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Abstract
Chronic obstructive pulmonary disease (COPD) is a risk factor for the development 
of lung cancer. The aim of this study was to identify early diagnosis biomarkers for 
lung squamous cell carcinoma  (SQCC) in COPD patients and to determine the po-
tential pathogenetic mechanisms. The GSE12472 data set was downloaded from 
the Gene Expression Omnibus database. Differentially co-expressed links (DLs) and 
differentially expressed genes (DEGs) in both COPD and normal tissues, or in both 
SQCC + COPD and COPD samples were used to construct a dynamic network as-
sociated with high-risk genes for the SQCC pathogenetic process. Enrichment analy-
sis was performed based on Gene Ontology annotations and Kyoto Encyclopedia of 
Genes and Genomes pathway analysis. We used the gene expression data and the 
clinical information to identify the co-expression modules based on weighted gene 
co-expression network analysis (WGCNA). In total, 205 dynamic DEGs, 5034 DLs 
and one pathway including CDKN1A, TP53, RB1 and MYC were found to have cor-
relations with the pathogenetic progress. The pathogenetic mechanisms shared by 
both SQCC and COPD are closely related to oxidative stress, the immune response 
and infection. WGCNA identified 11 co-expression modules, where magenta and 
black were correlated with the “time to distant metastasis.” And the “surgery due 
to” was closely related to the brown and blue modules. In conclusion, a pathway 
that includes TP53, CDKN1A, RB1 and MYC may play a vital role in driving COPD 
towards SQCC. Inflammatory processes and the immune response participate in 
COPD-related carcinogenesis.
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1  | INTRODUC TION

Chronic obstructive pulmonary disease (COPD) is characterized by 
progressive deterioration of lung function and incompletely revers-
ible airflow obstruction in the lungs over time.1 COPD affects ~65 
million people throughout the world2 and is a leading cause of years 
of life lost worldwide.3,4 Lung cancer is a common and deadly malig-
nancy worldwide5 and the leading cause of death due to cancer in 
almost every country.6,7 Lung cancer accounts for 25% of all cancer 
deaths in the United States.6

COPD  and lung cancer are two of the most important smok-
ing-related diseases worldwide. Nearly 1 billion people around the 
world have the habit of smoking. Smoking is the leading cause of 
COPD, which is considered a risk factor for lung cancer,8-12 partic-
ularly squamous cell carcinoma (SQCC).13 SQCC accounts for 20%-
30% of non–small-cell lung cancer (NSCLC) cases, and it is strongly 
associated with a history of cigarette smoking. Lung cancer is up 
to five times more likely to occur in smokers with airflow obstruc-
tion than those with normal lung function.14 About 50%-70% of 
the smokers with lung cancer have pre-existing COPD prior to their 
cancer diagnosis.15,16 The annual incidence of lung cancer arising in 
patients with COPD has been reported as 0.8%-1.7%.17,18 Therefore, 
smoking, COPD and SQCC are closely related. However, the mech-
anisms that allow COPD to increase the risk of developing SQCC 
as well as the influence of COPD on the prognosis of SQCC in pa-
tients who are former or current smokers are not clear although it 
is accepted that chronic immune inflammation, premature ageing in 
the lungs,19 telomere shortening,20,21 systemic inflammation, oxida-
tive stress and lung repair mechanisms 22 probably play roles in the 
pathogenesis of lung cancer. However, the mechanisms that drive 
COPD to develop SQCC are still unknown. Therefore, a comprehen-
sive analysis is required of the molecular signatures of the patho-
genic processes in both COPD and SQCC.

In this study, we aimed: (a) to determine the shared mechanisms 
that play key roles in the pathogenesis of SQCC from COPD in smok-
ers and (b) to identify dynamic biomarkers and potential therapy tar-
gets for SQCC in COPD patients.

2  | MATERIAL S AND METHODS

2.1 | Differential gene expression analysis and 
construction of the network associated with 
differentially expressed genes (DEGs)

The data of GSE12472 23 were obtained from NCBI Gene Expression 
Omnibus (GEO) (https​://www.ncbi.nlm.nih.gov/geo/). The data 
set comprised three groups: 10 laser microdissected histologi-
cally normal bronchial epithelium samples (“normal”), 18 microdis-
sected histologically bronchial epithelium samples from patients 
with COPD (“COPD”) and 18 centrally located primary SQCC tis-
sue samples obtained from patients with COPD (“SQCC + COPD”). 

All of the samples were derived from people who were smokers or 
ex-smokers. No statistically significant differences in age, sex or 
the history of smoking were found among the three groups. After 
background correction, we average the expression among probes 
that map to the same gene, and the average value of expression was 
transformed into a normalized expression value using the Z-score. 
DEG 1 between the COPD group and normal group, and DEG 2 be-
tween the SQCC + COPD group and COPD group were compared 
with Student's t test. The detailed criterion for DEGs was defined as 
FDR (false discovery rate) <0.05. Dynamic DEGs were defined as the 
overlap between DEG 1 and DEG 2. The protein-protein interaction 
(PPI) network associated with the dynamic DEGs (FDR < 0.05) was 
constructed using STRING (http: www.string-db.org/), and highly 
correlated genes/proteins (confidence score > 0.4) were selected as 
inclusion criteria.

2.2 | Differential expression analysis of gene pairs

We calculated Pearson's correlation coefficient (PCC) for each pair 
of genes from the three groups using the expression profiles in the 
data set. The differential PCC (d-PCC) 1 between the COPD group 
and normal group, and d-PCC 2 between the SQCC + COPD group 
and COPD group were calculated. The gene pairs with absolute 
d-PCC values ranging from 0.8 to 2 were selected as the differen-
tially co-expressed links (DLs). The dynamic DLs were calculated as 
the overlap between d-PCC 1 and d-PCC 2.

2.3 | Dynamic protein-protein interaction (PPI) 
network construction

The PPI data from the Biological General Repository for Interaction 
Datasets (BioGRID; http://www.thebi​ogrid.org), Human Protein 
Reference Database (HPRD; http://www.hprd.org), TRED (http://
rulai.cshl.edu/cgi-bin/TRED) and KEGG (http://www.genome.jp/
kegg) were merged into the background PPI network. Then, the DLs 
were then mapped onto the background PPI network. The intercon-
nection between two genes was assessed based on the degree of 
their shared neighbours across the PPI. The network diagram of PPI 
was visualized with Cytoscape (version 3.6.0).

2.4 | Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment

GO functional annotation and enrichment analysis as well as KEGG 
pathway enrichment for the PPI were accomplished using R package 
(clusterprofiler package). False discovery rate (FDR) was calculated 
for p-value correction. A KEGG pathway with a BH-corrected P < .05 
was considered to be significantly enriched.

://www.ncbi.nlm.nih.gov/geo/
http://www.string-db.org/
http://www.thebiogrid.org
http://www.hprd.org
http://rulai.cshl.edu/cgi-bin/TRED
http://rulai.cshl.edu/cgi-bin/TRED
http://www.genome.jp/kegg
http://www.genome.jp/kegg
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2.5 | Regulatory pathways

To establish the most statistically significant biological pathways of 
the PPI, Ingenuity Pathway Analysis (IPA) software (IPA®, QIAGEN) 
was used, for network associations and post-transcriptional targets 
regulation.

2.6 | Construction of Weighted gene co-expression 
network analysis (WGCNA)

The data of GSE12472 were used for WGCNA under R package 
WGCNA, and the power parameter was pre-calculated by the pick-
SoftThreshold function. An appropriate soft-thresholding power was 
selected according to standard scale-free distribution. The modules 
were identified with a dynamic tree-cutting algorithm. The intramod-
ular connectivity was used to define the most highly connected hub 
gene in a module. The co-expression network of genes within the path-
ological stage-related module was visualized with Cytoscape software.

3  | RESULTS

3.1 | DEGs

In total, 205 dynamic DEGs met the criterion of a FDR < 0.05 for 
both DEGs. The PPI network for the 205 dynamic DEGs was con-
structed using String (Figure 1), and 35 genes met the criterion of a 
FDR < 0.01 (Table S1 and Figure 2). The PPI network contained four 
sub-networks. One of the sub-networks included many dynamic 
DEGs (FDR < 0.01), such as ALDH1A1, GSTA2, GSTA4 and POR.

3.2 | Related pathways involving DEGs

The dynamic DEGs (FDR < 0.05) were used to understand the en-
riched functions. We analysed the canonical pathways based on 
IPA. Seven pathways were significantly enriched (P-value  <  .05) 
comprising bupropion degradation, acetone degradation I (to meth-
ylglyoxal), oestrogen biosynthesis, histamine degradation, LPS/IL-1-
mediated inhibition of RXR function, oxidative ethanol degradation 
III and fatty acid α-oxidation (Figure 3). The three main pathways 
involved in drug and xenobiotic metabolism included genes encod-
ing cytochrome p450 enzymes. The enzymatic activation of the 
potent lung carcinogenic tobacco-specific nitrosamines (TSNA) and 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) has been 
found related to NNK-induced lung tumours,24 and the CYP2B6 en-
zyme has a high affinity for NNK, that is, roughly 10 times higher 
compared with CYP2A6.25 Moreover, smoking was found to ac-
celerate the production of carcinogenic oestrogenic metabolites 
4-hydroxy (4-OHEs) metabolites in the lungs.26 Cytochrome P450 
1b1 (CYP1B1) probably participated in the increased susceptibility 
of the female gender to tobacco.27 NNK was shown to induce ERα 

by CYP1B1 activation,28 and anti-oestrogens inhibited NNK-induced 
murine lung carcinogenesis.29

3.3 | Differential co-expression pairs and the 
dynamic PPI network

Pearson's correlation coefficients (PCCs) were calculated to select 
the DLs by ensuring that both absolute d-PCC values ranged from 
0.8 to 2, that is, the d-PCC for COPD compared with the normal 
group and the d-PCC for SQCC + COPD compared with the COPD 
group. The DLs and the dynamic DEGs (FDR  <  0.01) were then 
mapped to the known PPI network. Finally, we constructed the dy-
namic PPI network comprising 5034 DLs. In the dynamic PPI, we 
also calculated the degree of the dynamic DEGs (FDR < 0.01). PPI 
network analysis showed that the significant hub proteins included 
MVP (Degree = 11), ALDH1A1 (Degree = 8), CLDN23 (Degree = 8) 
and FLNB (Degree = 8) (Figure 4).

3.4 | GO and KEGG pathway analysis of the 
dynamic PPI network

Proteins work together to exert certain functions. The alterations 
in their networks usually suggest the development of disease. 
Therefore, the interaction network was established to identify the 
underlying molecular mechanisms. Based on the KEGG pathways 
and GO annotations for the PPI network, analyses were performed 
with the clusterprofiler package to identify the associated biological 
functions (Figure 5).

GO enrichment analysis was also conducted for the PPI network. 
In total, 62 molecular function terms were significantly over-rep-
resented by using a P-value < 0.01 as the cut-off. The significantly 
altered function terms comprised: (a) cadherin binding involved in 
cell-cell adhesion; (b) protein binding involved in cell-cell adhesion; 
(c) protein binding involved in cell adhesion; (d) cadherin binding; (e) 
cell adhesion molecule binding; (f) glycoprotein binding;(g) peptide 
antigen binding; (h) ADP binding; (i) protein phosphatase binding; 
and (j) protein heterodimerization activity.

In total, 1090 biological process terms met the criterion of a P-
value < 0.01. The top 10 terms comprised: (a) protein localization to 
membrane; (b) response to inorganic substance; (c) establishment of 
protein localization to membrane; (d) viral life cycle; (e) response to ox-
idative stress; (f) reproductive structure development; (g) reproductive 
system development; (h) regulation of apoptotic signalling pathway; (i) 
antigen processing and presentation of exogenous peptide antigen; 
and (j) antigen processing and presentation of exogenous antigen.

In addition, 30 terms that satisfied the cut-off (P-value < 0.01) 
were obtained by KEGG enrichment analysis. As shown in Figure 5, 
the network was enriched for the following pathways (top 10): (a) 
viral myocarditis; (b) HTLV-I infection; (c) herpes simplex infection; 
(d) viral carcinogenesis; (e) Alzheimer's disease; (f) toxoplasmosis; 
(g) phagosome; (h) antigen processing and presentation; (i) systemic 
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lupus erythematosus; and (j) protein processing in endoplasmic 
reticulum.

3.5 | Upstream analysis of DEGs and network

The upstream regulators of key genes are very important for under-
standing pathogenetic mechanisms. Using IPA software, we found 
2889 upstream factors in the PPI, including drug, cytokine and tran-
scription factors, as follows: (a) dexamethasone (P = 7.66E-68); (b) 
TP53 (P = 1.26E-58) (Figure S1); (c) TGFB1 (P = 1.52E-57); (d) beta-
estradiol (P = 5.46E-57); (e) MYC (P = 1.81E-53); (f) TNF (P = 4.52E-
52); (g) lipopolysaccharide (P = 5.09E-50); (h) tretinoin (P = 2E-49); 
(i) IFNG (P = 2.52E-45); and (j) ESR1 (P = 4.34E-44). Moreover, some 
factors were closely related to SQCC as follows: (13) IL1B (P = 3.48E-
37); (21) PTEN (P = 9.64E-28); (48) NFE2L2 (P = 1.79E-21); and (257) 
PI3K (complex) (P = 2.38E-09). In particular, the TP53, NFE2L2 and 
PI3K pathways had strong relationships with SQCC.

3.6 | Detection of clinically key modules

The R package for WGCNA was applied to the data for GSE12472 
(Figure 6). There were no obvious outliers according to the sample 

clustering results (Figure 6A), and the power of β  =  8 (scale-free 
R2 = 0.9) was selected as the soft-threshold power to ensure a scale-
free network (Figure 6B). A total of seven modules that are highly 
co-expressed were identified (Figure 6C).

According to the module-feature relationships, we found that 
“time to distant metastasis” was strongly related to the magenta 
module (r = 0.55, P = 2E-6) and “time to distant metastasis” was as 
well as highly associated with the black module (r = 0.45, P = 2E-4) 
based on PCC analysis. And the highest association was found be-
tween the blue module and “surgery due to” (r = −0.85, P = 1E-18). 
The “surgery due to” was also closely related to the brown module 
(r = 0.59, P = 3E-7; Figure 6D). Scatter plots of gene significance vs. 
module membership for these modules are shown in the Figure 6E. 
Figure 6F illustrates the correlation between module membership 
and gene significance in the magenta, black, blue and brown mod-
ules, respectively.

4  | DISCUSSION

Increasing evidence indicates that COPD may increase the risk of lung 
cancer, particularly SQCC.13 COPD and SQCC share tobacco smok-
ing as a common risk factor, and they may also share similar patho-
genetic mechanisms. Unfortunately, the pathogenetic mechanism 

F I G U R E  1   Protein-protein interaction (PPI) network of dynamic differentially expressed genes (DEGs) (FDR < 0.05) constructed 
by STRING. Interactions at medium confidence (score > 0.4) and evidence from experiments, database searches and text mining were 
considered. Black circle shows the zoom-in the significant module of the PPI. Nodes with no or scattered interactions were excluded
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remains elusive and little information is available regarding possible 
biomarkers and therapeutic targets. SQCC is much harder to detect 
than adenocarcinomas in terms of the dominant mutation related 
to tumour progression. The dominant mutations found frequently in 
lung adenocarcinomas, such as EGFR, ALK and KRAS mutations, are 
uncommon in SQCC.30

Different from the published article which reveals static anal-
yses of the differences between SQCC patients with and with-
out COPD,23 our study focused on the dynamic analysis of the 
pathogenetic process from normal to COPD, and with the further 
progression to SQCC. In this study, we found 205 dynamic DEGs 
(FDR < 0.05) that had associations with the progress from normal to 

F I G U R E  2   Hierarchical clustering analysis of DEGs. Heatmap of the top 35 dynamic DEGs (FDR < 0.01). The red colour in the heatmap 
denotes higher gene expression, and the white colour in the heatmap denotes the lower gene expression. Target gene symbols for the top 35 
DEGs are involved

F I G U R E  3   Scatter plot of canonical 
pathways based on ingenuity pathway 
analysis (IPA). Canonical pathway of 
the dynamic DEG. Ratio is the ratio 
of numbers of DEGs annotated in this 
pathway term to the numbers of all genes 
annotated in this pathway term. The data 
presented are log-transformed P-value 
(FDR corrected) of pathways found to be 
enriched in the tested group of genes
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COPD and finally to SQCC. The top canonical pathways for the 205 
dynamic DEGs comprised bupropion degradation (POR, CYP2J2, 
CYP2B6 and CYP2S1), acetone degradation I (to methylglyoxal) 
(POR, CYP2J2, CYP2B6 and CYP2S1), oestrogen biosynthesis (POR, 
CYP2J2, CYP2B6 and CYP2S1), histamine degradation (ALDH1A1, 
ALDH1A3 and ALDH3A1), LPS/IL-1-mediated inhibition of RXR 
function (GSTA2, ALDH1A1, ALDH1A3, GSTA4, XPO1, CYP2B6, 
ALDH3A1 and GSTK1), oxidative ethanol degradation III (ALDH1A1, 
ALDH1A3 and ALDH3A1) and fatty acid α-oxidation (ALDH1A1, 
ALDH1A3 and ALDH3A1). In particular, GSTA2, ALDH1A1, POR and 
GSTA4 were involved with the dynamic DEGs (FDR < 0.01) and they 
were included in a PPI sub-network (Figure 1). The expression lev-
els of the first three DEGs were down-regulated during the course 
of the disease. GSTA4 was down-regulated in COPD samples com-
pared with the normal samples and up-regulated in SQCC + COPD 
compared with the COPD samples. GSTA2 functions in the detoxifi-
cation of electrophilic compounds, including carcinogens, therapeu-
tic drugs, environmental toxins and products of the oxidative stress, 

by conjugating with glutathione (GSH). ALDH1A1 is the next en-
zyme after alcohol dehydrogenase in the major alcohol metabolism 
pathway, and it is related to oxidoreductase and acyl-CoA dehydro-
genase activities. The diseases associated with ALDH1A1 include 
lung adenoma. POR is an essential enzyme for multiple metabolic 
processes, particularly the reactions catalysed by cytochrome P450 
proteins to metabolize steroid hormones, drugs and xenobiotics.

Interestingly, the down-regulated genes are part of the GSH me-
tabolism pathway and they are related to redox reactions. The GSH 
antioxidant system is an important defensive system in the body, 
which is crucial for protection against oxidative stress-induced liver 
injury. In the lung, smoking exposure also elicits a powerful GSH 
adaptive response.31 Glutathione-S-transferases (GSTs) can pro-
mote the synthesis of GSH. In COPD patients, decreased serum GSH 
contents and reduced GST serum activities were found, which lead 
to an increased susceptibility to oxidative stress.32 The progression 
of COPD is partly driven by oxidative stress within the lungs. The 
elevation of tumour tissue GSH in SQCC 33 increases the antioxidant 

F I G U R E  4   The human PPI network of squamous cell lung cancer (SQCC) pathogenic process-associated genes. All the DEGs and DLs 
were assembled based on the d-PPC. The network was visualized using the Cytoscape program. The expression of chronic obstructive 
pulmonary disease (COPD) is represented by the colour of the circle. Orange represents a higher level of expression, and white represents 
lower expression. The expression of SQCC + COPD is represented by the size of the circle. The right table is the degree (number of 
neighbours) of the dynamic DEGs (FDR < 0.01) in the PPI. Among the DEGs, the network of ALDH1A1, MVP, CLDN23 and FLNB was 
displayed
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capacity and the resistance to oxidative stress as observed in many 
cancer cells.34 The intracellular GSH content has a decisive effect 
on anticancer drug-induced apoptosis.34 GSH depletion can enhance 
cytotoxicity and decrease resistance to chemotherapy.35 However, 
the protein levels of several antioxidant genes, including GSTA, 
which are involved with GSH homeostasis in the lung, do not increase 
in a linear manner as the disease progresses and they may even be 
down-regulated as the disease progresses to the terminal stages.36 
Consequently, the down-regulated antioxidant genes influence GSH 
homeostasis and limit the functions of GSH. In addition, the com-
mon upstream regulator of GSTA2, GSTA437 and ALDH1A138 is 
Nrf2, and Keap1/Nrf2/Cullin3 pathway alterations occur in a third 
of SQCC cases according to The Cancer Genome Atlas (TCGA) dis-
coveries. Moreover, in our study, ALDH1A1 was the second-highest 
ranking dynamic DEG, with a degree of eight across the dynamic 
PPI network. In general, ALDH1A1 has prognostic value as a marker 
in patients with head and neck squamous cell carcinoma.39 Recent 
studies have demonstrated that ALDH1A1 expression is reduced in 
25.5% (11/43) of SQCC40 cases, and the loss of ALDH1A1 expres-
sion may promote carcinogenesis, especially in smoking patients. 
Consequently, ALDH1A1 is the most likely candidate for use as a 
biomarker of disease progression.

We conducted dynamic PPI analysis in order to further explore 
the mechanisms related to disease progression. According to the 
KEGG and GO enrichment results, we found that 30 pathways were 
involved with the various biological processes enriched in the dy-
namic PPI network. The top 10 biological processes were response 
to inorganic substance, response to oxidative stress, reproductive 
structure development, regulation of apoptotic signalling pathway, 
antigen processing and presentation of exogenous antigen. The 
top pathways included viral myocarditis, HTLV-I infection, herpes 

simplex infection, viral carcinogenesis, Alzheimer's disease, toxo-
plasmosis, phagosome and antigen processing and presentation.

GO analysis again demonstrated that oxidative stress has a key 
role in disease progression. Inorganic substances may comprise 
oxidants/free radicals related to smoking exposure.41 Oxidants/
free radicals are considered to be responsible for oxidative stress. 
Excessive oxidative stress can initiate lung tumorigenesis, and it has 
been shown to have a significant role in DNA damage in the lungs 
during COPD.42 In addition, oxidative stress can induce oncogenic 
lipid peroxides, inactivate defensive mechanisms and lead to changes 
in the extracellular matrix. Moreover, some upstream regulators, in-
cluding NRF2 and PTEN signalling, were found to have relationships 
with the oxidative stress response, thereby supporting our previous 
conclusion. Exposure to cigarette smoke exposure has an important 
role in the SQCC disease process.

The KEGG analysis results indicated that COPD may be caused 
by an aberrant inflammatory cascade with exaggerated cellular im-
munity and oxidative stress damage to lung tissue. Bacterial infec-
tion is often accompanied by a strong inflammatory response, with 
the release of proinflammatory mediators and recruitment of large 
numbers of neutrophils to the lung.43 This response is important for 
the control of infection,44 but excessive neutrophilic inflammation 
can also lead to ROS release. Therefore, the continuous activation 
of neutrophils can promote the accumulation of DNA damage, 
thereby leading to degranulation and the subsequent proteases re-
lease, involving neutrophil elastase from azurophilic granules.45 Viral 
infection can directly lead to the result of neutrophil necrosis and 
azurophilic granular release in COPD.46,47 A deficiency of α1-AT, an 
anti-proteinase, is the only known heritable defect that causes an 
accelerated emphysematic phenotype, and it is significant that a low 
α1-AT level is related to the possibility of lung cancer development.48 
Neutrophil elastase activity is essential for promoting tumour 

F I G U R E  5   GO and KEGG enrichment scatter plot of the PPI network. The y-axis shows significantly enriched GO and pathway terms 
relative to the network, and the x-axis shows the enrichment scores of these terms. Dot size represents the number of genes, and the colour 
indicates the q-value. BP, biological process; CC, cellular component; GO, gene ontology; MF, molecular function
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angiogenesis and proliferation, 49 and it regulates the activity of the 
PIK3CA/Akt pathway by degrading its binding partner, IRS1 to accel-
erate lung cancer growth.50 Therefore, excessive neutrophil degran-
ulation can promote tumour initiation by releasing ROS to contribute 
to DNA damage, and  its proteolytic content may also activate the 
proliferation, and migration of tumours, as well as angiogenesis.

Pathway analysis also indicated that the progress of the disease 
is strongly associated with the immune response. In COPD patients, 
the supportive factors that are released in the tumour microenvi-
ronment can shift the airway macrophages into M2 activation.51 
Adaptive immunity is also compromised in the patients with COPD, 
which may be related to the increasing number of exhausted T cells 
which are unable to respond effectively to respiratory infections 
effectively. In COPD, T cell anergy potentially results in tumour 
escape by suppressing the clearance of tumour cells by cytotoxic 
T cells. CTLA-4 and PD-1 inhibitors can be used to stimulate the T 
cells in COPD to mitigate the risk of disease progression and lung 
cancer, but the activation of cytotoxic T cells can influence the de-
velopment of emphysema via the apoptosis of structural cells. The 
concentration of PD-1+ exhausted effector T cells in the serum is 
increased in COPD,52 which may mitigate the deficiency of anti-in-
fection functions, whereas cancer immune surveillance could also 
be compromised.

Upstream analysis was performed based on the dynamic PPI 
network, and 2888 upstream regulators were identified. The top 
two regulators were dexamethasone and TP53, and PTEN and Nrf2 
were also included in the top 50 upstream regulators, while PI3K/
Akt ranked 257th (P = 2.38E-09). TP53 is a stress response gene 
that activates the transcription of numerous downstream genes in 
response to genotoxic stress, oncogenic signalling, DNA damage 
and cellular injury.53 The frequency of TP53 mutations is the highest 
in SQCC and lower in adenocarcinomas among NSCLC tumour sam-
ples.54,55 In our study, we found that dynamic DEGs including MVP 
and SCP2 were involved in the downstream regulation of TP53. In 
addition, a pathway downstream of TP53 involving CDKN1A, MYC 
and RB1 among the DLs was related to the pathogenetic process. 

F I G U R E  6   Weighted gene co-expression network analysis. A, Sample clustering with no evident outliers. B, Analysis of the network 
topology showed that it satisfied the scale-free topology threshold of 0.9 when β = 8. The left panel shows analysis of the scale-free fit 
index for various soft-thresholding powers (β). The right panel shows the mean connectivity analysis of various soft-thresholding powers. 
C, Clustering dendrograms of genes based on dissimilarity topological overlap and module colours. The branches of the cluster dendrogram 
correspond to the 11 different gene modules. Each piece of the leaves on the cluster dendrogram corresponds to a gene. D, Correlations 
between the gene modules and clinical traits. E, Scatter plots of gene significance (GS) for metastasis vs. module membership (MM) in the 
magenta, black, blue and brown modules. F, Top 10 hub genes in the magenta, black, blue and brown modules

F I G U R E  7   Hypothetical pathway related to the disease 
pathogenesis process. The hypothetical pathway may include 
down-regulated RB1 and TP53 and up-regulated MYC, which 
together repress the activation of CDKN1A. This further prevents 
cell cycle arrest and apoptosis, in turns driving COPD towards 
SQCC. Meanwhile, the down-regulated RB1 hardly promotes cell 
cycle progress

F I G U R E  8   Validation in hub genes and the hypothesized 
pathway-related genes in GSE60486. A, Identification of common 
genes between the PPI network of GSE12472 and the PPI network 
of GSE60486 by overlapping them. The hub genes and pathway-
related genes were also in GSE60486. B, Heatmap hierarchical 
clustering showed the selected genes clustering in the three stages 
of the SQCC pathogenetic progress
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We found that TP53, CDKN1A and RB1 were down-regulated con-
tinuously in the disease process, whereas MYC was up-regulated 
from the COPD group to the COPD + SQCC group. TP53, RB1 and 
MYC are usually considered to be mutated in small-cell lung cancer 
(SCLC).56,57 Because of the opposite effect of MYC and TP53 in the 
CDKN1A regulation, the inactivation of TP53 may interfere with 
MYC-based targeted therapies. MYC blocks the function of p21 in 
many situations,58 whereas TP53 is a transcription activation factor 
for CDKN1A.59 As a result, the up-regulation of MYC would allow 
the TP53-dependent inactivation of CDKN1A, which can then re-
press the cell cycle arrest and apoptosis. In addition, the inhibition 
of RB1 is known to prevent MYC inhibition from inducing apopto-
sis in TP53-inactivated melanoma cells.60 Therefore, it is likely that 
the down-regulated RB1 and TP53 as well as the up-regulated MYC 
would together repress the activation of CDKN1A to further pre-
vent cell cycle arrest and apoptosis, thereby leading COPD to prog-
ress towards SQCC (Figure 7). In order to validate the hypothesized 
pathway, we selected data from another data set GSE60486 of GEO 
database. We selected 49 normal samples, 24 COPD samples and 
15 SQCC  +  COPD samples. A new dynamic network associated 
with the high-risk genes for the SQCC pathogenetic process was 
constructed using the method described above. The new network 
included 7257 genes, and we overlapped the new network with the 
GSE12472 network in a Venn diagram and found that 1679 genes 
were shared, including the hub genes and the genes in the pathways 
(Figure 8A). Furthermore, we selected nine genes comprising RB1; 
TP53-related genes TP53BP1, TP53BP2 and TP53TG1; CDKN1A-
related genes CDKN1C, CDKN2A, CDKN2B and CDKN2C; and 
MYC binding protein 2 (MYCBP2). The penal of the genes clustered 
in the three stages of the SQCC pathogenetic progress (Figure 8B), 
thereby demonstrating that the selected genes in the assumed 
pathway could potentially be used as a panel of novel biomarkers 
for predicting COPD-related carcinogenesis. Further clinical stud-
ies are needed to clarify the connections among these genes in 
SQCC cells.

5  | CONCLUSION

In this study, we constructed a dynamic PPI network to identify the 
dynamic genes/pathways associated with the pathogenetic process 
from normal to COPD, and with the further progression to SQCC. 
Based on t tests, 205 genes were selected as dynamic DEGs. In addi-
tion, we hypothesized that a pathway including TP53, CDKN1A, RB1 
and MYC may play vital roles in the disease pathogenetic process. 
Moreover, inflammatory processes may play central roles in COPD 
carcinogenesis. However, future studies are required to further 
validate these DEGs in lung tissues from non-smoking patients with 
COPD and SQCC + COPD. Some of the main DEGs identified in this 
study, including ALDH1A1, may be used to predict the risk of devel-
oping smoking-related SQCC from COPD. More clinical studies are 
also required to validate these genes and the hypothetical pathway 
in SQCC and COPD.
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