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Abstract

Background: Previous neuroimaging studies have extensively demonstrated many

signs of functionally spontaneous local neural activity abnormalities in bipolar disor-

der (BD) patients using resting-state functional magnetic resonance imaging (rs-fMRI).

However, how to identify the changes of voxel-wise whole-brain functional connec-

tivity pattern and its corresponding functional connectivity changes remain largely

unclear in BD patients. The current study aimed to investigate the voxel-wise changes

of functional connectivity patterns inBDpatients using publicly available data from the

UCLACNP LA5c Study.

Methods: A total of 45 BD patients and 115 healthy control subjects were finally

included and whole-brain functional connectivity homogeneity (FcHo) was calculated

from their rs-fMRI. Moreover, the alterations of corresponding functional connectiv-

ity were subsequently identified using seed-based resting-state functional connectiv-

ity analysis.

Results: Individuals with BD exhibited significantly lower FcHo values in the left mid-

dle temporal gyrus (MTG) when compared with controls. Functional connectivity find-

ings further indicated decreased functional connectivities between left MTG and clus-

ter 1 (left superior temporal gyrus, extend to middle temporal gyrus, rolandic opercu-

lum), cluster 2 (right postcentral, extend to right precentral) in BD patients. The mean

FcHo values of left MTG were positively correlated with insomnia, middle scores and

appetite increase scores. The mean functional connectivities of left MTG to cluster 1

were negatively correlated with grandiose delusions scores. While the functional con-

nections between leftMTGwith cluster 2were negatively correlatedwith delusions of

reference and positively correlated with insomnia, middle scores in BD patients.

Conclusions: Our findings suggested that abnormal FcHo and functional connections

in those areas of the brain involving DMN and SMN networks might play a crucial role

in the neuropathology of BD.
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1 INTRODUCTION

Bipolar disorder (BD) is a complex, severe, and chronicmental disorder

characterized by alternating periods of manic or hypomanic episodes

and depressive episodes (Carvalho et al., 2020). The suicide rates

among individuals with BD are approximately 20–30 times higher than

the rates in the general population (Miller & Black, 2020). Unfortu-

nately, the specific neurophysiologic basis of BD is unknown. In recent

years, as a promising neuroimaging measure, resting-state functional

magnetic resonance imaging (rs-fMRI) can detect blood oxygen

level-dependent (BOLD) signal during rest to assess brain function

and pinpoint the relation between the altered spontaneous neural

activity of specific brain regional and physiological states (Biswal et al.,

1995; Fox &Raichle, 2007). Due to its noninvasiveness and high spatial

and temporal resolution, rs-fMRI has been applied to investigate

psychiatric disorders (Canario et al., 2021). For several commonly used

methods, the amplitude of low-frequency fluctuation (ALFF) (Zang

et al., 2007) measures voxel-wise fluctuations in the total power of the

BOLD signal at very low frequencies (typically 0.01−0.10Hz). Regional

homogeneity (ReHo) (Zang et al., 2004) characterizes the relationship

between the time series of a voxel with nearby voxels using Kendall’s

coefficient of concordance. Functional connectivity (FC) is a measure

that correlates the time series of two different spatial regions in the

brain with the assistance of linear temporal correlation (Smitha et al.,

2017). Based on measuring ALFF, ReHo, and/or the FC of rs-fMRI,

a large body of neuroimaging studies has extensively demonstrated

many signs of functionally spontaneous local neural activity alterations

in individuals with BD compared to healthy controls (Gong et al., 2021;

Qiu et al., 2019; Shan et al., 2020; Syan et al., 2018;Wang et al., 2020b;

Whittaker et al., 2018; Xi et al., 2021; Xiao et al., 2019; Yu et al., 2019;

Zhang et al., 2019; Zhong et al., 2019). Although these investigations

have provided valuable insights into the dysfunctions of the brain in

BD, it remainsmostly unknownhow to detect alterations in the pattern

of voxel-wise whole-brain functional connectivity. Thus, assessing the

voxel-wise whole-brain functional connectivity pattern similarity is

beneficial in providing information to identify the pathophysiology

of BD.

Wang et al. (2018) recently developed the whole-brain functional

connectivity homogeneity (FcHo) approach, which effectively eval-

uates the homogeneity of a given voxel’s whole-brain functional

connectivity pattern with 26 voxels of its nearest neighborhood rather

than counting the number of connections. In comparison to other

commonly used approaches, this way can better characterize the

similarity of voxel-wide whole-brain functional connectivity patterns

rather than the similarity of functional activity and regional functional

connectivity, as well as better define association cortical areas and

high-order cognitive brain regions with higher FcHo values, while

primary sensory and motor related areas with lower FcHo values,

without the need to choose the thresholds of connectivity strength for

calculating connectivity strength.

Additionally, some researchers have utilized this approach to

examine functional anomalies and the mechanism of electroconvul-

sive therapy in depression (Wang et al., 2020a;Wang et al., 2019).

In the current study, to show aberrant functional connectivity pat-

terns in BD patients, we used the FcHo method on resting-state fMRI

data from a publically available data set. Furthermore, resting-state

functional connectivity was also used to determine the most impor-

tant connections which mostly contributed to the FcHo changes in the

patients with BD.

2 MATERIALS AND METHODS

2.1 Participants

All data included in this work were acquired from the UCLA CNP LA5c

Study, which is openly accessible via the OpenfMRI database (https:

//openfmri.org/dataset/ds000030/) (Poldrack et al., 2013). A broad

sample of demographic, clinical, and multimodal neuroimaging data is

included in CNP dataset. All of the subjects were right-handed and

aged 21−50. The Structured Clinical Interview for the Diagnostic and

Statistical Manual of Mental Disorders Fourth Edition-Text Revision

(DSM-IV) was used to establish diagnoses. The data descriptor report

contains comprehensive descriptions of participant recruitment, exclu-

sions, and research strategies (Poldrack et al., 2016). All individuals

provided written informed agreement in accordance with protocols

authorized by theUCLAand LosAngelesCountyDepartments ofMen-

tal Health Institutional Review Boards. After screening and quality

control of the data, we finally excluded 19 participants, of which 8

missed imaging data and 10 experienced excessive head movement

(translational or rotationalmotion parameters greater than 3mmor 3◦

during the fMRI scan), and 1 hadwrongs during fMRI preprocessing.

The clinical symptoms of individual patients were evaluated using

the Scale for the Assessment of Negative Symptoms (SANS) and the

Scale for the Assessment of Positive Symptoms (SAPS) (Andreasen,

1990). To determine the severity of depressive symptoms, the 28-item

Hamilton Rating Scale for Depression (HAMD) was employed (Hamil-

ton, 1960). The 11-item YoungMania Rating Scale (YMRS) was applied

tomeasure the severity of manic symptoms (Young et al., 1978).

The demographic characteristics of the sample finally included in

this study, which included 115 healthy volunteers and 45 bipolar dis-

order type I (BD) patients, is shown in Table 1.

2.2 MRI data acquisition

The functional and anatomical MRI data of all participants were

collected on the 3T Siemens Trio scanner. Resting-state functional

images data were collected using a T2*-weighted echo planar imaging

sequence (repetition time/echo time= 2000/30 ms, voxel size= 3 mm

×3mm×4mm, flip angle=90◦, FOV=192mm×192mm,matrix=64

× 64, slice thickness = 4 mm, 34 slices, and 152 volumes, oblique slice

orientation). The parameters of high-resolution structural MPRAGE

images were as follows: repetition time/echo time = 1900/2.26 ms,

FOV= 250mm× 250mm,matrix= 256× 256, slice thickness= 1mm,

176 slices, sagittal plane.

https://openfmri.org/dataset/ds000030/
https://openfmri.org/dataset/ds000030/
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TABLE 1 Demographics and clinical characteristics of the study’s participants (mean±standard deviation [SD])

Subjects BD (n= 45) HC (n= 115) X2/t p

Number of subjects 45 115

Gender (male/female) 26/19 62/53 0.070 .791

Age (years) 35.02± 9.01 31.07± 8.62 2.576 .011

Education level (years) 14.64± 1.99 15.13± 1.66 −1.574 .118

Mean FD (mm) 0.11± 0.06 0.09± 0.05 1.514 .132

SAPS 8.47± 8.59 – – –

SANS 20.56± 13.68 – –

YMRS 11.51± 10.64 – – –

HAMD 18.82± 13.44 – – –

Note: A Pearson’s chi-square test (X2) was used for gender comparison. Two-sample t-tests (t) were used for age, education comparisons. The data are pre-

sented as themean± standard deviation.

Abbreviations: BD, bipolar disorder; FD, frame-wise displacement; HAMD, the 28-item Hamilton Rating Scale for depression.; HC, healthy controls; SANS,

the scale for the assessment of negative symptoms; SAPS, the scale for the assessment of positive symptoms; YMRS, the 11-item YoungMania Rating Scale.

2.2 Data preprocessing

All resting-state fMRI data were preprocessed using DPARSF (http:

//rfmri.org/DPARSF) software (Yan et al., 2016). The first 10 volumes

of were discarded. The subsequent steps included slice timing, realign,

head motion correction, normalization of the images to echo-planar

imaging (EPI) template in Montreal Neurological Institute (MNI) space

(resampled to voxel size of 5× 5× 5mm3 to reduce computation time),

smoothing with a Gaussian kernel of 6 mm full width at half-maximum

(FWHM). Following that, regressing out nuisance covariates including

Friston-24 parameters of headmotion, whitematter and cerebrospinal

fluid signal. Finally, data were linearly detrended and filtered with a

temporal band-pass (0.01−0.1 Hz). Ten subjects (HC= 6, BD= 4) were

excluded because their head motion >3 mm or rotation >3◦in any

direction.

Furthermore, before performing functional connectivity analysis,

the fMRI datawerepreprocessed according to the following steps: nor-

malized to EPI template, resampled to 3 × 3 × 3 mm3 voxel size, and

smoothed with a Gaussian kernel of 6 mm FWHM. Taking into account

that the regression of the whole-brain signal would exaggerate the

anticorrelation, we did not perform it in order to ensure the reliability

of results.

2.3 Voxel-wise whole-brain FcHo analyses

FcHo was calculated for each voxel via Kendall’s coefficient concor-

dance (KCC) to quantify the similarity of the whole-brain connectiv-

ity pattern. The detailed description of the calculation formula can be

found in the corresponding article (Wang et al., 2018).

Finally, each subject’s whole-brain FcHo map was generated for

statistical analysis. A two-tailed two-sample t-test was conducted to

reveal the disrupted whole-brain FcHo differences between patients

compared to healthy controls, using gender, age, years of education,

and average FD as covariates. The threshold for significance was set at

voxel p< .0001 and cluster p< .001 (Gaussian random field correction).

2.4 Functional connectivity analyses

In this part, those regions that exhibited significant alterations in

FcHo in BD patients were defined as seed regions. These brain areas

were then employed to perform a voxel-wise whole-brain functional

connectivity analysis to further highlight key functional connectivity.

First, we resampled the seed regions’ masks into a voxel size of 3 ×

3 × 3 mm3 and extracted the mean time series. Second, we applied

Pearson’s correlation coefficient to estimate functional connectivity

between the seed region’s averaged time series and remaining brain

voxels. Then fisher’s z transformation was performed to convert

functional connectivity to z value.With gender, age, years of education,

and mean FD as covariates, a two-sample t-test was conducted to

detect statistical difference in functional connectivity between BD and

HC. The significance was determined using the Gaussian random field

(GRF) theory multiple comparison corrections (voxel p < .001, cluster

p < .01, two-tailed). The names and cluster sizes of significant brain

regions were recorded based on the automated anatomical labeling

(AAL) atlas (Tzourio-Mazoyer et al., 2002). The results were visualized

with BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia et al.,

2013).

2.5 Correlation analyses

Spearman’s correlation analysis was performed to examine the asso-

ciation between neuroimaging indicators (mean FcHo and mean func-

tional connections) and clinical characteristics including age, the total

score and all the subitems score of SAPS, SANS,HAMD, andYMRS. The

significance level was set at p< .05.

http://rfmri.org/DPARSF
http://rfmri.org/DPARSF
http://www.nitrc.org/projects/bnv/
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TABLE 2 Abnormal brain function regions in BD patients

Peak coordinate

Brain regions Cluster Size (mm3) X Y Z tValues

FcHo LeftMTG 6000 –60 –26 –7 –5.29

FC Left STG extend to leftMTG, left rolandic operculum 4509 –45 –18 18 –4.30

Right postcentral, extend to right precentral 3672 30 –27 60 –4.38

Abbreviations:MTG, middle temporal gyrus; STG, superior temporal gyrus.

3 RESULT

3.1 Demographics and clinical characteristics

The demographics and clinical characteristics of the sample in this

study are shown in Table 1.We found no significant differences in gen-

der (X2= 0.070, p= .791), education level (t=−1.574, p= .118) except

for the age (t= 2.576, p= .011) between the BD andHC groups.

3.2 Changed FcHo between BD and HC groups

When compared with healthy, patients with BD showed significantly

reduced FcHo in the leftmiddle temporal gyrus (MTG) (peakMNI coor-

dinate:−60−26−7, size of voxels: 6000mm3) (Figure 1).

3.3 Changed functional connectivity

Significantly decreased functional connectivities were described

between left MTG and cluster 1 (left superior temporal gyrus, extend

to middle temporal gyrus, rolandic operculum), cluster 2 (right post-

F IGURE 1 Reducedwhole-brain functional connectivity pattern
homogeneity (FcHo) of left middle temporal gyrus (MTG) in BD
patients. The significant threshold was set at voxel p< .0001 and
cluster p< .001 (two-tailed) using Gaussian random field (GRF)
correction

central, extend to right precentral) in BD patients compared with HC

(Table 2 and Figure 2).

3.4 Correlation analyses

For mean FcHo values of left MTG and functional connectivities of left

MTGwith cluster 1 and cluster 2, we performed a Spearman’s correla-

tion analysis to investigate their association with the clinical variables

such as age and the scores of SAPS, SANS, HAMD, and YMRS in the

BD group. No significant correlation between mean FcHo values and

functional connectivities in the anatomical regions with age, the total

scores of SAPS, SANS, HAMD, and YMRS were found in BD patients

(all p > .1) (see Table S1 in supplementary material). We found that

mean FcHo values of left MTG were significantly positively correlated

with theHAMD subitems insomnia, middle scores (R= 0.301, p= .044)

and appetite increase scores (R = 0.363, p = .014) in patients with BD

(Figure 3). In addition, themean resting-state functional connections of

leftMTGtocluster1werenegatively correlatedwith theSAPS subitem

grandiose delusions (R = −0.30, p = .045). The functional connections

between left MTG with cluster 2 were negatively correlated with the

SAPS subitem delusions of reference (R = −0.341, p = .022) and pos-

itively correlated with the HAMD subitems insomnia, middle scores

(R = 0.328, p = .028) in BD patients (Figure 3). None of the nominally

significant relationships survived multiple comparisons (p > .05, FDR

corrected).

4 DISCUSSION

In contrast to previous fMRI studies of BD, the present research

employed a newly developed fully data-driven FcHo approach that

did not rely on any hypothesis to explore whole-brain functional con-

nectivity patterns in patients with bipolar disorder. And we adopted

seed-based functional connectivity to identify functional brain deficits

in BD and HC. Individuals with BD showed lower FcHo in the left MTG

compared to healthy controls. Seed-based functional connectivity

analysis identified significantly reduced FC between left MTG with

multiple brain areas linked in the default mode network (DMN) and

the sensorimotor network (SMN) (including left STG, left MTG, left

rolandic operculum, right postcentral, right precentral) in BD patients

group. Moreover, follow-up correlation analysis revealed multivariate
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F IGURE 2 Altered resting-state functional connectivities in BD patients. Seed-based functional connectivity analyses showed decreased
functional connections between leftMTG and cluster 1 (left superior temporal gyrus, extend tomiddle temporal gyrus, rolandic operculum),
cluster 2 (right postcentral, extend to right precentral) in BD patients. The significant threshold was set at voxel p< .001 and cluster p< .01
(two-tailed) using GRF correction

F IGURE 3 Spearman’s correlation analyses between neuroimagingmetrics and clinical characteristics. The upper part of the figure showed
correlation analyses identified a positive correlation between FcHo values in leftMTG and the HAMD subitems insomnia, middle scores, and
appetite increase scores in the BD group. The lower part of the figure showed correlation analyses identified a negative correlation between the
functional connectivity of leftMTGwith cluster 1 and SAPS subitems grandiose delusions, a negative correlation between the functional
connectivity of leftMTGwith cluster 2 and SAPS subitems delusions of reference, and a positive correlation between the functional connectivity
of leftMTGwith cluster 2 and the HAMD subitems insomnia, middle scores in BD patients. The significance was set at p< .05 (uncorrected)
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associations between the changed neuroimaging measurements and

some clinical characteristics such as insomnia, middle scores, appetite

increase scores grandiose delusions scores, and delusions of reference

scores.

In our current study, decreased FcHo was revealed in the left

MTG. This finding was strongly supported by a growing body of prior

neuroimaging studies, which have broadly revealed that BD partic-

ipants had both morphological and functional abnormalities of left

MTG (Chai et al., 2020; Chrobak et al., 2021; Hibar et al., 2018; Liu

et al., 2021; Wang et al., 2016). The MTG involves in the processing

of numerous complex emotions, cognitions, and behaviors (Xu et al.,

2019). In addition, a recently meta-analytic study (Smallwood et al.,

2021), generated using the Neurosynth (Yarkoni et al., 2011) database

(https://neurosynth.org/), suggests that the DMN, as defined by REF

(Yeo et al., 2011), was engaged across multiple features of human

cognition (including episodic, linguistic, social, and emotional). In the

meantime, the left middle temporal cortex (MTC), regarded as a hub

of the DMN, seems to show the most specific function profile because

it is only implicated in linguistic and social. Furthermore, correlation

analysis revealed that the mean FcHo value of the left MTG in BD

was associated with moderate insomnia and increased appetite in the

HAMD subitems. According to a recent study that used voxel-wise

degree centrality (DC) analysis, patients with primary insomnia exhib-

ited lower DC values in the left MTG than healthy control subjects

(Yan et al., 2018). Qin et al. (2021) demonstrated that the left MTG

participated in the formation of a consciousness modulation circuit

using an approach that combined degree centrality graph-theoretical

assessment and regions of interest (ROI)-based functional con-

nectivity. These findings support the theory that insomnia is linked to

alterations inMTG function. Evidence of ameta-analysis has confirmed

the grey matter volume (GMV) reductions of the left middle temporal

cortex in obese patients (Herrmann et al., 2019). Additionally, a recent

study also suggested that BD patients showed a relationship between

weight gain and left middle temporal gyrus volume loss (Bond et al.,

2019). Taken together, these findings suggest that abnormal neuronal

spontaneous activity in leftMTGmay be a biological marker of BD.

In addition, we noticed the vital connections that contribute signif-

icantly to the alteration in the similarity of the whole-brain functional

connection pattern in BD, were mainly involved in the DMN and SMN

areas. Moreover, as shown in Figure 2, abnormal FC in the DMN and

the SMN were negatively correlated with delusions symptoms. Previ-

ous evidence has shown that BD patients had disrupted connectivity

in the DMN (Gong et al., 2021;Wang et al., 2020b;Wang et al., 2020c)

and SMN (Doucet et al., 2017;Martino et al., 2016;Wang et al., 2020c).

Moreover, Martino et al. (2016) reported DMN-SMN imbalance with

frequency-specific resting-state variability in bipolar depression and

mania states. By examining whole-brain dynamic functional connectiv-

ity (dFC), Liu et al. (2021) also found aberrant dFC in the brain areas

associated with the DMN and SMN across mood states in BD. Taken

together, these overall results, both with our findings of aberrant func-

tional connectivity between the DMN and SMN, suggest that network

integration and segregation may be damaged in BD, leading to diverse

clinical manifestations. These findings could greatly help improve our

knowledge of themechanisms of BD.

5 LIMITATIONS

The current research has several limitations that should be properly

considered. First, the number of individuals in each group is relatively

small, and due to the lack of an independent data set, additional exter-

nal validation of the current findings was not performed. Therefore,

further studies should be extended in a larger, more diverse transdiag-

nostic sample. Second, the use of medications and/or the chronic dura-

tion of the illness in the patient groups may have an influence on the

present findings of this study. In the future, it will be important and

essential to undertake investigations on wit drug-naive first-episode

patients.

6 CONCLUSION

In conclusion, our investigators showed reduced whole-brain FcHo in

the leftMTG, aswell as aberrant resting-state functional connectivities

between the left MTG and multiple brain regions related to the DMN

and SMN in BD patients. These findings revealed a disruption in the

integration of semantic and episodic processing in BD patients. It fur-

ther highlighted the importance of DMN-SMN dysfunction in the neu-

ropathology of BD.
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