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With the rise in the aging global population, stroke comorbidities have become a serious health threat and a tremendous economic
burden on human society. Current therapeutic strategies mainly focus on protecting neurons from cytotoxic damage at the acute
phase upon stroke onset, which not only is a difficult way to ameliorate stroke symptoms but also presents a challenge for the
patients to receive effective treatment in time. The brain-derived neurotrophic factor (BDNF) is the most abundant
neurotrophin in the adult brain, which possesses a remarkable capability to repair brain damage. Recent promising preclinical
outcomes have made BDNF a popular late-stage target in the development of novel stroke treatments. In this review, we aim to
summarize the latest progress in the understanding of the cellular/molecular mechanisms underlying stroke pathogenesis,
current strategies and difficulties in drug development, the mechanism of BDNF action in poststroke neurorehabilitation and
neuroplasticity, and recent updates in novel therapeutic methods.

1. Introduction

Stroke is a destructive cerebrovascular disease that occurs
when a blood vessel carrying oxygen and nutrients to the
brain either bursts or is blocked by a clot. As the second lead-
ing cause of human death and the third leading cause of dis-
ability, stroke claims around 6.5 million lives and 44 million
disability-adjusted life-years (DALYs) globally every year.
Thus, this disease has become an enormous threat to human
health and a huge burden to the healthcare system worldwide
[1–4]. So far, the only FDA-approved medication for ische-
mic stroke is the tissue plasminogen activator (tPA) when
applied within 3 hours of an acute ischemic stroke attack,
which therefore benefits only a small portion of the patients
(2-5%) [5–7]. A great deal of effort has been made toward
developing neuroprotectants, which mostly aim to block
individual cytotoxic pathways in the early stages of stroke

pathogenesis. However, clinical trials for these neuroprotec-
tive drugs have had little success, possibly due to the
involvement of complex mechanisms in the cytotoxic and
neuronal death processes during stroke [8, 9]. This failure
demanded a change in strategy for the development of
stroke therapeutics.

In recent years, neurorehabilitation and recovery have
become new popular directions in the scientific research
and drug development of stroke. As a result, neurotrophins
have become a rising star in this field. Of particular interest
is BDNF, due to its high cerebral abundance and ability to
attenuate neuronal injury and repair brain damage. Preclini-
cal studies using BDNF, or its mimetics, have generated
promising results in the treatment of acute brain injuries
and are on track for use in clinical trials in the near future
[10–12]. In this review, we aim to summarize recent progress
in the research and development of stroke therapeutics,
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including the challenges and potential of BDNF and its
downstream signaling pathways as new targets.

2. Stroke Pathogenesis: The
Molecular Mechanisms

By continuing to expand our knowledge of the molecular
mechanisms underlying the pathogenesis of stroke, we stand
a better chance in the fight against this devastating disease.
Thanks to decades of joint effort across human society, we
now understand more about what occurs at the molecular
level in a poststroke brain, which has conversely helped sci-
entists to study this disease in more detail as well as to aid
them in developing new therapeutic plans for treatment.

Although stroke is classified as ischemic or hemorrhagic
depending on the pathophysiology (ischemia or hemor-
rhage), the clinical presentation of stroke in patients is largely
the same independent of the cause [13]. In the case of ische-
mia, clotting within the brain cuts off the core supply of
oxygen and glucose causing a drastic reduction in the peri-
infarct area. Influenced cells in the ischemic area experi-
ence energy depletion or reduction, leading to failures in
ATP-dependent pumps and ionic imbalance. This subse-
quently results in cell membrane depolarization and
increased permeability, accompanied with the release of exci-
totoxic neurotransmitters and activation of glutamate recep-
tors. Through the opened glutamate receptor ion channels,
Ca2+ and Na+ influxes cause an overload in cytoplasmic ions,
which subsequently activate lipid peroxidases, proteases, and
phospholipases. High levels of Ca2+, Na+, and ADP result in
the production of oxygen radicals and the opening of mito-
chondrial permeability transition pores, which eventually
triggers apoptosis cascades. Thereafter, immune responses
follow with microglia activation, proinflammatory cytokine
release, and immune cell infiltration through the compro-
mised blood-brain barrier (BBB) (Figure 1) [14].

In the case of intracerebral hemorrhage, in addition to
the pathological processes triggered by the loss of oxygen
and glucose supply, burst blood vessels add complexity to
the disease by introducing even more components that are
deleterious to the brain. These components include nucleic
acids, proteins, and lipids as well as components of the com-
plement system, immunoglobulin, and cells that release toxic
prooxidative and proinflammation substances. Moreover,
continuous secondary damage is caused by hemoglobin
released by lysed red blood cells. It degrades into heme and
iron, which further generate free radicals that damage macro-
molecules in healthy cells [15]. In this kind of stroke, the
clean-up of the hematoma is important for long-term recov-
ery after hemorrhagic stroke.

3. Current Barriers and Strategies to
Treat Stroke

Due to the different physiological conditions of stroke-
insulted brains, along with the variety of possible causes
and subsequent pathological events, there are enormous
complexities and barriers to the effective treatment of stroke.
To date, the only FDA-approved drug for ischemic stroke is

the tPA that breaks down blood clots in the brain. How-
ever, as shown in clinical studies, treatment with tPA is
only effective if administered within 4.5 hours postische-
mia. Although it was recently reported that the timeframe
for effective thrombolysis treatment extends up to 9 hours
after the onset of a stroke, this time window remains nar-
row [5–7], not to mention the side effects of tPA, which
include enhanced risk of brain hemorrhage. In fact, the
number of patients actually benefiting from tPA is very
limited (2-5%) [16].

Thus far, strategies to treat stroke have mainly focused on
intervention in its pathological process.N-Methyl-D-aspartic
acid receptor (NMDAR) antagonists, free radical scavengers,
and molecules reducing immune cell infiltration have already
shown promising results in animal models [8, 17–20]; how-
ever, all of these treatments have unfortunately failed in clin-
ical trials [8, 9]. In general, the failures could be attributed to
several challenges. Firstly, there is the narrow time window
for treatment. Upon stroke, excitotoxic neurotransmitters,
Ca2+, and free radicals start to accumulate rapidly and dis-
turb normal cellular functions immediately. These therapies
are not very practical for the timely treatment of patients
before irreversible damage occurs. Second, complex underly-
ing mechanisms make it difficult to target a single molecule
or pathway to efficiently attenuate all deleterious effects.
Third, the pathological mechanisms of stroke remain largely
unclear. Fourth, current animal models cannot represent the
full scope of stroke as seen in human patients, especially the
disease’s unpredictable location and severity.

Nevertheless, these previous failures provide us with
valuable knowledge and experience to reconsider our current
therapeutic strategies and to begin focusing on other poten-
tial plans. New strategies include targeting cell death amelio-
ration (neuroprotection) and repairing and regeneration
(neurorehabilitation and recovery) in longer therapeutic
windows which may eventually meet our needs [14, 21, 22].
Although in recent years there have been many reports
of beneficial effects from off-label rehabilitative drug pre-
scriptions that claim to alleviate symptoms of stroke
patients, there remains no available neuroprotective medi-
cation to mitigate brain damage in acute or later phases
poststroke. It is vital that future efforts change their focus
and strategy in order to develop effective drugs for the
treatment of stroke.

4. Neurotrophins: Potential New Candidates for
Stroke Rehabilitation

Neurotrophins are a class of secreted proteins essential for
the growth, differentiation, development, survival, and recov-
ery of the nervous system [23]. Comprised of the nerve
growth factor (NGF), BDNF, neurotrophin-3 (NT-3), and
neurotrophin-4/5 (NT-4/5), neurotrophins bind to their
high-affinity tyrosine kinase receptors (Trks), TrkA, TrkB,
and TrkC, as well as their low-affinity receptor, p75NTR

(details are shown in Figure 2). Upon binding by neurotro-
phins, the Trks form homodimers and their intracellular
receptor tyrosine kinase domains autophosphorylate each
other to initiate downstream cascades of signaling
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Figure 1: A schematic diagram depicting the pathogenesis of stroke in neurons. Upon the onset of stroke, reduced oxygen and nutrient
supplies rapidly lead to the failure of ATP-dependent Na+/K+ pumps causing ionic imbalance and cell membrane depolarization, resulting
in presynaptic overrelease of neurotransmitters including glutamate into the synaptic cleft. Activation of postsynaptic glutamate receptors
AMPAR, NMDAR, and KAR leads to large volume Na+ and Ca2+ influxes, further cell membrane depolarization of the postsynaptic
neuron, and opening of the membrane potential-sensitive VGNCs and VGCCs. This allows even more Na+ and Ca2+ to flow into the cell
which causes cytoplasmic ion overload, protease activation, production of free radicals, caspase activation, and eventually DNA damage
and neuronal cell death. Meanwhile, as the BBB is compromised during stroke, immune cells from the blood start to infiltrate the brain
to elicit inflammatory responses, such as cytokine release and microglial cell activation, which further exacerbate the brain damage and
injury. BBB: blood-brain barrier; AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NMDAR: N-methyl-D-
aspartic acid receptor; KAR: kainic acid receptor; VGCC: voltage-gated calcium channel; VGNC: voltage-gated sodium channel.
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Figure 2: Schematic of neurotrophins and their target receptors. NGF, BDNF/NT-4, and NT-3 bind to TrkA, TrkB, and TrkC, respectively,
with high affinity. While these neurotrophins can all also bind to p75NTR with low affinity, the proneurotrophins proNGF and proBDNF can
bind and activate the p75NTR receptor with high affinity. Trk: tropomyosin receptor kinase; NGF: nerve growth factor; BDNF: brain-derived
neurotrophic factor; NT: neurotrophin; Ig: immunoglobulin; TMD: transmembrane domain; ECS: extracellular space; ICS: intracellular
space. This cartoon is adopted from Sanchez-Sanchez et al. with modifications [24].
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transduction which lead to protein regulation and functional
changes in the cell. Among the neurotrophins, BDNF is the
most abundant in the adult brain, and extensive studies have
reported on its neuroprotective effects in various neurologi-
cal disorders, including both neurodegenerative diseases
and acute brain injuries. This made BDNF a good candidate
for the new direction of therapeutic strategies to treat stroke.

BDNF was the second neurotrophic factor to be iden-
tified when it was discovered by Barde et al. in 1982 [24],
following the characterization of NGF by Nobel Laureates
Levi-Montalcini and Cohen in 1956 [25, 26]. After three
decades of extensive research and use in translational
medicine, we now possess a wealth of knowledge regard-
ing the biological properties and physiological functions
of this protein.

BDNF plays a significant role in the development and
functioning of the central nervous system. It is broadly
involved in synapse maturation, synaptic plasticity, neurite
outgrowth and arborization, and maintenance of normal
cognitive function, while dysfunction of BDNF may contrib-
ute to the progression of multiple neurological diseases and
psychiatric disorders [27–32]. The beneficial effects of BDNF
in chronic neurological diseases and psychiatric disorders
have been extensively reviewed in recent years [27, 33–35].
The prosurvival and neuroprotective functions of BDNF are
mainly drawn from two signaling pathways activated by
TrkB: the phosphatidylinositol 3-kinase (PI3K)/Akt and the
mitogen-activated protein kinase/extracellular-signal-regu-
lated kinase (MAPK/ERK) pathways. They both play signifi-
cant roles in the cell cycle, division, and survival, by
regulating the level and activity of certain transcription fac-
tors [35]. Therefore, BDNF appears to be a prime candidate
for use as a stroke treatment.

5. Role of BDNF in Stroke and
Poststroke Rehabilitation

BDNF plays a significant role in the prognosis, pathogenesis,
and rehabilitation of stroke. It is well established that low
levels of circulating BDNF are associated with a high risk of
stroke and poor recovery, while BDNF expression in the
brain is acutely stimulated by a stroke [36–40]. Clinically,
positive outcomes have been demonstrated by using several
stroke treatments that manipulate BDNF levels, including
administration of hormones and neurotransmitter-targeting
compounds, transplantation of stem cells, and regulation of
other related genes [41–46]. We will now summarize the
major, recent findings regarding stroke treatment and try to
delineate the potential therapeutic capabilities of BDNF by
focusing on different aspects of a stroke’s cellular and molec-
ular mechanisms.

5.1. BDNF Attenuates Stroke-Induced Cell Death. As men-
tioned previously, through the activation of its downstream
PI3K/Akt and MAPK/ERK pathways, BDNF is capable of
protecting neurons from apoptosis, a critical event that
directly leads to neuronal cell death and brain damage during
stroke (Figure 3) [47–50]. The neuroprotective effects of both
sex hormones and antioxidants to stroke may be exerted via

these two pathways. In the rat model of middle cerebral
artery occlusion (MCAO), poststroke administration of pro-
gesterone increased BDNF expression, attenuated apoptosis,
and reduced neuronal injury via the PI3K/Akt pathway
[51], while combinatorial treatment of progesterone and
vitamin D protected neuronal cells from ischemia/reperfu-
sion- (I/R-) induced apoptosis by increasing B-cell leuke-
mia/lymphoma 2 (BCL-2) expression and suppressing
caspase-3 cleavage via the BDNF-TrkB-ERK pathway
(Figure 3) [52]. Antioxidants from natural products and
from endogenous sources were also found to be capable of
protecting neurons from I/R-induced apoptosis. A key
enzyme catalyzing heme oxidative degradation and main-
taining redox homeostasis in the cell, heme oxygenase-1
(HO-1), was upregulated by progesterone and vitamin D
hormone during treatment of ischemic strokes [52]. More-
over, overexpression of HO-1 in the CA1 region of the hip-
pocampus, prior to ischemia, significantly protected the
brain from I/R injury. This led to increased relative ratio of
BCL-2/BAX (BCL-2-associated X protein) and decreased
cleaved-caspase-3 protein levels and, thus, less apoptosis.
Similarly, when a natural isoflavonoid extracted from the
root of Pueraria, puerarin, was administered 1 hour after
I/R, there was a stimulation of BDNF expression in astrocytes
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Figure 3: Activation of the TrkB receptor by specific agonists
triggers downstream signaling cascades to induce transcription
and suppress apoptosis. Upon binding to the TrkB receptor,
specific agonistic agents induce the formation of a TrkB
homodimer and autophosphorylation of the intracellular tyrosine
kinase domains, as well as the activation of the PLCγ
(phospholipase C gamma), MAPK/ERK, and PI3K/Akt signaling
pathways. While the latter two pathways suppress apoptosis by
interacting with apoptosis-regulating proteins, such as BCL2,
BAX, and Bad, all three pathways activate CREB-mediated
transcription of prosurvival genes and thus protect neurons from
apoptosis.
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and further suppression of apoptosis due to the promotion of
BCL-2 and reduction in BAX expression [44].

In addition to apoptosis, a few novel types of cell death
that play significant roles in the pathologic process of stroke
have been identified, such as autophagy [53], necroptosis [10,
54], ferroptosis [55], parthanatos [56], and pyroptosis [57].
Although the role of BDNF in most of these cell deaths
remains largely elusive, the latest evidence suggests that
BDNF-TrkB signaling may protect neurons under ischemic
insult from ferroptosis and necroptosis. Ishii et al. recently
proposed that BDNF protects neurons from ferroptosis-like
cell death via circadian activation of nuclear factor-E2-
related factor 2 (Nrf2) in astrocytes [58]. Meanwhile, sup-
pression of both neuronal cell apoptosis and necroptosis
was observed by a new high-affinity TrkB agonistic antibody
which thus reduced the infarct size and facilitated functional
recovery in the rat MCAO model [10]. Experimental evi-
dence from other disease models suggests this antinecropto-
tic effect may be mediated by the MAPK/ERK and PI3K/Akt
pathways [59, 60]. Although more investigations are needed,
these newly discovered neuronal cell death types may serve as
novel targets for stroke treatment in the future (extensively
reviewed by Fricker et al. [61]).

5.2. BDNF Promotes Neurite Outgrowth and Neurogenesis in
Poststroke Rehabilitation. Neurite outgrowth and neurogen-
esis are hallmarks of the regenerative capability of the brain
after injury, and the BDNF-TrkB signaling pathway plays a
pivotal role in these processes [62–64]. In a cortical cell cul-
ture derived from endothelial nitric oxide synthase (eNOS)
knockout mice, the reduced neurite outgrowth is shown to
be caused by a BDNF-TrkB reduction [45]. Niacin, one of
the most effective medications currently in clinical use for
increasing high-density lipoprotein cholesterol, was tested
in the rat MCAO model and found to promote neurite out-
growth and to increase synaptophysin expression, via activa-
tion of the BDNF-TrkB pathway [65].

Testosterone also exerts beneficial effects in stroke treat-
ment by promoting neurogenesis and neurite outgrowth,
which may be due to activation of the BDNF-TrkB pathway.
Although testosterone was initially found to be deleterious in
the acute phase of stroke, it was later suggested that testoster-
one treatment after ischemia could significantly enhance
functional recovery in rats by increasing BDNF levels in both
serum and the brain of experimental rats compared to
untreated controls or those treated with testosterone and flu-
tamide (an antiandrogen) [66].

Cilostazol is another clinically used medication found to
have preventive effects on stroke [43, 67]. Cilostazol is a type
3 phosphodiesterase (PDE3) inhibitor that activates cAMP-
responsive element binding protein (CREB) signaling and is
commonly used to improve the symptoms of a certain blood
flow problem in the legs (intermittent claudication). Post-I/R
treatment with cilostazol was found to reduce infarct size,
attenuate brain injury, and promote neurogenesis in a mouse
MCAO model. These rehabilitative effects of cilostazol were
most likely mediated by the activation of the BDNF-TrkB
pathway, given that the number of BDNF-positive astrocytes
in both the ipsilateral subventricular zone (SVZ) and the

peri-infarct area was found to be significantly increased after
treatment [43].

5.3. BDNF Facilitates Functional Recovery in Poststroke
Rehabilitation. Functional recovery, the final outcome of
poststroke rehabilitation, is a key endpoint for stroke patients
in clinical trials, as well as for the experimental animals used
in preclinical/scientific research. In recent years, novel thera-
peutic plans (e.g., gene/cell therapy) have greatly facilitated
poststroke functional recovery. In an intracerebral hemor-
rhage mouse model, intracranial implantation of BDNF-
overexpressing 3T3 fibroblasts significantly promoted post-
stroke neurogenesis and functional recovery [68]. In another
study, intracerebral transplantation of genetically modified,
BDNF-overexpressing human mesenchymal stem cells
(MSCs) was achieved, resulting in significantly improved
functional recovery in the rat MCAO model [69].

Erythropoietin (EPO) is a hematopoietic cytokine that
shows neuroprotective effects in stroke by enhancing angio-
genesis and neurogenesis and by upregulating synaptic
plasticity-related genes, including BDNF [70]. Postischemia
treatment with recombinant human EPO (rhEPO) in the
rat MCAO model significantly increased the density of cere-
bral microvessels and the levels of the vascular endothelial
growth factor (VEGF) and BDNF in the brain. Intriguingly,
rhEPO was not able to induce BDNF expression in neuro-
spheres from the SVZ, which implies the contribution of
paracrine BDNF from endothelial cells in the neurogenesis
and subsequent functional improvement [71].

In addition to administration of therapeutic agents and
manipulation of gene expression, physical exercise was also
capable of promoting BDNF expression and improving the
neurological outcome after experimental stroke (reviewed
by Alcantara et al. [72]). Ke et al. claimed that voluntary exer-
cise is correlated with an increase in hippocampal BDNF
levels and functional recovery [73]. In line with this, tread-
mill exercise increased only mature BDNF but not proBDNF
in the cortex of rats that had experienced cortical ischemic
stroke [74]. It was further reported that compared to those
who were sedentary or who performed high-intensity exer-
cise, MCAO rats who performed low-intensity exercise
exhibited the greatest recovery in spatial memory and had a
significant increase in PSD-95 and BDNF expression [75].

5.4. BDNF Induces Neuroplasticity in Poststroke Rehabilitation.
The significant role that BDNF plays in the regulation and
maintenance of synaptic plasticity has been extensively
investigated and well described in recent decades. BDNF is
well known for its involvement in Hebbian-type long-term
potentiation (LTP) and long-term depression (LTD) and,
more recently, in homeostatic synaptic plasticity (HSP) [30,
76]. However, unlike the synaptic plasticity that is crucial
for normal cognitive function, the neuroplasticity discussed
in poststroke rehabilitation mainly refers to the brain’s capa-
bility to recover from damage in order to restore its normal
structure and function.

The crucial role of BDNF in neuroplasticity was primarily
revealed by studies that focused on the poststroke treatment
of aphasia and lost motor function, which are largely

5Neural Plasticity



mediated by the process of neuroplasticity [77, 78]. In previ-
ous studies using rat ischemia models, it was found that when
BDNF synthesis was blocked, the beneficial effects on the
recovery of skilled reaching were mostly negated [79], while
intravenous administration of BDNF significantly enhanced
the functional motor recovery of the treated rats, compared
to the untreated controls [80, 81]. Behavioral and physical
therapies, such as aerobic/physical exercise, transcranial
direct current stimulation (tDCS), and extremely low-
frequency electromagnetic field therapy (ELF-EMF), were
all found to increase the blood and/or brain levels of BDNF
[72, 77, 82–85]. In addition, BDNF-mediated learning mem-
ory may also be partially involved in the poststroke rehabili-
tation of motor function and language relearning [86–88].

6. BDNF as a Therapeutic Agent in the
Treatment of Stroke

The use of BDNF as a direct therapeutic agent for the treat-
ment of stroke has been extensively investigated in rodent
models (Figure 4). In the rat MCAO model of ischemia, pre-
treatment with intraventricular or intravenous BDNF drasti-
cally reduced the infarct size and the extent of neuronal cell
death. It also stimulated neurogenesis, promoted sensorimo-
tor recovery, and induced neural plasticity [62, 80, 89–91].
Grafting of BDNF-overexpressing fibroblast cells into the
medial part of the somatosensory cortex lowered the num-
ber of DNA breakages and upregulated the level of full-
length TrkB in the penumbra [90]. Conversely, blockade of
BDNF expression by antisense oligonucleotides largely abol-
ished the postischemia recovery of motor function and
skilled reaching [79].

At the cellular level, neurogenesis and migration have
been commonly used as parameters to evaluate the therapeu-
tic effects of BDNF on stroke recovery. In a photothrombotic
ischemia model, Schäbitz et al. found that intravenous injec-
tion of BDNF significantly increased the number of
doublecortin-positive cells in the dentate gyrus (DG) of the
hippocampus and promoted the migration of neural progen-
itor cells (NPCs) towards the striatum [62]. In another study
using the mouse MCAO model, vasculature-dependent gen-
eration and migration of neuronal precursor cells were
observed from the SVZ to the ischemic striatum, which
benefitted from the sustained expression of BDNF by the
endothelial cells. Also, although astrocytes did not actively
express BDNF themselves, they seemed to trap a large
amount of BDNF which was also able to contribute to post-
stroke migration of neuronal precursor cells [92].

In the exploration of immuno-/cell therapies for stroke,
once again, BDNF seems to be a clear target. Intravenous
transplantation of an immortal human microglial cell line
into rat brains 48 hours following MCAO resulted in the
upregulation of several neurotrophic factors, including
BDNF, and anti-inflammatory cytokines, which helped with
the functional recovery from ischemia [93]. Hydroxysafflor
yellow A (HSYA) is a natural product and the active ingre-
dient found in the Chinese herbal medicine Flos Carthami
Tinctorii, which was recently shown to exert neuroprotec-
tive effects in cerebral ischemia by enhancing BDNF expres-

sion in microglia [94, 95]. In another study, intranasal
delivery of BDNF was shown to increase the number of acti-
vated and phagocytotic microglia, as well as the level of
cytokines and transcription factors, in order to protect brain
tissue from ischemic insult and reduce neuronal injury
(Figure 4) [96].

7. Improvement of BDNF Delivery and the
Development of New TrkB Agonists

Despite all the advantages of using BDNF to fix neurological
impairments, there are drawbacks to this biomacromolecule
that have to be taken into consideration when viewing it as
a potential product from the drug development pipeline.

First of all, although it binds less than proBDNF, BDNF
still exhibits low affinity to p75NTR, a proapoptotic receptor
that can elicit the neuronal cell death process [30]. Second,
there is the matter of specificity. TrkB expresses universally
in different organs of the human body and has other impor-
tant physiological roles, such as the regulation of metabolism
and energy homeostasis [97, 98]. Specifically, TrkB is also a
therapeutic target for obesity, possibly due to its involvement
in the leptin-melanocortin pathway that controls appetite.
Therefore, the delivery of BDNF needs to be more specific
to reduce the side effect of weight loss. Third, BDNF has a
low transport rate across the intact BBB and a short serum
half-life (less than 10min), which together indicate a narrow
treatment window that demands a large amount of BDNF to
maintain an effective therapeutic dose. Fourth, intracranially
administrated BDNF cannot diffuse into the parenchyma of
targeted tissues given its tendency to be physically “sticky”
(pI ≈ 10) [99]. Finally, manufacturing of BDNF remains
largely limited by current technology, and consequently, the
cost is correspondingly high.

To cope with these drawbacks and maximize the thera-
peutic efficacy of the BDNF-TrkB pathway in stroke treat-
ment, improved BDNF delivery methods and alternative
TrkB agonists have been developed in recent years. We will
summarize the progress as follows (Figure 4).

7.1. Improvement of BDNF Delivery. In 1999, Wu and Par-
dridge first improved the plasma pharmacokinetics of BDNF
by incorporating polyethylene glycol (PEG) moieties at the
surface of its carboxyl residues. This modified BDNF was
then linked to OX26mAb to facilitate capillary endothelial
transferrin receptor-mediated transport through the BBB.
Peripheral administration of PEG-BDNF-OX26mAb, but
not BDNF alone, was able to restore the neuronal cell density
in the CA1 region and significantly reduce the infarct size
after transient ischemic insult in rats [100, 101].

Genetic modification may be another fast and effective
method to achieve long-term and specific delivery of BDNF.
For instance, when fused to a rabies virus glycoprotein-
derived peptide, BDNF was able to enter nerve cells via intra-
venous administration and exhibited neuroprotective effects
in a mouse model of stroke [102]. Fibrin is a protein abun-
dantly found in hematoma surrounding the damage sites
after intracerebral hemorrhage. BDNF was therefore fused
with a fibrin-binding domain (FBD) to make FBD-BDNF,
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which could be specifically concentrated and retained at the
lesion sites for a longer time than BDNF alone [103]. Simi-
larly, fusing BDNF with a collagen-binding domain success-
fully retained BDNF for a longer time from degradation and
promoted neurogenesis in the SVZ in an intracerebral hem-
orrhage model [104].

Utilizing novel drug-delivery methods, BDNF can also
penetrate the BBB with higher efficacy. Harris et al. per-
formed intravenous administration of a nanoparticle poly-
ion complex formulation of BDNF which demonstrated
better brain uptake, significantly reduced tissue loss, and
increased expression of myelin basic protein [105]. With
an ultrasound and microbubble system, Rodríguez-Frutos

et al. delivered BDNF to the brain with higher efficiency
and achieved better poststroke recovery of injured white
matter, as measured by increased oligodendrocyte number
and remyelination markers [106].

7.2. Development of New TrkB Agonists. Another solution to
circumvent the disadvantages of using BDNF directly as a
medication is to develop new TrkB agonists. One of the most
extensively studied compounds that imitates the function of
BDNF is 7,8-dihydroxyflavone (7,8-DHF), a small molecule
TrkB agonist that protects neurons from kainic acid-
induced toxicity and experimental ischemia [107]. 7,8-DHF
efficiently induces TrkB autophosphorylation and
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(iii) Chemical compounds

(iv) Agonistic antibodies
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Figure 4: Summary of approaches to enhance TrkB activation and their effect on stroke treatment and recovery. Multiple strategies could be
utilized to activate the TrkB receptor to serve in the treatment and recovery of stroke comorbidities. Direct approaches include the
modification and improvement of BDNF for better delivery and the development of BDNF mimetic peptides, small molecule compounds,
and specific agonistic antibodies. Indirect approaches include hormones, physical therapies, and natural compounds that can stimulate the
endogenous expression of BDNF and gene/cell therapy to overexpress BDNF. TrkB receptor activation directly triggers and stimulates
downstream signaling cascades, which subsequently protect neuronal cells and facilitate poststroke brain recovery. While the PLCγ
pathway has been suggested to play a role in neuroplasticity and in cell death, the PI3K/Akt and MAPK/ERK pathways mainly protect
neurons from excitotoxicity and cell death, chiefly apoptosis. The PI3K/Akt signaling is also reported to support neuronal survival under
oxygen/nutrient deprivation and to contribute to neurogenesis during rehabilitation.
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downstream activation of various signaling pathways, includ-
ing the Akt and ERK pathways. Pretreatment with 7,8-DHF
in vitro and in vivo reduced the death of immature neurons
in the hippocampus in a controlled cortical impact (CCI)
model [108]. Postinjury treatment with 7,8-DHF within
10min was also effective for reducing brain edema and cell
death via Akt activation [11]. In another related study using
the fluid percussion injury (FPI) model, treatment with 7,8-
DHF successfully restored TrkB signaling and memory
function in the Barnes maze test [109]. 7,8-DHF also exhib-
ited beneficial effects in the treatment of neurodegenerative
diseases, including Alzheimer’s disease (AD), Parkinson’s
disease (PD), Huntington’s disease (HD), and amyotrophic
lateral sclerosis (ALS) [110–114]. Recently, a derivative of
7,8-DHF, namely, BrAD-R13, was approved by the FDA
for use in clinical trials for the treatment of mild to moder-
ate AD.

A pharmacophore proven to be critical in activating TrkB
signaling is the BDNF mimetic LM22A4, which activates the
Akt and ERK signaling pathways comparably to BDNF.
Massa et al. performed intranasal administration of
LM22A4, in in vitro neurodegenerative disease models to
promote cell survival, and in a rat parietal CCI model to
reduce neuronal cell death [115]. Based on the sequence of
BDNF loop 4 and loop 1 β-turn, Gudasheva and colleagues
have recently created two dimeric dipeptides, which mimic
full-length BDNF. They exhibited varied abilities to activate
the Akt and ERK pathways and exhibited therapeutic effects
in the rat MCAO model [116].

As the strategy of immunotherapy has prevailed in recent
years, several specific TrkB agonistic antibodies have been
developed which exhibited promising preclinical effects in
the treatment of acute and chronic neurological diseases.
Recent studies suggest that TrkB agonistic antibodies bind
to the receptor with high specificity and affinity to activate
its downstream signaling cascades; thus, they exhibit protec-
tive effects in ischemic stroke [10, 117], HD [118], and glau-
coma [119] and regulate energy metabolism [120]. Using a
human short-chain variable fragment antibody library,
Merkouris et al. screened new TrkB agonistic antibodies
and characterized their function at the cellular level. These
antibodies induced TrkB phosphorylation, downstream sig-
naling pathway activation, and gene expression to compara-
ble levels as BDNF [121]. Together, these studies made
great strides toward BDNF-based therapeutics for neurolog-
ical diseases.

8. To Avoid Preclinical Research Pitfalls

While novel therapeutic targets have emerged from pre-
clinical studies, none has yet been proven to be as effective
in clinical trials. The Stroke Therapy Academic Industry
Roundtable has reported recommendations on preclinical
drug discovery for ischemia that may shed light on the devel-
opment of therapeutic plans, which would lower the risk of
wasted effort on, and money in, failing clinical trials [122].

First of all, a good preclinical study generally starts with
the right animal models. Rodents are usually considered at
the first place, as the scientific community has a wealth of

experience in using them to model brain diseases. Second,
the candidate drugs should be monitored closely based on
their mechanisms of actions, functional and pathological
outcomes, and physiological properties. For the neuroprotec-
tive drugs that exhibit efficacy at the time of damage, it is
important to plot dose-response and administration time-
response curves in order to learn the effective range of con-
centrations and functional time windows in the acute phase
of disease onset; while for the neurorestorative drugs, long-
term monitoring of functional outcomes is more important.
Last but not the least, to avoid bias and increase the repro-
ducibility of the data, the experiments should be carried out
in at least two laboratories independently in a blinded, ran-
domized fashion with both rodents and upper-level species,
preferably with nonhuman primates [122].

9. Conclusions

To date, the role of the BDNF-TrkB pathway in mediating
functional rehabilitation and recovery from stroke has been
extensively investigated. A great number of studies suggest
that BDNF exerts favorable effects in poststroke recovery
due to its attenuation of cell death, promotion of neurogen-
esis/-migration, and remyelination of axons, as well as its
ability to interfere with neuroinflammatory factors and cells.
Nevertheless, more detailed mechanisms of the BDNF-TrkB
pathway’s effect on stroke recovery, or that of other brain
insults, remain elusive and will require further in-depth
investigation. Moreover, due to the unfavorable physical
and biochemical properties of BDNF as a treatment agent,
the prospect of its clinical use has been greatly hampered.
Therefore, the use of new technologies to manufacture
BDNF, innovative strategies to control its targeted deliv-
ery, and production of BDNF mimetics in comprehensive
preclinical studies may pave the way for future clinical
application of the BDNF-TrkB signaling pathway in
stroke treatment.
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