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A B S T R A C T

Dielectric constant (DC, ε) is a fundamental parameter in material sciences to measure polarizability of the system.
In industrial processes, its value is an imperative indicator, which demonstrates the dielectric property of material
and compiles information including separation information, chemical equilibrium, chemical reactivity analysis,
and solubility modeling. Since, the available ε-prediction models are fairly primitive and frequently suffer from
serious failures especially when deals with strong polar compounds. Therefore, we have developed a novel data-
driven system to improve the efficiency and wide-range applicability of ε using in material sciences. This inno-
vative scheme adopts the correlation distance and genetic algorithm to discriminate features’ combination and
avoid overfitting. Herein, the prediction output of the single ML model as a coding to estimate the target value by
simulating the layer-by-layer extraction in deep learning, and enabling instant search for the optimal combination
of features is recruited. Our model established an improved correlation value of 0.956 with target as compared to
the previously available best traditional ML result of 0.877. Our framework established a profound improvement,
especially for material systems possessing ε value >50. In terms of interpretability, we have derived a conceptual
computational equation from a minimum generating tree. Our innovative data-driven system is preferentially
superior over other methods due to its application for the prediction of dielectric constants as well as for the
prediction of overall micro and macro-properties of any multi-components complex.
1. Introduction

Computer-aided material designing has been extensively reported as
an emerging method with promising potential and widely applied in the
discovery of new nanomaterials such as super graphene oxide, metal-
organic framework (MOF), healthcare devises, automobile industries,
environmental sciences, power generating plants and modern agriculture
technologies [1, 2]. This stat-of-the-art approach has also contributed to
global demands for energy storage and delivery, thereby accelerating the
designing of efficient electrolyte solvents to improve battery storage and
transmission efficacy [3, 4].

The dielectric constant (DC, ε), also known as the relative electro-
static permittivity, refers to the capacitance of a substance with respect to
vacuum. Dielectric constant (hereafter ε) plays a fundamental role in
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reaction prediction, solvation free energy model, chemical reactivity
analysis, and theoretical studies of solvents [5, 6, 7, 8, 9]. According to
physical theory, the enhanced capacitance of dielectric materials is
induced by a disparity in the orientation of metal’s electrical charge
density in response to the applied electrostatic field. Therefore, ε can also
measure the polarization rate of the materials. In principle,
charge-oriented polarization pattern is classified into two types. i) rota-
tional polarization and ii) orientational polarization. Upon hot driving,
the systematic pattern of permanent dipoles of a molecule rearrange into
a randomly-scattered dipoles, which may produce distorted polarization.
When a molecule generally experiences orientational polarization, the
applied electrostatic field influences several molecular properties
including bond length, bond angle, electron distribution, andmanymore.
In order to measure the polarity of individual compound, ε can be used to
ly 2022
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Table 1. List of tools and/or relevant modules to generate the primary features.

Module Name Amount Software/lib Language Link

Mordred descriptor 1826 Mordred python https://mordred-descriptor.github.io/
documentation/master/descriptors.html

Atomic level descriptor 18 RDKit python https://www.rdkit.org/docs/source/
rdkit.Chem.rdchem.html

Molecular level descriptor 91 rdkit.Chem.Lipinski,
rdkit.Chem.rdMolDescriptors

python https://www.rdkit.org/docs/source/
rdkit.Chem.Lipinski.html,
https://www.rdkit.org/docs/source/
rdkit.Chem.rdMolDescriptors.html

Rdkit ML descriptor 208 rdkit.ML.Descriptors python https://www.rdkit.org/docs/source/
rdkit.Chem.Descriptors.html

CATS 2D descriptor 210 cats2d.rd_cats2d python https://github.com/iwatobipen/CATS2D

Mopac descriptor 50 MOPAC Shell command PM7 singlet bonds mullik STATIC polar

Coulomb matrix 100 dscribe.descriptors python https://singroup.github.io/dscribe/latest/

NET_ATOMIC_CHARGES 3 MOPAC Shell command PM7 singlet bonds mullik STATIC polar

Optimized Cartesian coordinates 5 MOPAC Shell command PM7 singlet bonds mullik STATIC polar

MACCS Fingerprint 167 Chem.MACCSkeys python https://www.rdkit.org/docs/source/
rdkit.Chem.MACCSkeys.html

Morgan Fingerprint 2048 AllChem.GetMorganFingerprintAsBitVect python https://www.rdkit.org/docs/
GettingStartedInPython.html

Avalon Fingerprint 512 rdkit.Avalon python https://www.rdkit.org/docs/source/
rdkit.Avalon.pyAvalonTools.html

Topological fingerprints 64–600 Chem.Fingerprints python https://www.rdkit.org/docs/source/
rdkit.Chem.Fingerprints.FingerprintMols.html

Pubchem property 19 Pubchempy python https://pubchempy.readthedocs.io/en/latest/
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describe its properties at molecular level. To make in-depth under-
standing of solvent’s polarity, the readers are advised to refer to these
articles [10, 11, 12, 13, 14].

The available theoretical equations of ε have already leveraged good
contribution to the field of physical theory of substances, but each one
has its own discrepancies. For instance, the Clausius-Mosotti equation is
based on Deby's dielectric theory and usually available for the rare gases
and few liquids with finite polarities [15]. The extensions of Onsager and
Kirkwood equations have considerably improved the polarity prediction
for particular fluids, but the overall reliability is significantly poor [16].
Kirkwood–Frohlich’s theory involves a correlation parameter “g”, which
measures local ordering only, and hence cannot be employed to calculate
dipoles directly [17]. The poor prediction performance of these statistical
mechanics methods indicate that the influence of charge orientation and
polarization have not been adequately considered, in particular for fluids
Table 2. List of algorithms and/or relevant modules to process the diverse set of dat

Module Name Dimension Data Type Alg

MACCS Fingerprint 167->18 167->4 One hot - > Ico CS,
DC

Morgan Fingerprint 2048->28 2048->4 One hot- > Ico CS,
DC

Avalon Fingerprint 512->24 512->4 One hot - > Ico CS,
DC

Topological Fingerprints 64–600->40->8 One hot- > Ico Tra

Atom sequence L->40->8 Se- > Ico Tra

Coulomb matrix 100*100->1*64->50
L* L->1*76->40

Two- > Ico Tra

Atom sequence with logP_MR 2*L->1*4 Two- > Ico FFT

Net atomic charges with
coordinates

4*L ->1*40->1*3 Two- > Ico FFT

Mopac descriptor:
polarizability matrix

3*3->1*1
3*3->1*3

Two- > Ico FFT

L: atom sequence length; Ico: independent continuous variables; Se: sequence variab
ficient and the molar refractivity for each atom in a molecule; FFT: Fast Fourier T
Compressed Sensing; SVD: Singular Value Decomposition; Transformer: Transformer

2

that may react with solutions bearing strong chemical influences. Such
fluids are strongly hydrophilic fluids with hydrogen or water. Though,
the Kirkwood's theory is a well-applied practice in the field of statistical
mechanics, but its association factor cannot be calculated for parameter
“g” may also be caused by multi-dimensional and distorted polarization
effects, which makes it difficult to explicitly consider these properties.

The QSPR prediction model constructed by Liu and Rowley is based
on four descriptors including dipole-dipole moment, solubility param-
eter, van der Waal’s area and refractive index. This model is expected to
have an average absolute percentage error <3% for hydrocarbons and
non-polar compounds and <18% for polar compounds. By employing
this model, the compounds with ε values ranging from 1.0 to 50.0, the
accuracy of the predicted values are barely graded when the experi-
mental values are not available [18]. Nevertheless, it is not reasonable for
compounds with ε values greater than 50. In parallel, this is caused by the
a.

orithm Language Link

SVD FFT,
T, DST, SVD

MATLAB, python https://github.com/aresmiki/
CS-Recovery-Algorithms

SVD FFT,
T, DST, SVD

MATLAB, python ~

SVD FFT,
T, DST, SVD

MATLAB, python ~

nsformer, SVD python https://pytorch.org/tutorials/beginner/
basics/quickstart_tutorial.html

nsformer, SVD python ~

nsformer, SVD python ~

, DCT, DST, SVD python Scipy.fftpack, sparsesvd

, DCT, DST, SVD python ~

, DCT, DST, SVD python ~

les; Two: two-dimensional variables; logP_MR: the octanol-water partition coef-
ransform; DCT: Discrete Cosine Transform; DST: Discrete Sine Transform; CS:
. encoder; ~: the same as above.
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Figure 1. Flow chart of the model framework.

Figure 2. Linear fitting and cluster.
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lack of experimental data, and the increase of the ε value, therefore, the
polarity mechanism becomes much more skeptical phenomenon. It is not
only associated with the polarity state of the individual molecule itself,
but also related to the hydrogen bonds formed with other molecules as
well as the electrostatic field to which they are exposed. It has been
proved from the correlation between the dielectric constant, battery
capacitance, solution polarity, and even chemical reaction rates. Hence ε
property is a multi-layer concept between the microscopic level of its
own atomic and electronic states and the macroscopic level of intermo-
lecular interactions. Furthermore, Reichard has experimentally
3

confirmed that it is not appropriate to interpret molecular-microscopic
interactions exclusively by applying the concept of macroscopic dielec-
tric constant [14].

In order to more precisely calculate the ε of compounds with larger
range on small samples and understand the mechanism of macro-
properties from micro level, the current study has been performed.
Herein, we propose a new computational model, which is not only
focusing on the micro-structural information of the molecule obtained
through the quantum chemical calculations, including the partial atomic
charge between each atom, the coulomb matrix between the atoms, the



Figure 3. Non-linear fitting with genetic algorithm.

Table 3. Comparing the performance of single layer ML algorithms with different feature subsets.

Data set Train R2 Medae Msle Mse Mae Evs

1 xgboost in all data VALID 0.93 0.21 0.01 34.35 1.72 0.93

2 gdbt in all data 0.78 0.33 0.02 109.12 2.48 0.78

3 xgboost drop coulomb matrix data(cm) 0.95 0.26 0.01 8.93 1.29 0.95

4 gdbt drop cm data 0.93 0.33 0.03 13.15 1.47 0.93

5 xgb drop cm and df_smile_seq_number.csv 0.82 0.72 0.09 33.60 2.65 0.82

6 gdbt drop cm and df_smile_seq_number.csv 0.71 0.81 0.08 53.15 2.66 0.72

7 xgb only df_smile_seq_number.csv 0.95 0.21 0.02 9.65 1.32 0.95

8 gdbt only df_smile_seq_number.csv 0.92 0.24 0.02 15.28 1.41 0.92

1 xgb all data 0.87 1.53 0.13 33.70 3.08 0.87

2 gb all data 0.83 1.13 0.11 43.61 3.13 0.83

3 xgb drop cm 0.80 1.04 0.10 50.07 2.96 0.80

4 gb drop cm 0.87 1.30 0.11 32.36 2.87 0.87

5 xgb drop cm and df_smile_seq_number.csv 0.31 2.77 0.28 176.43 5.97 0.34

6 gb drop cm and df_smile_seq_number.csv 0.41 1.74 0.19 149.74 4.89 0.45

7 xgb only df_smile_seq_number.csv 0.75 1.26 0.13 63.54 3.27 0.75

8 gb only df_smile_seq_number.csv 0.87 1.31 0.12 32.73 2.87 0.87

R2: coefficient of determination; Medae: median absolute error; Msle: mean squared log error.
Mse: mean squared error; Evs: explained variance score.
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dipole moment at different orientations, and the molecular orbital en-
ergies, but also introducing macroscopic properties on the local chemical
groups, hydrogen bond acceptors and donors, aromatic rings, the
accessible surface area and overall volume of the molecule.

1.1. In-depth analysis

Since ε has a strong correlation with electrostatic field, therefore,
researchers have developed the correlation associating ε with other
measurable attributes. The relationship of ε with refractive index of non-
polar molecules and dipole moment (μ) are well-known and ascertained
from the previously established theories [18]. Furthermore, other
empirical correlations have also been tested. For example, Papazian and
Holmes established strong correlation between the ε and surface tension
4

in a comprehensive simple correlation [19, 20]. Paruta and coworkers
investigated strong correlation between the ε and solubility parameters
[21]. Arnoldus HF unveiled the relationship between the surface and
dipole moment in interface vicinity [22]. Paruta correlations were found
to be profoundly useful for hydrogen-bonded chemicals [21]. Overall,
these correlations provide useful but approximate estimates of ε, but do
not establish accurate predictive equations.

The evidence of wide-range correlations between the aforementioned
physicochemical properties implies that there must exist some com-
monalities, which come from a microscopic level relative to the molecule
as a whole. Since, correlation is the only major parameter and can be
obtained from observational data, thus, we determine the features of
molecules at atomic and quantum chemical levels from these microscopic
concepts. Such features include Coulomb matrix between the atoms, the



Figure 4. Different performance of R2 on the training and validation sets.
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dipole moment matrix of molecule oriented in XYZ dimensions, the
HOMO and LUMO gap energy from molecular orbital theory, the distri-
bution of atomic charges, and the molecular fingerprints based on the
functional group(s) of fragments. Such information covers the most
essential characteristics of each molecule and has multi-scale description
from microscopic electronic and atomic states to fragment-based chem-
ical functional group(s), the entire molecular orbital energy, and dipole
moment distribution. We explore strong correlation between these fea-
tures in different scales, and answer a plethora of questions including
whether the properties on the same scale with strong correlation have
common features at the bottom scales, and what is the true relationship?
The skepticism behind this philosophy is very inspiring for us to construct
the computational equation which could answer the aforementioned
queries.

Although the prediction target in this study is the dielectric constant,
the predictions of solvent-related properties (such as solubility, dipole
moment, pH value, acidity and alkalinity, ADMET properties), drug-like
properties (such as pKa (negative log of the dissociation constant), IC50,
logP (the octanol-water partition coefficient)) and chemical reaction-
related properties (such as reaction rate, catalytic capacity, Kd (the
equilibrium dissociation constant)) are also lies underneath this
skepticism.

We strongly encourage the wide-applicability of our methodology, if
the new target is highly correlated with our target by employing the same
features, because they must have some common characteristics.
Furthermore, it is possible to find exactly on which underlying features or
weight, the two targets differ slightly, thus giving a new interpretation of
these properties.

1.2. Main idea

It is noted that our model is quite different from traditional QSP (A)
R/ML models. The core purpose of such models is always based on the
training of ideal matrices and assures the feature’s suitability and
importance for the target. However, the mutual relationship between
features and description of the highly abstracted features from micro
features on a layer-by-layer scale is the most challenging issue. To
address this issue, our method combines linear fitting on local features
and global combination of the features, and searches most optimal
5

descriptive relationship among the features through the layer-by-layer
directed iteration. Moreover, we calculate correlation coefficients be-
tween the generated features and target to decide whether the iteration
ends or not? Since our core idea is to combine differentially originated
features to generate new and more abstracted features, thus, the super-
vised machine learning algorithm is regarded as a feature encoder, a kind
of generator. Therefore, the entire framework is completely based on
generative models, only considering the concept of linear and non-linear
transformations. In other words, we consider the learning process of how
themacroscopic features are developed frommicroscopic features, which
is fundamentally different from the traditional QSP (A) R thinking, as
well as the generative models in deep learning. In fact, constructing
stronger features (have the higher correlation with the target than each
composed features) from the underlying features through layer-by-layer
iteration is a kind of greedy strategy. In order to prevent the generated
new features from falling into the local optimum, we have also intro-
duced the genetic algorithm for global search, and continuously change
the features combination and evaluation strategies. When the newly
generated features have the specified correlation coefficient with target,
or when iterations reach the specified number, the program terminates.

2. Method

In this section, we have described the original features extracted from
a small molecule, and ultimately explained the significance of choosing
these features to be obtained. The formation of original features is diverse
from sequence to multi-dimensional matrix and from fixed vector to in-
definite vector in terms of length. However, we need the unified form of
input data. Herein, we also provide the adjective method for trans-
formation. Finally, the entire input variables are either independent
continuous variables or Boolean variables.

After preprocessing the features, all input data are incorporated into
the framework for formal processing, including the calculation of cor-
relation matrix between features, distances between the variables, and
grouping features by density clustering, linear fitting for reducing
redundancy of variables, non-linear fitting to generate and evaluate new
combination variables, and iterative computation by combining local
greedy and global directed optimization until the steady state or
threshold value is obtained.



Figure 5. Relationship network composed of partial nodes and edges.
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2.1. Features preparation

The ε values established through experiments are available for the
frequently used chemicals, yet there are several industrially important
chemicals, for which the ε measurements are not available in the litera-
ture. Fortunately, we retrieved our original data from this article (http
://www.rsc.org/suppdata/c9/cp/c9cp01704f/c9cp01704f3.xlsx) [15].
Thereafter, according to the CAS registry number and compound name,
we generated molecules in their SMILE and PDB formats. Subsequently,
the electrification of all molecules was detected and manually processed
to make them electrically neutral. Additionally, the MOPAC programwas
used for quantum chemistry optimization and property calculation, while
the RDKit lib and Mordred tool were used for molecular and atomic level
features calculation, and molecular fingerprint calculations. In order to
reduce the dimensionality of the features, we performed Fourier and
cosine transformers on molecular fingerprints, Coulomb matrices and
polar distribution features. In parallel, we introduced sparse trans-
formations for further compression, and performed embedding coding
which was based on Transformers model [23, 24, 25, 26].

Initial dimensions for original features were between 5321 and 5857
due to the non-fixed vector. After preprocessing, the total number of
features was reduced to 3648. (The physical and chemical meaning and
name of all the features can be found in supplement Part 1). To calculate
these features, refer to Table 1. Herein, the features were categorized as
Mordred descriptors, atomic level descriptors, molecular level
6

descriptors, Rdkit ML descriptors, CATS 2D descriptors, MOPAC de-
scriptors, Coulomb matrix, NET_ATOMIC_CHARGES, Optimized Carte-
sian coordinates, MACCS Fingerprint, Morgan Fingerprint, Avalon
Fingerprint, Topological fingerprints, and PubChem properties. Most of
these features are independent continuous variables. For example, Mor-
dred descriptors, carbon atom number, molecular weight, predicted
values of LogP (XLogP [27], ALogP [28]), properties calculated from
two-dimensional (2D) structures (Eccentric connectivity index [29] and
three-dimensional (3D) structures (charged partial surface area (CPSA)
[30]), and quantum mechanics-based properties [(highest occupied
molecular orbitals (HOMO), lowest unoccupied molecular orbitals
(LUMO), orbital energies)] etc.

Although, both open-source and proprietary software have been
developed for calculating molecular descriptors, such as PaDEL-
Descriptor [31], ChemoPy [32], PyDPI [33], Rcpi [34], Cinfony [35],
but each of them has advantages and disadvantages. In order to easily
integrate with our python framework, as well as the advantages of
themselves, we chose Mordred as our core software.

2.2. Further processing

Special transformations need for discontinuous features including the
features based on sequences (atomic symbol sequences, topological
fingerprinting, Coulomb matrix, optimized 3D coordinates, atomic
sequence of partial charge distribution, atomic sequence of partial logP

http://www.rsc.org/suppdata/c9/cp/c9cp01704f/c9cp01704f3.xlsx
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Figure 6. Relationship network for randomly selected 25,000 nodes.

Figure 7. Variable relationship network for 21 layers with more than 250,000 nodes.
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and MR distribution) and the features based on quantum chemistry
(contribution of dipole moment for heat of formation in 3-D coordinate
system and contribution of dipole moment for polarizability).

Interestingly, we have a number of mathematical theories for afore-
mentioned special transformations, including Digital signal processing,
Compressed Sensing, Matrix Decomposition, Natural Language Process-
ing (NLP), and Digital Image Processing method to process these data.
We have applied algorithms such as Fast Fourier transform (FFT),
7

Discrete Cosine transform (DCT), Discrete Sine transform (DST), Com-
pressed Sensing algorithm (CS), Singular Value Decomposition (SVD),
Transformer (a deep learning model that adopts the mechanism of
attention, differentially weighing the significance of each part of the
input data, It is used primarily in the field of NLP), and Convolutional
Neural Network (CNN) for the special transformations.

First of all, the discontinuous data including sequence data, two-
dimensional matrices, and one-hot vectors, are handled by the



Figure 8. The change in the number of variables indicates that a large number of similar variables were generated in the previous step 2.

Figure 9. The frequency of occurrences of each variable in all layers.
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aforementioned algorithms to capture specific perspective information,
and finally converted uniformly to a representation in dense continuous
space.

For one-dimensional MACCS, Morgan, and Avalon fingerprints, since
they mainly express the existence of a particular type of chemical group
8

in a molecule and do not involve atomic contextual sequence informa-
tion. Therefore, it is more reasonable to treat them as one-dimensional
sparse signals. Furthermore, according to the theory of compressed
perception, they can be compressed into a denser expression without
changing their original meaning, which is a one-to-one mapping.



Figure 10. The highest correlation value for each layer in the test set forms a spiral curve.

Figure 11. 21_iter_0_tree_model_ExtraTreesRegressor_2566_11.
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Certainly, relevant information could also be extracted using signal
processing related methods.

For topological fingerprints, the topological distribution of atoms in
each molecule is different, which results in length variation. Since, it
9

represents the contextual information of atoms in the sequence, there-
fore, it is more appropriate to deal with it as a sequence.

Regarding the Coulombmatrix, which is composed of Coulomb forces
between any two atoms in a molecule, hence it could be treated as a



Figure 12. 21_iter_0_tree_model_ExtraTreesRegressor_2566_12.
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whole for SVD transformation to simplify the expression. It can also be
regarded as certain type of embedding expressed sequence, because it
contains implicit information about the sequence of atoms.

The two-dimensional matrices such as the charged properties and
logP, MR, dipole moment, and polarity matrix of each atom, reflect a
signal of the molecule as a whole. Therefore, they are considered as two-
dimensional signals and hence extracting information by signal pro-
cessing related methods.

In addition, different information is extracted and simplified. Variables
of different lengths become fixed-length variables and multi-dimensional
variables become one-dimensional variables. In principle, one-
dimensional sparse signal matrices can be well-compressed with the CS
algorithm. If thematrix is not one-dimensional sparse, it isfirstly converted
to a one-dimensional sparse matrix by FFT (including Z-transform, DCT
(symmetric)). For details, refer to Table 1. It should be noted that Principal
Component Analysis (PCA) method for redundancy and noise reduction
will actually change the information contained in the original (directly
change a group of bases for representation, the data need to be normalized
minus the mean divided by the variance, i.e. z-score normalization)
dataset, while SVD is only used to find a more simplified approach to ex-
press the original signal, without normalization. So it will not alter the
information contained in the original dataset. In contrast, the method such
as FFT represents the same information fromdifferent perspectives, such as
from time domain to the frequency domain, or vice versa. This can make
particular features more distinct in different dimensions. Conclusively, for
10
dimensionality reduction, SVD is better than others, while for de-
redundancy, PCA method is superior, and for sequence embedding rep-
resentation, Transformer encoder is the best approach.

In the final step of data pre-processing, normalization, alignment of
variable dimensions, filling in zeros for insufficient dimensions, and
merging all variables were performed. Eventually, all variables incor-
porated into the model were continuous variables, and conduct Z-score
normalization so that the linear and non-linear transformations are not
influenced by the scale between different variables:

The standard Z-score of a variable X is calculated as Eq. (1).

Z¼ðX� μÞ=σ (1)

Here μ is the mean of X, and σ is the standard deviation ofX.
As shown in Table 2, the integration of different modality information

is implemented by uniformly transforming different forms of data into
continuous variables and reducing the dimensionality.

Indeed, it is easy to introduce artificial preferences and parameters
when handling discontinuous data, for instance, the selection of com-
pressed dimensions, the accuracy between compression and recon-
struction, and the selection of compression parameters, etc. But these
processes are determined by personal experience and calculation ac-
curacy. We argue that the processing of these data is fair as long as all
features are processed with the same parameters, or the same accuracy,
and of course we need the same parameters processing when
predicting.



Figure 13. Comparison of the distribution of the four new variables with the target variable.

Figure 14. Best prediction based on ML (traditional QSA/PR) and real DC, the horizontal coordinate is the Sample sequence id, and the vertical coordinate is the
DC value.
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Initially, we have no idea which modal information is relevant to the
target, and we can only provide as much information as possible in
different modalities and in different dimensions, since it directly de-
termines the volume of feature space, and the upper limit of the subse-
quent model.

2.3. Model framework

Through pre-processing of features and a further transformation of
information, all input data are successfully turned into uniform inde-
pendent continuous variables, which is a prerequisite to enable the next
step of linear and non-linear combination (Figure 1). Module 1 is cor-
relation distance-based clustering, which results in the reduction of
linear redundant variables. Module 2 is the combination of feature sub-
spaces, which is optimized based on the genetic algorithm, resulting in
the generation of new variables by applying non-linear operators.
Reserved new variables should be more relevant to the target. Otherwise,
the non-linear encoding of this combination of features’ subspaces would
be dropped by the genetic algorithm. Final module encodes all variables
with linearity and non-linearity and these new variables are not dis-
carded whether or not they are closer to the target variables. The
intention behind this approach is to preserve the globality as much as
possible, yet these variables are usually closer to the target in terms of
correlation.

The hyperparameters for our model are set as follows: in variance
filtering, threshold ¼ 0, filling Nan to 0, applying StandardScaler before
trainning, in clustering algorithm DBSCAN, eps ¼ 0.01, MinPts ¼ 3. All
linear (LinearRegression, SGDRegressor, RidgeCV, LassoCV, Elas-
ticNetCV, BayesianRidge, LinearSVR) and nonlinear (KernelRidge, Bag-
gingRegressor, ExtraTreesRegressor, RandomForestRegressor,
GradientBoostingRegressor, HistGradientBoostingRegressor, XGBRe-
gressor, LGBMRegressor) model parameters use default values, and the
evaluation indicators apply r2 score, in the genetic module, DNA_SIZE ¼
the dimension of features, POP_SIZE ¼ 20, CROSSOVER_RATE ¼ 0.8,
MUTATION_RATE ¼ 0.1, N_GENERATIONS ¼ 20, final_target ¼ 0.999.
The Spearman correlation coefficient is used when calculating the cor-
relation distance between the variables, while the Pearson correlation
coefficient is used when calculating the correlation between all the fea-
tures and the target variables.

Considering these three modules as a layer, and repeating in the next
iteration, there are two criteria to judge whether to stop the iteration or
not. First, whether the number of iterations meets the specified number,
and second, whether the correlation coefficient between at least one
variable and the target reaches the specified threshold in the test set,
which is set to 0.999. The whole idea of the modular framework is
derived from the conclusions in our previous review article [36]. Detail
of module 1 and 2 (Figure 1) are shown in Figures 2 and 3, respectively. It
is observed that the number of variables will be reduced after passing
module 1, which is due to the merging of variables with high correlation.
According to the linear correlation theorem, it does not lose the infor-
mation of the merged variables and enables to reconstruct their
component variables by Independent Component Analysis (ICA) or PCA.

After passing through the non-linear oriented combinations in Mod-
ule 2, only retain the combinations of stronger correlations with target
variables. This also achieves a layer-by-layer improvement of the inter-
mediate variables at the abstraction level and thus can simulate the
function of the integration operator from the non-linear perspective. It is
observed from the experimental results that the newly generated non-
linear variables, in terms of correlation, are indeed closer to target var-
iables and show an oscillating upward trend in their maximum correla-
tion coefficients in all layers (Figure 10).

In order to obtain better robustness of the experimental results, we
setup six different sets of parameters, which are as follows.

1: fit ¼ 1,0,1,0,1,0,1,0,1,0 and eps ¼ 0.05 with all data
2: fit ¼ 1,0,0,0,0,0,0,0,0,0 and eps ¼ 0.05 with all data
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3: fit ¼ 0,0,0,0,0,0,0,0,0,0 and eps ¼ 0.05 with all data
4: fit ¼ 0,1,0,1,0,1,0,1,0,1 and eps ¼ 0.05 with all data
5: fit ¼ 1,0,1,0,1,0,1,0,1,0 and eps ¼ 0.10 with all data
6: fit ¼ 1,0,1,0,1,0,1,0,1,0 and eps ¼ 0.05 with all data except for

coulomb features

Fit ¼ 1 means that the best matrix in the training set is chosen among
the numerous tree models in Module 2, while 0 means that the best
matrix in the test set is chosen. The “eps” denotes the correlation distance
setting in the clustering algorithm DBSCAN, where default is 0.05, and
this distance ranges from 0 to 1. With all of the above six conditions
completed for training, a comprehensive analysis is performed.

First, four variables with the greatest relevance to the target are taken
as root nodes of the tree. From the entire hierarchical network of vari-
ables, a minimum generating tree is retrieved and each leaf node is the
original input variable. Then, according to the meaning and category
information of the leaf nodes and correlation matrix, the intermediate
generating variables can be explained. Finally, a new estimation model
for DC is given by the theoretical experience and computational
complexity of the minimum generating tree. By analyzing the predicted
values and experimental values, our method shows promising perfor-
mance on predictions of ε > 50 as compared to the single layer ML
approach.

3. Results and analyses

3.1. Single layer ML

To compare the performance of our proposed new framework, the
results obtained from the single layer ML method were analyzed. The
specific experimental data are shown in Table 3. The hypothesis of
experimental conditions is given below.

(a) By changing features space to observe the matrices change with
the same algorithm.

(b) By changing algorithms with the same features to observe the
matrices variation.

Table 3 shows that maximum R2 on validation set is about 0.87, while
on the training set, it can reach a maximum of about 0.95. Observing the
four groups (1–2, 3–4, 5–6, and 7–8) in the training set (for the same
data), the performance of xgb is better than gbdt. However, in the vali-
dation set, gbdt outperforms xgb in the other three groups except for
group 1–2, which indicates that xgb has best fitting ability in part, while
generalization ability is uncertain.

Again, observing the R2 of 1–3 and 5–7 of the training set, it is evident
that different features’ subspace leads to differences of prediction per-
formance under the same algorithm. This indicates that there exists a
special binding relationship between feature subspace and the prediction
target. It also supported assumption that introducing other irrelevant
features will degrade the performance efficiency. For instance, the
comparison between 1 and 3, after removing the Coulomb matrix data
(cm) features, R2 rises from 0.92 to 0.95, however, in the test set, it de-
creases from 0.87 to 0.80 in contrast.

By analyzing experimental results in Table 3, we assume that the
correlation value with target may be the upper limit of accuracy of the
model determined by the input data. Therefore, we argue that correlation
value is an essential matrix, which is ignored by the traditional QSP (A) R
ML approaches.

Next, we performed an evaluation matrix for regression model on the
training and test sets and obtained R2 cure (Figure 4). It is demonstrated
that differences in algorithms, training and test sets, and features sub-
spaces, contributed to the final R2 matrix. Therefore, we strongly
recommend that developing a QSP (A) R model, all attempts should be
made according to practical situation. Because there is no universal al-
gorithm that is perfect for all the problems, no subset of features that is
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appropriate for all predictive targets, and no algorithm that could work
well on both training and test sets.

Based on the above analytical results of single-layer machine learning
experiments, it is cleared that an intrinsic special mechanism for adaptive
matching between the algorithm and feature subspace is required.

In our framework, both Module 1 and Module 2, have applied a
number of algorithms for selection, and tested on training and validation
sets, respectively. This accomplishes self-adaptive matching for specific
feature subspace and specific prediction target.

For the linear fitting Module 1, the candidate models include Linear
Regression, SGD Regressor, Ridge CV, Lasso CV, ElasticNet CV, Bayesian
Ridge, and Linear SVR. These models can be found in python library called
sklearn, which are commonly linear fitting models. For the non-linear fit,
taking into account the running time, we chose KernelRidge, Bagging-
Regressor, ExtraTreesRegressor, RandomForestRegressor, GradientBoos-
tingRegressor, HistGradientBoosting Regressor, XGB Regressor, and
LGBM Regressor. These candidate models are trained in parallel on the
same dataset and the model with best performance matrix is finally
considered as the encoding model. Fit ¼ 1 means that a 0.2 percentage of
the dataset on the training set is chosen as the criteria for selection, and fit
¼ 0 means that the validation set is taken as the criteria for selection.

During the training period, R2 score is our evaluation method. After
training, we calculated the Pearson correlation coefficient between all
the features and target variable until the maximum Pearson correlation
coefficient is over 0.999 or the number of iterations is over 20. We as-
sume that this variable is closest to target, and the target can be replaced
by this variable, we just generated this variable means that we have
completed this prediction task. In order to avoid the overfitting issues, we
do not change parameters of all the repressors, and just operated them as
mapping function.

3.2. Relationship network based on combination of the variables

The whole network generates over six million edges, yet over 99%
edges have weights below 0.01. After removing the edge with weight
<0.01, it filters 253,288 edges and 8952 nodes.

Figure 5 shows the partial relationship network around 2500 nodes,
where the blue line is the non-linear relationship generated by Module 2.
The red line represents linear fitting relationship by Module 1. The fitted
relationship of the local variable after clustering has been illustrated
(Figure 5, right side). The larger circle at the bottom of Figure 5 is
generated by the global linear fitting. The whole relationship network
has both complex non-linear relationship, simple local linear relation-
ship, and global linear relationship, but they have no connection with
each other, indicating that many variables are not associated with the
target, while some are involved in both local linear and non-linear fitting
as shown in Figure 6.

Since, the entire 21 layers network with more than 250,000 edges is
very hard to draw, thus, we only obtained the approximate and very
fuzzy network graph (Figure 7). If we plot the number of changes of
nodes in each layer, it appears jagged as shown in Figure 8. Since, a large
number of new variables are generated in Module 2 and large amounts of
redundant variables are merged together in Module 1 in the next itera-
tion. Therefore, there will be such a back and forth oscillation in the
number of changes.

To consider the frequency of occurrence of each variable in all layers,
we realized that some variables appeared very frequently while other
appeared rarely (Figure 9). It should be noted that node with id < 3648
are the original feature variables. The frequencies revealed that some
nodes are repeatedly integrated into new variables, indicating that these
variables are very important. For the distribution relationship between
these variables with the highest and lowest frequencies and the target
variables, the reader can further refer to Part 2 in supplementary
information.

If we consider the highest correlation with target variable in each
layer together, the trend of maximum correlation between the fitting
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variable and ε increases in layer-by-layer pattern. In Figure 10, the global
peak among all network layers appeared in layer 11, at 0.956931466,
although it couldn’t reach the set criterion of 0.999. This indicates the
limitation of correlation between the target variables and generated
novel variables from the original 3648 variables. However, this value is
already significantly improved from the highest value of 0.877 in the
original input variables. The spiral pattern indicates that the generated
variables are temporarily suppressed due to the removal of redundancy
and reappear in the next iteration. From the above analyses, we can
summarize as:

� The stronger the correlation between the two variables, the more
similar they are.

� The correlation between the original variables and the target vari-
ables is not strong, but after non-linear fitting, the variables are more
strongly correlated with the target variables.

� By combining non-linear fit, these weak variables become stronger
variables and are continuously improved through layer-by-layer
iterations.

� The frequency of occurrence of a variable does not affect correlation
of the variable with other variables.

� A big number of genetic combinations at the same level of iteration do
not result in a significant increase in correlation.

� Low correlation variables are gradually integrated into high correla-
tion variables with target, which indicates that the low correlation
variables also include some useful information, thus making the
newly generated variables stronger.

In addition, the objective of this study is not only obtaining a novel
variable whose correlation is 0.956931466, but also to explore inter-
pretation and relationship between the variables.

For interpretation, we mainly search for new variables that could
most approximately be closed to the target in terms of correlation and
obtained a minimum generating tree with that variable as the root node
and the original variable as the leaf node, including its fitted linear and
non-linear paths and weights. For the exploration of the relationship
between the variables, middle variables are mainly explained and
defined by their components (the original variables) or by other variables
with high correlation with them from the correlation heat map.

3.3. Minimum generating tree

The variables in last layer with correlations above 0.95 were selected
as a candidate:

� ['21_all_f_linear_rg_RidgeCV_2580', 0.9564967270184328],
� ['21_iter_0_tree_model_ExtraTreesRegressor_2566_4',0.9516725385817788]
['21_iter_0_tree_model_ExtraTreesRegressor_2566_11',0.950804537293214]

� ['21_iter_0_tree_model_ExtraTreesRegressor_2566_12',0.95061201226503]

The minimum generating tree with variable as the root node can be
obtained by retracing the generation path from these variables respec-
tively, and each leaf node must be the original variable. Herein, for
variables 21_all_f_linear_rg_RidgeCV_2580 and 21_iter_0_tree_model_
ExtraTreesRegressor_2566_4, they have tons of nodes, which is hard to
display. From the names of the aforementioned variables, there are 10/
16 molecular fingerprint features. The specific values of molecular fin-
gerprints correspond to a chemical group, for the single layer calculation
model, features based on fragment or functional group are more favor-
able for calculating the properties of molecule as a whole.

Compared to the single-layer calculation model in Figure 11, the tree
in Figure 12 includes two layers, where the df4_logp_all_2 is incorporated
as new feature from the atomic level. It indicates that these features from
essential nature of the bottom layer are required for generating efficient
predictions. Interestingly, such representation can be interpreted as an
extension that deep learning can learn directly from the underlying 3D
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coordinate’s space, where traditional ML relies heavily on expert
features.

To collect a more detailed analyses of performance of the predicted
values on different ε regions, we compared the distributions of the above
four variables with those of the target variables (Figure 13). In parallel,
the distribution of prediction results of the machine learning model
trained from the original input variables compared to target variables
were also demonstrated (Figure 14). From the comparison in Figure 13
and Figure 14, it is cleared that the variables generated after several it-
erations have a better similarity of distribution to target variables in
general. Yet in some local areas, traditional ML methods have also ad-
vantages, for example, the bottom-left panel of Figure 14, the fitting in
red circle is clearly more accurate than our new method. Our framework
is significantly better than traditional ML methods for predictions with ε
> 50, indicating that non-linear multi-level iterations have indeed
introduced new perspectives for the prediction of high values. In order to
strengthen the interpretability as well as reduce the computational
complexity, these minimum generating trees were rewritten to an
equation which will enable our understanding and comparison with
known physical experiences.

3.4. Equation generation

Based on the type of leaf node and its own physicochemical meaning,
we try to interpret these intermediate nodes in minimum generating tree,
combining with the empirical formula (Kirkwood–Frohlich equation), the
dielectric constant (ε) of a polar associated liquid is given by the Kirk-
wood–Frohlich equation. For more detail, refer to references [15, 16, 18].

Though in Figure 13, we have considered that 21_iter_0_-
tree_model_ExtraTreesRegressor_2566_11 is the best choice to derive an
equation. The equation is re-written as below:

f(x1,x2,x3…,x15) ¼ F(Z(numheteroatoms)*0.0180910444769773,
Z(sic0)* 0.0169836141314585,
Z(ic0)* 0.0264475279022733,
Z(fr_nh0)* 0.0117640775273062,
Z(vsa_estate3)* 0.0576742145982364,
Z(peoe_vsa12)* 0.0393558545204146,
Z(fingerprints_morgan_2047)* 0.0103208569437381,
Z(fingerprints_morgan_6)* 0.1398486568677072,
Z(fingerprints_maccskeys_121)* 0.0149855944177587,
Z(fingerprints_maccskeys_74)* 0.0162316055895788,
Z(fingerprints_maccskeys_68)* 0.0163947108147842,
Z(fingerprints_maccskeys_58)* 0.0209220970182179,
Z(fingerprints_avalon_418)* 0.014709145198778,
Z(fingerprints_avalon_300)* 0.0239342453469886,
Z(fingerprints_avalon_224)* 0.012844074838388).
Z ¼ ðX � μÞ=σ, here μ is the mean of X, and σ is the standard devi-

ation of X.
F is non-linear mapping function, an instance of the Extra-

TreesRegressor model.
Finally, the overall fit is certainly better with our framework, and only

slightly weak on few points. In contrast, the single layer ML has a sig-
nificant overall error rate and almost impervious to boost on the basis of
same input descriptors or fingerprints.

Although, this study has focused on the prediction of properties of
pure compounds only, but it could also be applied to the system involving
features from the micro to macro level via the layer-by-layer extraction
approach, for instance, the prediction of the overall properties of solvent
complexes and ionic solutions.

4. Conclusion

A primary challenge in developing accurate and reliable prediction
models to predict properties in the absence of sufficient experimental
data has emerged as the foremost difficulty in modern computational
sciences.
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How to develop interpretable and generalized models and fully
exploit the features’ space on small sample sets is the core target of this
study. In our framework, various non-linear coding have been retained
according to the actual prediction performance, resulting in adaptive
matching between different ML algorithms and several features’ sub-
spaces. An abstract computational equation is generated from the mini-
mum generating tree which is derived from the variables network.

Main conclusions and advantages of our system are:

(a) The abstract intermediate variables can bridge gap between the
microscopic and macroscopic features within the molecule based
on layer-by-layer iterations. Such architecture generates a hier-
archical relationship network where the features are associated
with each other and eventually understands the complex re-
lationships between these features.

(b) Our approach fundamentally addresses the inconsistency between
the local optimum (based on greedy combination for each layer)
and the combination explosion (caused by searching in global
space). Our system is smart enough to accomplish an adaptive
balance between the real optimal features’ subspace and matching
algorithm with target.

(c) Both linear and non-linear transformations were performed for
each layer, and dimensionality improvement was realized as the
integral. Compare to straightforward downward partial derivative
of objective function in DL, our system employs upward integra-
tion which is based on locally efficient combinations.

(d) From breadth of the features’ space, our framework applies clus-
tering based on correlation distance to filter out redundant fea-
tures, and ultimately reduces the dimensionality of features’
space. From the depth of the features’ space, our framework re-
duces the search space for accelerated finding of effective com-
binations by applying the layer-by-layer extraction and optimizing
the feature combinations via genetic algorithm.

Overall, the data-driven system by applying multi-layer iteration for
depth combination based on a massive amount of available descriptors,
adopting automated feature extraction methods, such as the implicit
space-based method and kernel transformation-based method, perhaps
represents the future for developing QSP(A)R models.
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