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Abstract: Ovarian mature cystic teratomas comprise tissues derived from all three germ layers. In
rare cases, malignant tumors arise from ovarian mature cystic teratoma. A variety of tumors can
arise from mature cystic teratoma, among which primary malignant melanoma (MM), for which
no molecular analyses such as genomic sequencing have been reported to date, is exceedingly rare,
thereby limiting possible therapeutic options using precision medicine. We used targeted gene
sequencing to analyze the status of 160 cancer-related genes in a patient with MM arising from
an ovarian mature cystic teratoma (MM-MCT). KRAS amplification and homozygous deletion in
PTEN and RB1 were detected in tumor samples collected from the patient. No KRAS amplification
has been previously reported in cutaneous MM, indicating that the carcinogenesis of MM-MCT
differs from that of primary cutaneous melanomas. A better understanding of the underlying genetic
mechanisms will help clarify the carcinogenesis of MM-MCT. In turn, this will enable treatment with
novel targeting agents as well as the initial exploration of gene-based precision oncological therapies,
which aim to improve treatment outcomes for patients with this disease.
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1. Introduction

Malignant melanoma (MM) is the most common primary cutaneous melanoma (PCM),
and its molecular and pathological characteristics have been well investigated [1,2]. The
key cellular pathways, such as CDKN2A/CDK4/CCND1/RB1, MAPK, and PI3K/AKT,
and significant genes, such as BRAF, NRAS, TERT, TP53, NF1, and RB1, are considered to
play critical roles in PCM tumorigenesis [3–6].

MM arising from an ovarian mature cystic teratoma (MCT) (MM-MCT) is extremely
rare. To our knowledge, fewer than 40 cases of MM-MCT have been reported to date since
the first case was reported in 1901 by Andrews [7–10], and there have been no reports on
its genetic profile. The diagnosis of MM-MCT prior to surgery is impossible. Furthermore,
its etiopathogenesis and predictive factors are not understood, and effective treatment
methods for such tumors remain elusive due to their paucity.

Precision medicine, using approaches such as comprehensive genome sequencing, is
a possible treatment option for several cancers. In particular, recently developed molecular
and whole-exome sequencing is being used to reveal the genetic basis of MM-MCT [11].

In the present study, we analyzed 160 cancer-related genes from a patient with MM-
MCT. This information will help clarify the carcinogenesis of MM-MCT and will be useful
in identifying potential therapeutic targets for future precision medicine approaches.
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2. Case Presentation

The patient was a 62-year-old woman who underwent right salpingo-oophorectomy
based on the preoperative diagnosis of an ovarian MCT. A preoperative laboratory exami-
nation showed elevated serum levels of cancer antigen (CA) 19–9 and CA125 (10,159 and
62 U/mL, respectively). There was no family history.

Macroscopically, the ovarian tumor had formed a small sac in a huge cyst that con-
sisted of fibrotic walls and dark brown contents. Small, pigmented nodules were scattered
in the stroma of the walls (Figure 1). A microscopic examination revealed that the huge
cyst was lined with hemosiderin-laden or foamy macrophages, and there was no lining
of epithelial cells (Figure 2). A small sac was lined with squamous-type epithelium and
respiratory epithelium (Figure 3). Scattered pigmented nodules (maximum of 14 mm)
were composed of the medullary proliferation of anaplastic cells with enlarged nuclei
(Figure 4a,b). The immunohistochemical staining of atypical cells revealed a positive result
for MelanA (Figure 4c) and HMB45. In addition, high power field observation confirmed
the presence of melanin granules that were positive for Fontana-Masson stain (Figure 4d)
and negative for colloidal iron stain (Figure 4e). Based on these observations, we made the
primary diagnosis of MM accompanied with an MCT and an endometriotic cyst. The gross
or microscopic findings alone could not indicate the origin of the melanoma derived from
the MCT or endometriotic cyst.
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nuclei and melanin granules (b: 20×). Immunohistochemically, tumor cells were positive for MelanA
(c: 10×). The granules were positive for Fontana-Masson (d: 20×), and negative for collioid iron
staining (e: 10×).

After the surgery, we performed a PET-CT scan and confirmed the diagnosis as MM-
MCT. The patient underwent pembrolizumab treatment, which is a standard treatment
for PCM. However, the liver metastasis progressed, and the treatment was not effective.
Subsequent ipilimumab and radiation therapy to the liver metastasis (20 Gy/5 fr) also failed
to control the disease. Two years after the surgery, the patient died of progressive disease.

Genomic DNA was obtained from a sample classified as MM-MCT, but not from ma-
ture cystic teratoma and endometriotic cyst, which was thought to be a separate precursor
lesion because of the shortage of the sample volume. We performed a cancer gene profiling
test by PleSSision-160, as previously described [12–14]. The average sequencing depth was
706.5× for MM-MCT. The average tumor cellularity was 70%, as determined histologically.

Several actionable gene alterations were detected in the MM-MCT sample as follows.
Homozygous deletion (HD) was detected in both PTEN and RB1 (Figure 5). Oncogene am-
plification was detected in KRAS (estimated copy number: 4.4) (Figure 5). TSC1 (p.P366Q)
and EPCAM (p.L286Afs*13) variants were considered as variants of unknown significance.
The tumor cells of MM-MCT showed a lack of immunoreactivity for PTEN and RB1, which
is consistent with PTEN/RB1 HD status. After analyzing DNA, we examined the results of
immunohistochemical staining. The tumor cells of MM were negative for PTEN and RB1
(Figure 6a,b), which is consistent with PTEN/RB1 HD status. Conversely, the epithelium
of the MCT showed a mosaic pattern for PTEN and RB1 staining (Figure 7a,b). Regarding
the endometriosis lesions, we could not evaluate the expression of PTEN and RB1 as there
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were no epithelial cells. However, we concluded that the MM had probably arisen from
MCT because PTEN and RB1 HD status was observed in both lesions.

1 
 

 

Figure 5. Copy number plot of cancer-related 160 genes. The horizontal axis indicates chromosomal location of the examined
genes, and the vertical axis indicates the calculated copy number of each gene. The blue arrow indicated the amplification
of KRAS and homodeletion of PTEN and RB1.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 7 
 

 

examined the results of immunohistochemical staining. The tumor cells of MM were 
negative for PTEN and RB1 (Figure 6a,b), which is consistent with PTEN/RB1 HD status. 
Conversely, the epithelium of the MCT showed a mosaic pattern for PTEN and RB1 
staining (Figure 7a,b). Regarding the endometriosis lesions, we could not evaluate the 
expression of PTEN and RB1 as there were no epithelial cells. However, we concluded 
that the MM had probably arisen from MCT because PTEN and RB1 HD status was 
observed in both lesions. 

 
Figure 5. Copy number plot of cancer-related 160 genes. The horizontal axis indicates 
chromosomal location of the examined genes, and the vertical axis indicates the calculated copy 
number of each gene. The blue arrow indicated the amplification of KRAS and homodeletion of 
PTEN and RB1. 

 
Figure 6. Immunohistochemical findings. Malignant melanoma was negative for PTEN (a: 20×) 
and RB1(b: 20×). 

 

Figure 7. Immunohistochemical findings. The epithelium from mature cystic teratoma showed a 
mosaic pattern for PTEN (a: 10×) and RB1 (b: 10×). 

Figure 6. Immunohistochemical findings. Malignant melanoma was negative for PTEN (a: 20×) and
RB1(b: 20×).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 7 
 

 

examined the results of immunohistochemical staining. The tumor cells of MM were 
negative for PTEN and RB1 (Figure 6a,b), which is consistent with PTEN/RB1 HD status. 
Conversely, the epithelium of the MCT showed a mosaic pattern for PTEN and RB1 
staining (Figure 7a,b). Regarding the endometriosis lesions, we could not evaluate the 
expression of PTEN and RB1 as there were no epithelial cells. However, we concluded 
that the MM had probably arisen from MCT because PTEN and RB1 HD status was 
observed in both lesions. 

 
Figure 5. Copy number plot of cancer-related 160 genes. The horizontal axis indicates 
chromosomal location of the examined genes, and the vertical axis indicates the calculated copy 
number of each gene. The blue arrow indicated the amplification of KRAS and homodeletion of 
PTEN and RB1. 

 
Figure 6. Immunohistochemical findings. Malignant melanoma was negative for PTEN (a: 20×) 
and RB1(b: 20×). 

 

Figure 7. Immunohistochemical findings. The epithelium from mature cystic teratoma showed a 
mosaic pattern for PTEN (a: 10×) and RB1 (b: 10×). 

Figure 7. Immunohistochemical findings. The epithelium from mature cystic teratoma showed a
mosaic pattern for PTEN (a: 10×) and RB1 (b: 10×).



Int. J. Mol. Sci. 2021, 22, 2436 5 of 7

3. Discussion and Conclusions

MCTs constitute 10–20% of all ovarian neoplasms. They tend to be present in young
women around the age of 30 years. MCTs are composed of well-differentiated derivations
from at least two of the three germ cell layers. They contain developmentally mature skin,
complete with hair follicles and sweat glands, and they occasionally include luxuriant
clumps of long hair and pockets of sebum, blood, fat, bone, nails, teeth, eyes, cartilage, and
thyroid tissue. MCTs are usually benign but undergo malignant transformation in less than
0.2% of cases, with an incidence of 1–3% [15]. Several malignancies may develop from any
of the three germ cell layers, such as adenocarcinoma, malignant thyroid struma, carcinoid
tumors, melanomas, and a variety of soft tissue sarcomas [15]. The most common malignant
evolution is squamous cell carcinoma from the ectoderm [15]. In a previous study, gene
alterations of TP53, PIK3CA, and CDKN2A were frequently observed in squamous cell
carcinoma derived from teratoma [16]. Meanwhile, MM-MCTs are extremely rare, with an
estimated incidence of <1%; thus, the genomic characters are to be clarified.

We sequenced 160 cancer-related genes (Table S1) in the tumor sample obtained from
the patient diagnosed with MM-MCT and accordingly detected KRAS amplification, as
well as PTEN and RB1 HD, in the sample. Furthermore, an immunohistochemical analysis
revealed that the tumor cells in the MCT area lost the expression of the PTEN and RB1
proteins. Based these observations, we hypothesized that the MCT harbored the same gene
alteration in KRAS, PTEN, and RB1, and we speculated that the MM had arisen from the
MCT. Additionally, we identified that the endometriosis area did not lose the expression of
the PTEN and RB1 proteins, suggesting that endometriosis accidentally coexists with an
MM-MCT.

In this case, we focused on the association between origin sites and genetic events.
The origin site was an ovarian MCT, an uncommon origin site despite being observed most
often in the cutaneous sites.

PTEN is a tumor suppressor gene that is mutated at a high frequency in a wide variety
of human cancers (such as glioblastoma, prostate, breast, and osteosarcoma) and was re-
cently identified as a key driver of osteosarcoma in a murine forward genetic screen [17,18].
PTEN encodes a lipid phosphatase that dephosphorylates phosphatidylinositol (3,4,5)-
triphosphate (PIP3) to oppose the activity of PI3K, which functions as a PIP3 kinase and
is constitutively activated and functions as an oncogene in many cancers [19]. The loss
of PTEN causes the persistent activation of the Akt serine–threonine kinase, which pro-
motes cell growth and proliferation, inhibits apoptosis, and controls metabolism by directly
phosphorylating numerous downstream targets such as BAD and FOXO and transcription
factors such as CASP9, MTOR, and MDM2 [20].

RB1 is a tumor suppressor gene and is a key regulator of E2F transcription factors
and cell cycle progression; thus, its deletion is often accompanied by defects in cell cycle
exit and can result in an undifferentiated cellular phenotype [21–23]. In addition, pRB
controls mesenchymal cell differentiation through interactions with RUNX2 to promote
osteogenic differentiation [22] or by blocking PPAR-γ expression to suppress adipogen-
esis [24]. Though less commonly associated with familial melanoma than with heredi-
tary retinoblastoma, patients with the germline inactivation of RB1 are predisposed to
melanoma [25]. However, RB1 HD has not been reported in PCM cases.

Regarding KRAS alterations, KRAS mutations or amplifications have not been de-
scribed in human melanocytic lesions, whereas NRAS mutations have been correlated with
the carcinogenesis of PCM.

In a previous study on patients with metastatic colorectal cancer, PTEN loss and KRAS
mutations were shown to have beneficial effects on cetuximab and irinotecan treatment [26];
however, no treatment that was beneficial for all variants (PTEN/RB1/KRAS) was reported.

The recent and growing interest in the unique genetic pathways involved in neoplasia
is partially a consequence of the promising developments in targeted therapies, which
contribute to the increasing potential of personalized medicine strategies. Previous studies
have identified a number of genetic abnormalities associated with oncogenes and tumor
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suppressor genes in the tumorigenesis of multiple cancer types. Based on the findings of
this report, it is possible that PCM carcinogenesis differs from that of MM-MCT. Due to the
lack of standard treatment for MM-MCT, our patient often underwent treatments based on
immune checkpoint inhibitors, such as pembrolizumab. However, these treatments were
not effective. In such cases of rare diseases, we have to consider targeted therapies based
on the genetic profile in each case.

This is the first study to report the genomic profiling of MM-MCT. Further genetic
analyses of MM-MCTs will undoubtedly help elucidate the mechanisms of the carcinogen-
esis of PCM and MM-MCTs, as well as provide a basis for novel gene-targeted therapy as a
step toward the development of precision medicine strategies.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/5/2436/s1, Table S1: Genes (160) examined in the PleSSision test.
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