carcinoma (18%), infiltrating papillary carcinoma (7%), and mucinous
adenocarcinoma (4%) while in the SEARCH study, the majority (58%)
were invasive ductal carcinoma with lobular carcinomatous compo-
nents, mucinous carcinoma (15%), cribriform carcinoma (13%),
adenocarcinoma (not otherwise specified) (9%), and Medullary
carcinoma (5%)
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these markers produced an IHC4-score with a dynamic
range of −148 to 289 (mean= 33, standard deviation= 65;
Supplementary Fig. 2A). The distribution of the IHC4-score
differed by study population, with patients from the Polish
study generally having higher values than those from the
SEARCH study population (Supplementary Fig. 2B).

Associations between Subtype, IHC4-score, C-score,
and PREDICT-score with 10-year breast cancer-
specific survival

In Kaplan–Meier curves (Fig. 2) and in univariable models
(Table 2), Subtype (luminal B-like vs. A-like) [hazard ratio
(95% confidence interval)= 1.64 (1.25–2.14); P-value <
0.001] and IHC4-score [hazard ratio (95% confidence
interval)/1 standard deviation= 1.32 (1.20–1.44); P-value
< 0.001] were significantly associated with survival overall.
However, the IHC4-score (LRχ2= 40.1) provided more
prognostic information than subtype (LRχ2= 23.4). A
similar pattern of association was seen in both the Polish
and SEARCH study populations (Table 2).

Both the C-score [hazard ratio (95% confidence interval)/
1 standard deviation= 1.78 (1.67–1.90); P-value= <
0.001], and PREDICT-score [hazard ratio (95% confidence
interval)/1 standard deviation= 2.34 (2.07–2.65); P-value
< 0.001] were associated with 10-year breast cancer-specific
survival, with the model based on PREDICT-score (LRχ2

= 178.5) fitting better than that based on the C-score (LRχ2

= 168.2). In addition, PREDICT-score provided more
prognostic information [ΔLRχ2= 9.0; P-value= 0.002]
than the C-score [ΔLRχ2= 5.6; P-value= 0.02] in this
population, hence it was used as the adjustment factor in
multivariable models.

The IHC4-score remained significantly associated with
survival, overall [hazard ratio (95% confidence interval)/
1 standard deviation= 1.24 (1.11–1.37); P-value< 0.001]
and in both the Polish [hazard ratio (95% confidence inter-
val)/1 standard deviation= 1.46 (1.17–1.74); P-value 0.002]
and SEARCH [hazard ratio (95% confidence interval)/SD=
1.19 (1.05–1.33); P-value= 0.007] study populations after
adjusting for PREDICT-score (Table 2). Further, when
we performed analyses stratified by lymph-nodal involve-
ment, higher values of the IHC4-score were associated
with worse breast cancer-specific survival in women with
node-negative (Fig. 3a; logrank P-value= 0.002) and node-
positive (Fig. 3b; logrank P-value= 0.002) disease.

Association between IHC4-score and 10-year breast
cancer-specific survival within luminal A-like and
B-like subtypes of breast cancer

Overall, the IHC4-score was associated with survival in
both luminal A-like [hazard ratio (95% confidence interval)/

1 standard deviation= 1.20 (0.98–1.43); P-value= 0.07)
and luminal B-like [hazard ratio (95% confidence interval)/
1 standard deviation= 1.22 (1.03–1.41); P-value= 0.01]
subtypes (P-value for heterogeneity= 0.97). Although the
hazard ratio estimate was slightly attenuated in luminal A-
like [hazard ratio (95% confidence interval)/1 standard
deviation= 1.10 (0.88, 1.33); P-value= 0.37)] subtype
defined using 1% threshold for ER and PR, the estimates
remained essentially the same for luminal B-like tumors
[hazard ratio (95% confidence interval)/1 standard devia-
tion= 1.22 (1.03–1.41); P-value= 0.02].

We observed an overlap in the distribution of the IHC4-
score between luminal A-like and B-like subtypes, overall
and in both study populations (Fig. 4). Thus, by comparing
women with IHC4-score above the mean+ 1 standard
deviation (denoted as high IHC4-score) with those that

Fig. 2 Kaplan–Meier survival curves for the associations between a
surrogate immunohistochemistry (IHC)-subtypes of luminal (A-like
and B-like) breast cancer and b quartiles (Q1–Q4) of the IHC4-score
with 10-year breast cancer-specific survival overall

Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than. . . 1249
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had scores below this threshold (low IHC4-score), we
observed those with high IHC4-score to have significantly
worse survival outcomes than those with low scores,
overall and in both study populations (Fig. 4). Following
adjustment for the PREDICT-score in Cox proportional
hazard models, we observed differences in high vs. low
IHC-score categories in the luminal B-like subtype overall
and in both the Polish and SEARCH study populations
(Table 3). However, differences did not attain statistical
significance in the luminal A-like subtype in the Polish
study, which is likely due to the limited number of events
(number (deaths/cases)= 7/99 and 5/41 in the low and high
IHC4-score categories, respectively) in this sub-population
(Table 3).

Discussion

In the current analysis, we combined quantitative scores of
ER, PR, HER2, and KI67 in the IHC4-score and compared
its prognostic performance with categorical combinations
defining A-like and B-like subtypes of luminal-like breast
cancer. We also investigated the prognostic value of the
IHC4-score in relation to other clinical prognostic factors,
combined in the C-score and PREDICT-score. Our findings
show that the IHC4-score provided more prognostic infor-
mation than immunohistochemistry-based subtyping of
luminal-like breast cancer. Additionally, the IHC4-score
was associated with survival in both the luminal A-like and
B-like subtypes after adjusting for the PREDICT-score,
which provided more prognostic information than the C-
score in this study population. Our findings also suggest that
the dynamic range of the IHC4-score can be leveraged to
provide prognostic information in both node-negative and
node-positive disease and to further stratify women with
luminal A-like or B-like breast cancer into subgroups with
different prognoses.

Successive St. Gallen panels [18, 20, 29] have endorsed
the use of immunohistochemical markers for the surrogate
definition of the A-like and B-like subtypes of luminal-
like breast cancer for deciding systemic therapy options.
Based on current guidelines [20], most patients with the
luminal B-like subtype receive chemotherapy in addition
to standard endocrine treatment. Conversely, endocrine
therapy is the mainstay of treatment for luminal A-like
disease, except for a subset of patients for whom the addi-
tion of chemotherapy may be warranted. Some indications
for cytotoxic therapy in luminal A-like patients include
high 21-gene recurrence score and high-risk status on
the 70-gene panel [18, 20]. However, dichotomization of
ER, PR, HER2, and KI67 for subtype definition may be
associated with the loss of prognostically relevant infor-
mation. Moreover, intratumor heterogeneity may lead to
discordant classifications of breast cancer subtypes since
conventional subtyping approaches assign patients into
discrete categories based on the topographical region of
the tumor that has been sampled [30]. By combining
quantitative data on all four markers, the IHC4-score has
a dynamic range that can allow for the evaluation of dose–
response relationships with survival thereby avoiding the
pitfalls associated with assigning patients into discrete
categories [13, 31].

We have previously demonstrated the prognostic value
of automated scores on the individual immunohistochemical
markers that are currently used to define breast cancer
subtypes [23, 25]. However, the prognostic significance of
combining automated scores on all four markers has not
been previously studied. In this analysis, we showed that a
combined score of these markers is significantly associated

Fig. 3 Kaplan–Meier survival curves for the associations between
quartiles (Q1–Q4) of the IHC4-score and 10-year breast cancer-
specific survival in node-negative (a) and node-positive (b) luminal-
like breast cancer patients

Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than. . . 1251



with 10-year breast cancer-specific survival even after
adjustment for the PREDICT-score. This finding is parti-
cularly relevant given that, unlike expression-based assays,
the IHC4-score and PREDICT-score are based on routinely
determined clinicopathological and immunohistochemical
parameters in clinical practice thereby making them
potentially available to many patients with luminal-like
breast cancer. Although multiparameter molecular tests
[14–17] also quantify the expression of several genes,
including those related to ER, PR, HER2, and proliferation,
these are expensive, not widely available, and it remains
unclear whether they provide additional prognostic infor-
mation to PREDICT.

Overall, the range of clinical applications of the IHC4-
score is still evolving [32–34]. One previous study docu-
mented its capacity to distinguish breast cancer patients
with intermediate Nottingham Prognostic Index into sub-
groups with low and high-risk of recurrence [32, 33]. Our
findings from the current study provide clues into other
potential uses of the IHC4-score in clinical practice. For
instance, the finding of significant associations with survival
for the IHC4-score and PREDICT-score in luminal A-like
and B-like patients suggest that chemotherapy recommen-
dations should be based on its predicted absolute benefit
regardless of immunohistochemistry-based subtype. In
addition, the overlap in the distribution of the IHC4-score

Fig. 4 Distribution of the IHC4-score in luminal A-like and B-like
subtypes of breast cancer and Kaplan–Meier survival curves for the
associations between subtypes of luminal-like breast cancer stratified

by levels of IHC4-score, overall (a and b), and among patients in the
Polish (c and d) and SEARCH (e and f) study populations
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between A-like and B-like tumors that we observed may be
indicative of the need to leverage quantitative information
on immunohistochemical markers to provide additional
prognostic information beyond what is contained in
immunohistochemistry-based subtypes.

Despite its potential benefits, the widespread adoption of
the IHC4-score may be affected by concerns regarding its
analytical validity. There is the perception that immuno-
histochemical methods lack reproducibility and suffer
from variable degrees of between-laboratory discordance.
However, Dodson et al. [35] showed in a recent multi-
institutional analytical validity study that risk of recurrence
estimates with the IHC4+C-score were tolerant of varia-
tions in staining and scoring across different laboratories.

Moreover, several international efforts have led to the
publication of guidelines that will help to enhance the
validity of assays performed in laboratories across the
globe [36–38].

An important strength of this study was that we used a
digital image analysis-based approach for the centralized
scoring of all four immunohistochemical markers, which
yielded quantitative scores on ER, PR, and KI67. Although
visual scoring by a trained expert can guarantee accurate
discrimination between epithelial and stromal cells and
between malignant and benign epithelial cells, this method
is labor intensive and suffers from varying degrees of intra-
and inter-observer discordance [21, 22]. In contrast, image
analysis-based methods are high-throughput, highly repro-
ducible, and show good agreement with pathologist’s-based
scores [23, 24, 39–44]. Previous studies looking at the
IHC4-score have focused on its prognostic performance
in luminal-like breast cancer as a homogeneous entity
and none has evaluated its prognostic value in relation to
PREDICT-score. To the best of our knowledge, ours is the
first study to specifically investigate the prognostic value of
the IHC4-score in relation to subtypes of luminal-like breast
cancer, as well as the PREDICT-score. Furthermore, our
analysis involved patients from two study populations for
whom the IHC4-score had never been applied, which
allowed us to compare the results across populations.

In terms of limitations, despite their promise as alter-
natives to visual scoring, concerns exist regarding the
accuracy of image analysis-based methods in discriminating
between malignant and benign epithelial cells. We have
previously documented the underestimation of hazard ratio
estimates when comparing image analysis with patholo-
gist’s-based scores [23, 24]. This was due to the attenuation
of the performance of the image analysis algorithm in the
presence of mixed cell populations. However, we utilized
tissue microarrays for this study, which may limit the
impact of mixed cell populations on our results since cores
on tissue microarrays are typically enriched for tumor
cells. Also, at the time most of our patients were recruited,
ER+ and PR+ tumors were defined based on Allred score
of > 2, corresponding to a proportion score of > 10%.
However, this threshold has evolved over time, with current
recommendations stipulating a cutoff point of ≥ 1% [20].
Nonetheless, many studies still utilize the 10% threshold.
Moreover, when we redefined subtypes based on the 1%
threshold as part of sensitivity analysis our results remained
essentially the same.

This study was not designed to assess the predictive
value of the IHC4-score for chemotherapy response. In
view of results from a few studies showing poor che-
motherapy response in high-risk luminal A-like tumors
[45], an important area of future research will be the
determination of the predictive value of the IHC4-score for

Table 3 Hazard ratios and 95% confidence intervals for the
associations between categories of the IHC4-score and 10-year
breast cancer-specific survival among women with luminal A-like
and B-like breast cancer, overall and by study population

Subtype/IHC4-score Cases/
events

Hazard ratioa P-value

Overall

Luminal A-like

Low IHC4-score 973/100 1.00 (reference)

High IHC4-score 159/27 2.23 (1.36–3.65) 0.001

Luminal B-like

Low IHC4-score 720/90 1.00 (reference)

High IHC4-score 125/36 2.41 (1.57–3.68) <0.001

B-like/low IHC4-
score

720/90 1.00 (reference)

A-like/high IHC4-
score

159/27 1.64 (1.02–2.65) 0.04

Polish study

Luminal A-like

Low IHC4-score 99/7 1.00 (reference)

High IHC4-score 41/5 1.81 (0.50, 6.48) 0.36

Luminal B-like

Low IHC4-score 195/20 1.00 (reference)

High IHC4-score 35/11 3.63 (1.71, 7.73) 0.001

SEARCH study

Luminal A-like

Low IHC4-score 874/93 1.00 (reference)

High IHC4-score 118/22 2.16 (1.25, 3.75) 0.006

Luminal B-like

Low IHC4-score 525/70 1.00 (reference)

High IHC4-score 90/25 2.03 (1.21, 3.43) 0.008

aHazard ratio was mutually adjusted for age, PREDICT-score (which
combines information on lymph-nodal involvement, histologic grade,
patient age, tumor size, and mode of detection— because we did not
have data on mode of detection, this was not computed), treatment,
and study population. Categories (high and low) of the IHC4-score
were obtained by dichotomization of the data at the mean+ 1 standard
deviation threshold.
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chemotherapy response in patients with luminal A-like
disease. Interestingly, recent findings suggest that the
Magee Equation [46], another inexpensive tool that is based
on ER, PR, HER2, and KI67 in addition to the Nottingham
score and tumor size, can be used to predict pathologic
response to neoadjuvant chemotherapy in ER+ /HER2-
negative/equivocal breast cancer [47]. The PREDICT-score
also provides information on estimated treatment benefit
for both ER+ and ER- breast cancer patients. However,
both the Magee Equation and PREDICT-score are based
on visual assessments of all four immunohistochemical
markers and it remains unclear whether the incorporation
of automated measures can help refine the discriminatory
accuracy of both tools, particularly in women with equi-
vocal scores.

In conclusion, findings from this study showed
that quantitative measures of ER, PR, HER2, and
KI67, combined in the IHC4-score, provided more
prognostic information than categorical combinations in
immunohistochemistry-based subtypes of luminal-like
breast cancer. In addition, the IHC4-score was associated
with 10-year breast cancer-specific survival in patients with
both luminal A-like and B-like tumors even after accounting
for PREDICT-score, which was the strongest prognostic
factor in this population. Taken together, these findings
support the view that the IHC4-score can be used as an
inexpensive adjunct to other clinical prognostication tools to
aid treatment decision-making in patients with luminal-like
breast cancer, irrespective of subtype. Given the prognostic
strength of the PREDICT-score that we observed, further
studies will be needed to determine whether combining the
IHC4-score and PREDICT-score will provide superior
prognostic information than PREDICT-score plus HER2
and KI67.
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