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Advances in medicine and biotechnology rely on a deep understanding of biological pro-
cesses. Despite the increasingly available types and amounts of omics data, significant
knowledge gaps remain, with current approaches to identify and curate missing annota-
tions being limited to a set of already known reactions. Here, we introduce Network
Integrated Computational Explorer for Gap Annotation of Metabolism (NICEgame), a
workflow to identify and curate nonannotated metabolic functions in genomes using the
ATLAS of Biochemistry and genome-scale metabolic models (GEMs). To resolve gaps
in GEMs, NICEgame provides alternative sets of known and hypothetical reactions,
assesses their thermodynamic feasibility, and suggests candidate genes to catalyze these
reactions. We identified metabolic gaps and applied NICEgame in the latest GEM of
Escherichia coli, iML1515, and enhanced the E. coli genome annotation by resolving
47% of these gaps. NICEgame, applicable to any GEM and functioning from open-
source software, should thus enhance all GEM-based predictions and subsequent bio-
technological and biomedical applications.
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The design of robust and effective medical therapies, drug targeting strategies, and bio-
engineering relies on a systems level understanding of biology. To this end, metabolic
networks and annotated genomes are often used to gain a holistic picture of the cell
functions. However, not all metabolic capabilities of cells are known, i.e., all known
genomes are missing functional annotations for a relatively high portion of the open
reading frames. For example, one of the best characterized organisms, Escherichia coli,
lacks annotation for ∼1,600 genes, which represents 35% of its total number of genes
(1). A limited knowledge of cell function is especially troublesome in infectious patho-
gens and organisms that could be used as a chassis in the industry to produce valuable
compounds. Systematically identifying missing metabolic capabilities of the cell and
accelerating the functional annotation of genomes can expedite and facilitate a wide
range of medical and biotechnology applications.
The systematic analysis of metabolic functions and identification of knowledge gaps

relies on computational models of metabolism. In fact, all known metabolic functions
of different organisms are organized into databases termed genome-scale models
(GEMs). These GEMs rely on the functional annotation of genes for their reconstruc-
tion, with better quality gene annotation leading to better predictions of cellular physi-
ology. GEMs have been widely used to study the metabolism of model organisms, such
as E. coli (2) and yeast (3), and pathogens such as Salmonella Typhimurium (4) and
Plasmodium falciparum (5), and to identify host–pathogen interactions (6), drug targets
(7), and metabolic engineering strategies (8), among others (9). Hence, the fact that all
GEMs are currently missing knowledge and annotations can lead to false predictions
that can affect both research as well as biomedical applications. Approaches to perform-
ing functional annotation of genomes involve both physical experiments (10) (e.g.,
in vitro assays) and bioinformatics (11) (e.g., sequence similarity). However, experi-
ments require specific hypotheses and are time- and resource-consuming. Moreover,
sequence similarity (12) and other computational approaches are so far limited to the
space of known annotated proteins and biochemistry.
Exploring the space of unknown biochemistry is thus necessary to accelerate our

understanding of cell function and include novel chemistry in our models of cells. The
strategies to explore such unknown biochemical space are primarily based on machine
learning (ML) or mechanistic approaches (13, 14). Recently, an ATLAS of Biochemis-
try was constructed based on a mechanistic understanding of enzyme function (15, 16)
as a database of novel biochemistry, meaning not yet experimentally observed reactions,
and the optimization-based exploration of metabolic models to identify missing
biochemistry. The ATLAS of Biochemistry includes over 150,000 putative reactions
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between known metabolites. Hence, it represents the upper
limit of the possible biochemical space and allows an efficient
exploration of the uncharacterized metabolic functions in cells.
Furthermore, the tool BridgIT was recently developed as a
method to map orphan biochemistry to enzymes (17), provid-
ing a tool for identifying uncharacterized genes. Together, these
are separate tools for exploring the unknown biochemistry of
GEMs at the reaction and the enzyme level, respectively, but
are not currently integrated.
Therefore, we hypothesized that we use GEMs and leverage

the potential of the ATLAS of Biochemistry (15, 16) coupled
with BridgIT (17) to identify metabolic gaps and identify possi-
ble reactions with associated catalyzing enzymes and genes.
This powerful combination of tools and methods came together
to form our workflow, Network Integrated Computational
Explorer for Gap Annotation of Metabolism (NICEgame). We
applied NICEgame to suggest novel biochemistry in E. coli
strain MG1655 and further enhance its genome annotation.
From the most recently published E. coli GEM (2), NICEgame
identified metabolic gaps that are responsible for 148 false gene
essentiality predictions linked to 152 reactions in glucose mini-
mal media. This refers to genes that the GEM considers essential
for growth, but experimental data shows otherwise, meaning that
there should be available biochemistry in the cell to perform these
reactions in the case of gene knockout. We proposed 77 biochem-
ical reactions linked to 35 candidate genes to fill 47% of these
gaps. We integrated this information into a thermodynamically
curated GEM of E. coli, iEcoMG1655, which has an increased
gene essentiality prediction accuracy of 23.6% with respect to
its predecessor iML1515 (2). Importantly, the NICEgame
workflow is applicable to any organism or cell with a GEM and
is available as a GitHub repository (https://github.com/EPFL-
LCSB/NICEgame) with the combined use of available online
resources, the ATLAS of Biochemistry (15, 16) and BridgIT (17).
Overall, NICEgame is a workflow for the rapid and systematic
identification of metabolic gaps, missing biochemistry, and can-
didate catalyzing genes. Hence it will accelerate the complete
identification of metabolic functions and annotation of genomes
and enable the design of robust bioengineering and drug target-
ing strategies.

Results

A Workflow to Identify and Curate Gaps in Cellular Metabolism.
NICEgame involves seven main steps (Fig. 1), detailed in the
Materials and Methods section. The first involves the harmoniza-
tion of metabolite annotations with the ATLAS of Biochemistry,
which is necessary for assuring the proper connectivity of metab-
olites between a GEM and the reaction database. The second
step comprises a preprocessing of the GEM (e.g., by defining the
media) and the identification of the metabolic gaps (e.g., by
comparing in silico and in vitro gene knockout experiments. In
the third step, NICEgame merges the GEM and ATLAS of Bio-
chemistry, which is hereafter called ATLAS-merged GEM. The
fourth step involves a comparative essentiality analysis with the
isolated and ATLAS-merged GEM. At this point, we identify
the reactions or genes, among the metabolic gaps, that are essen-
tial for in silico growth but are dispensable in the ATLAS-
merged GEM. In other words, here, we look for reactions that
were essential for growth in the original GEM, but the ATLAS-
merged GEM has been able to overcome through alternative,
currently unexplored pathways. We define such reactions or
genes as rescued. The rescued reactions and genes will be the tar-
gets for gap-filling. Alternatively, if the wild-type model fails to

simulate an observed phenotype, such as growth under given
conditions, the comparative essentiality analysis can be omitted.
In this case, the gap-filling algorithm seeks to reconcile the pre-
dictions of the wild-type model with the observed phenotype. In
the fifth step, NICEgame systematically identifies alternative bio-
chemistry to the rescued reactions or genes. In the sixth step, we
evaluate and rank all alternative biochemistry. In the seventh
and final step, NICEgame uses the BridgIT tool to identify a
potential gene for catalyzing the top-ranked suggested
biochemistry.

In all, NICEgame produces sets of alternative gap-filling
reactions, which then must be evaluated based on their impact
on the metabolic network and the performance of the model
(SI Appendix, Fig. S1). The sets of reactions that are added to
the network to reconcile a gap, termed solution sets, that result
in a higher biomass yield or do not affect the yield are preferred
to solutions that reduce the flexibility of the model; solutions
that expand the metabolome or the enzymatic capabilities of
the original model are ranked lower. The alternatives are also
judged based on the number of reactions that are used to com-
plement each rescued reaction. This mimics what happens in
organisms where larger pathways are usually unfavored since
they require more protein production, which is a highly ener-
getically demanding process (18). Last, alternatives are ranked
higher if they increase the ability of the model to correctly
reproduce knockout phenotypes and do not add redundancy.
Overall, these criteria are converted into scores (see Materials
and Methods), with a positive value for any of the scores penal-
izing that alternative solution set in our ranking system.

Identification of Metabolic Gaps in E. coli with NICEgame. We
applied NICEgame to the latest GEM of E. coli, iML1515 (2),
which contains all available metabolic information on this bac-
terium to date. Our in silico essentiality analysis simulated a
glucose minimal medium and identified 148 false-negative
genes (Fig. 2A) corresponding to 152 false-negative essential
reactions (Dataset S1), as compared with available experimental
data (19). In other words, NICEgame identified 152 reactions
that the GEM predicts are required for cell growth, but experi-
mental data shows otherwise; these represent the gap that must
be filled for a properly functioning GEM. Following the
NICEgame workflow (Fig. 1), we next merged iML1515 with
the ATLAS of Biochemistry. We performed two sets of analysis
aiming to reduce (i) the number of metabolites added into the
model and (ii) the uncertainty in the type of metabolites added
into the model. For this purpose, we used two subsets of the
ATLAS of Biochemistry to gap-fill the metabolic network of
iML1515. The first subset, the E. coli metabolites subset,
expands the reaction space of the model by adding reactions
involving only metabolites from the iML1515 reconstruction.
We thus examined whether the gaps in the model can be recon-
ciled by expanding only the reaction space without increasing
the metabolite space. The second subset, the E. coli and yeast
metabolites subset, expands the reaction and metabolite space of
the model by adding reactions involving only metabolites from
E. coli (iML1515) and yeast [Yeast8 (3) metabolic reconstruc-
tion]. In this case, more information was extracted from
ATLAS in a controlled way, expanding both the reaction and
metabolite space of the original metabolic network. Since
E. coli is often cultivated in yeast extract, the metabolic network
of yeast was chosen, as it is likely that parts of the missing
metabolome exist in the yeast metabolic reconstruction.

With these two approaches, we identified thermodynamically
feasible biochemical reactions to resolve 93 out of the 152
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false-negative reactions (Fig. 2B). Different hypotheses can be
made for the remaining false-negative reactions: (i) they can be
rescued if more information from ATLAS is used or (ii) chemical
compounds are required as intermediates. An example of unre-
solved metabolic gap is the false-negative gene pabA (b3360),
which catalyzes the synthesis of 4-amino-4-deoxychorismate, a
precursor of folate (Fig. 2C). The reaction is rescued if the entire
ATLAS is used as a reaction pool for the gap-filling.

Biotransformations among E. coli Metabolites Reconcile Model
Predictions with Experimental Evidence. With the E. coli
metabolites subset of the ATLAS of Biochemistry, we identified
thermodynamically feasible gap-filling biotransformations for
86 out of 152 false-negative reactions (Dataset S2). We present

here several examples of rescued reactions and alternative solu-
tions that are ranked high or low according to our ranking sys-
tem. One false-negative reaction that was rescued is AMAOTr,
which describes the production of 7,8-diaminononanoate from
8-amino-7-oxononanoate in the biosynthesis pathway of biotin
(Fig. 3A). This is catalyzed by the enzyme adenosylmethionine-
8-amino-7-oxononanoate transaminase, with Enzyme Commis-
sion (20) (EC) number 2.6.1.62, which is encoded by the gene
bioA. As alternatives to the bioA-linked reaction for the biosyn-
thesis of biotin, NICEgame identified 116 thermodynamically
feasible reaction sets of size one and size two. In one of the
alternative solutions sets (Fig. 3 A, alternative solution 1), a sin-
gle novel reaction can fill the gap. This reaction follows the same
enzymatic mechanism (EC 2.6.1.-) as the original, although in
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Fig. 1. Pipeline to construct and use the NICEgame workflow to annotate missing metabolic functions. The NICEgame workflow uses a GEM model as input.
(1) The annotations of the GEM metabolites are harmonized to map them to compounds in the ATLAS of Biochemistry. (2) The conditions for subsequent
essentiality analyses are defined, such as media composition. (3) The original GEM is merged with ATLAS and (4) an essentiality analysis is performed in the
original and the expanded network to identify which gaps can be rescued. (5) Alternative reactions sets are generated to fill in the gaps and (6) are evaluated.
(7) Finally, BridgIT identifies catalyzing genes for the suggested reactions.
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this case, L-ornithine donates the amino-group and L-glutamate
5-semialdehyde is the byproduct. The reaction does not affect
the predicted growth rate and does not require any additional
enzymatic capabilities, and it improves the overall accuracy of
the model in terms of predicting gene essentiality. To catalyze
this reaction, BridgIT identified 12 candidate genes with an ade-
quate BridgIT score (see Materials and Methods).
A second alternative for this step of the biotin biosynthesis

pathway (Fig. 3 A, alternative solution 2) requires two novel
reactions to fill the gap. The first reaction converts 8-amino-7-
oxononanoate to 7,8-diaminononanoate by transferring the
amino group from L-cysteine (EC 2.6.1.-), which produces
mercaptopyruvate as a side-product. For this biotransformation,
BridgIT suggests 19 candidate genes. The second reaction bal-
ances the production of mercaptopyruvate by converting it into
hydroxypyruvate (EC 3.3.1.-) following a reaction mechanism
that is not part of the original network, meaning the EC num-
ber is not part of the iML1515 GEM. This alternative solution
is ranked lower than the previous one. Regardless, we identified
one putative sequence to catalyze this reaction.
Another false-negative predicted reaction is the enzyme

3-methyl-2-oxobutanoate hydroxymethyl transferase that catalyzes
the production of 2-dehydropantoate, a precursor of coenzyme A,
from 3-methyl-2-oxobutanoate (EC 2.1.2.11). This enzyme is the
product of the gene panB (b0134) that is predicted as a false-
negative. NICEgame suggests 29 thermodynamically feasible
solution sets, all involving the production of 2-dehydropantoate

from 3-methyl-2-oxobutanoate and formaldehyde (EC 4.1.2.-),
which is the orphan KEGG reaction R01216. To encode for
this biotransformation, our method suggests 26 candidate
genes. The first alternative (Fig. 3 B, alternative solution 1)
contains a novel side reaction and describes the reduction of
formate to formaldehyde (EC 1.2.1.-). BridgIT could not iden-
tify any candidate gene to encode this enzyme. The second
alternative (Fig. 3 B, alternative solution 2) produces formalde-
hyde from 3-hydroxypropanoate through an acyltransferase (EC
2.3.3.-), but this novel reaction is not thermodynamically feasi-
ble in the desired direction. Thus, this alternative is discarded.

Another false-negative that can be reconciled by gap-filling
with the E. coli metabolites subset is the gene luxS (b2687). Here,
the S-ribosylhomocysteine cleavage enzyme, encoded by b2687,
is responsible for the production of L-homocysteine, a precursor
of L-methionine, from S-ribosyl-L-homocysteine (EC 4.4.1.21).
Our workflow suggests 11 thermodynamically feasible solution
sets. The first alternative produces L-homocysteine from an amy-
lase acting on S-adenosylhomocysteine (EC 3.3.1.-), which is the
KEGG reaction R00192 (Fig. 3 C, alternative solution 1).
Though this enzymatic capability is not part of the original
network, BridgIT could identify one candidate gene to encode
for this enzyme. The second alternative (Fig. 3 C, alternative
solution 2) uses the same reaction mechanism to produce
L-homocysteine from L-methionine and a second reaction to
balance the byproduct, methane. However, this solution set is
thermodynamically infeasible and therefore rejected.
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Biotransformations among E. coli and Yeast Metabolites
Reconcile More Gaps. Including E. coli and yeast metabolites
suggests more alternative solution sets for the already rescued
false-negative reactions, and importantly, reactions for seven

false-negative cases that had not yet been addressed (Dataset S2).
One of the additionally rescued reactions is 3-isopropylmalate
dehydratase, which interconverts 2-isopropylmaleate to 3-carboxy-
2-hydroxy-4-methylpentanoate (EC 4.2.1.33). The reaction is
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part of the leucine biosynthesis pathway, and it is encoded by two
genes, leuD (b0071) and leuC (b0072). The first set of reactions
(Fig. 4 A, alternative solution 1) produces 4-methyl-2-oxopenta-
noate, a precursor of leucine, from butanoyl-CoA in 4 steps. Three

of the steps are novel reactions and the fourth is the KEGG reac-
tion R01176, and BridgIT can identify candidate genes for two of
them. The second set of reactions (Fig. 4 A, alternative solution 2)
synthesizes 4-methyl-2-oxopentanoate again from butanoyl-CoA,
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via 3 novel reaction steps, but it is thermodynamically unfavorable.
Both solution sets involve the metabolite 3-methylbutanal that is
not part of the original iML1515 metabolic network. This com-
pound has been characterized (21) as an alternative substrate of
the enzyme 3-hydroxypropionaldehyde dehydrogenase (b1300),
but to our knowledge it has not been detected as part of the
metabolome of E. coli.
One reaction with that can be rescued via both subsets involves

pimeloyl-ACP methyl ester esterase (EC 3.1.1.85), which is an
enzyme encoded by the false-negative gene bioH (b3412). The
enzyme is part of the biotin biosynthesis pathway, and it is
responsible for the hydrolysis of pimeloyl-ACP methyl ester to
pimeloyl-ACP, a precursor of biotin. To fill this gap, the E. coli
metabolites subset provides three alternative solution sets of one
reaction each. One solution (Fig. 4 B, alternative solution 2) pro-
duces pimeloyl-ACP by transferring the methyl group from
pimeloyl-ACP methyl ester to S-adenosylhomocysteine to form
S-adenosylmethionine (EC 2.1.1.-). BridgIT provides 11 genes to
regulate this novel reaction. The E. coli and yeast metabolites subset
provides one additional solution set (Fig. 4 B, alternative solution 1)
of two steps: one novel reaction and the KEGG reaction R03210
describing the synthesis of 8-amino-7-oxononanoate, a successor
metabolite of pimeloyl-ACP in the biotin biosynthesis pathway,
itself made from hexanoyl-CoA with pimeloyl-CoA as an interme-
diate metabolite. Although pimeloyl-CoA is not part of the origi-
nal reconstruction, it has been recently shown (22) to serve as the
acyl chain donor of the 8-amino-7-oxononanoate synthase (bioF).
BridgIT suggests 21 candidate genes to encode for this function,
bioF among them. In the original reconstruction, bioF uses
pimenoyl-ACP as substrate and is essential, but the gene is not
essential in vitro, flagging it a false-negative gene. Interestingly,
this solution set provides an alternative precursor for biotin, thus
resolving the false-negative case of bioC (b0777) that is responsible
for the synthesis of malonyl-CoA methyl ester, a precursor of
pimenoyl-ACP and thus biotin. However, this solution is rejected
since it adds redundancy to the model, having a Matthews Corre-
lation Coefficient (23) (MCC) score equal to 0.0108, with 0 being
uncorrelated and 1 being correlated, since the genes fabZ (b0180)
and fabH (b1091) become false-positives after adding this solution
set to the network.
Another false-negative gene that can be resolved using both

metabolite subsets is the gene gshA (b2688), which regulates the
synthesis of γ-glutamylcysteine from L-cysteine and L-glutamate
(EC 6.3.2.2). With the E. coli metabolites subset, NICEgame pro-
vides 12 alternative thermodynamically feasible solution sets to fill
in this gap. In the highest-ranking solution (Fig. 4 C, alternative
solution 1), γ-glutamylcysteine is produced by L-cysteine and
L-glutamyl 5-phosphate, releasing orthophosphate (EC 2.1.3.-).
The E. coli and yeast metabolites subset provides three additional
thermodynamically favorable solution sets, all involving the metab-
olite 5-oxoproline as an intermediate. This intermediate is not part
of the metabolome of the original reconstruction, but it has been
detected in E. coli (24). In the best-performing solution (Fig. 4 C,
alternative solution 2), the first reaction describes the degradation
of γ-L-glutamylputrescine to putrescine and 5-oxoproline and is
novel, whereas the second reaction is a KEGG reaction (R02743)
reconstructed in ATLAS. BridgIT identifies the gene chaC as a
candidate to encode for this metabolic function.

Gene Annotation of Metabolic Gaps Identifies New Functions
in E. coli. When gap-filling the metabolic network of E. coli,
NICEgame suggested over 7,000 known and novel reactions,
with over 6,600 among them part of thermodynamically feasible
solution sets. To catalyze these reactions, BridgIT adequately

identified candidate sequences in the genome of E. coli to catalyze
6,319 of these reactions (see Materials and Methods for scoring),
which it assigned to 2,165 EC numbers (Dataset S3). Finally, we
suggest 590 candidate promiscuous genes in the genome of E. coli
to catalyze 6,118 reactions. In an example shown in Fig. 5 wherein
γ-L-glutamylputrescine is degraded to 5-oxoproline and putres-
cine, we highlight how BridgIT found adequate similarity scores
between an ATLAS novel reaction and five KEGG reference reac-
tions. Here, though, only one reaction had a corresponding gene
in E. coli, so BridgIT identifies the gene chaC as a promising can-
didate to catalyze this novel reaction.

Updated Genome-Scale Model of E. coli Shows Increased
Essentiality Prediction Accuracy. Our approach expanded the
original E. coli metabolic network by 77 reactions and 9 metabo-
lites. We suggest 35 genes, only the top-rated BridgIT predictions,
associated with these 77 reactions, of which 2 genes were not part
of the original reconstruction (Dataset S4). Using our criteria and
ranking method (see Materials and Methods), we extracted an
updated version of the metabolism of E. coli strain MG1655,
termed iEcoMG1655 (Fig. 6). The updated reconstruction
includes 2,450 network reactions, 1,176 metabolites, and 1,517
genes, while it has an enhanced accuracy in gene essentiality pre-
diction. iEcoMG1655 achieves a MCC equal to 0.60 and an
accuracy measurement (ACC) (25) equal to 0.92, as compared to
the performance of the previous best GEM iML1515 at 0.49 and
0.8, respectively, for the conditions examined in this study.

The added biochemistry reconciles metabolic gaps linked to
the amino acid metabolism, cofactor metabolism and biosyn-
thesis of cell membrane peptidoglycans (SI Appendix, Fig. S2).
This result hints the contribution of underground metabolism
in the biosynthetic pathways. It also highlights the aforemen-
tioned subsystems as targets for further research, in contrast to
the central metabolism, where no gaps were identified based on
our analysis (Dataset S1).

The added genes not part of the original reconstruction are
ArcA and LacA. The first of these, ArcA (b4401), is part of the
ArcAB (aerobic respiratory control) regulatory system (26), where
ArcA and ArcB have been shown to regulate the expression of
oxygen-requiring pathways (26). ArcAB has also been known to
participate in the proper expression of catabolic genes for pyru-
vate utilization and sugar fermentation pathways (26). In our
expanded reconstruction, this gene regulates the hydrolysis of
N2-succinyl-L-arginine to urea and N2-succinyl-L-ornithine (EC
3.5.3.-), which provided an alternative pathway to compensate
for the knockout of argG (b3172).

The second added gene, LacA (b0342), encodes the enzyme
galactoside O-acetyltransferase, which catalyzes the transfer of an
acetyl group from acetyl-CoA to the 6-hydroxyl of some galacto-
pyranosides (27). This enzyme is known to act on a broad range
of substrates and can acetylate galactosides, thiogalactosides, gluco-
sides, and lactosides (27). In our expanded reconstruction, it par-
ticipates in lipopolysaccharide biosynthesis/recycling and catalyzes
the degradation of dodecanoyl-KDO2-lipid IV(A) to KDO2-lipid
A. Altogether, its addition compensates for the knockout of lpxM
(b1855).

The 33 genes that already are part of the model show substrate
or mechanism promiscuity. For example, in the original recon-
struction, galK (b0757) encodes for the enzyme galactokinase,
which is responsible for the phosphorylation of D-galactose
(EC 2.7.1.6). This enzyme shows substrate promiscuity, with
BridgIT suggesting it can phosphorylate ADP-D-glycero-D-
manno-heptose, 5-methylthio-D-ribose, D-glycero-beta-D-manno-
heptose-7-phosphate, 6-hydroxymethyl-7,8-dihydropterin, and
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D-ribose-5-phosphate. Similarly, whereas xapA (b2407) acts as
a glycosyltransferase (EC 2.4.2.-) in the iML1515 network,
BridgIT suggests it can also encode for phosphotransferases
(EC 2.7.4.-), and though ydfG (b1539) acts as dehydrogenase
(EC 1.1.1.-) in the iML1515 network, BridgIT suggests it can
also act as a carbon-carbon lyase (EC 4.1.1.-, 4.1.2.-). Nine
of these 33 genes already show substrate promiscuity in the
iML1515 network (Dataset S4).
Although NICEgame suggests thermodynamically feasible

alternatives to rescue 93 reactions, solutions for 36 reactions
were not added to the updated reconstruction for two reasons.
In the first situation, we choose to not include a gap-filling
solution when all the identified solution sets added redundancy
in the metabolic network, resulting in an increase of the false-
positive gene essentiality predictions. The second situation was
one in which BridgIT identified an essential or a false-negative
gene to catalyze the suggested reactions. The addition of such
solution sets to the network would not resolve the gap.

NICEgame Offers Improved Gap-Filling Performance over
Published Approaches. To evaluate the performance of NICE-
game against existing gap-filling approaches, we performed three

comparative studies. In the first, we repeated the generation of
gap-filling alternative solutions using our in-house algorithm, but
this time used only known biochemical reactions, meaning only
the E. coli and yeast metabolites subset of the KEGG database (28),
as a pool for the gap-filling. The second study compares our gap-
filling algorithm to published algorithms, as in the algorithms
included in the RAVEN (29) and COBRA (30) toolboxes, using
the E. coli and yeast metabolites subset. In the third, we compared
NICEgame against the CarveMe (31) gap-filling approach.

In the first study, the E. coli and yeast metabolites subset of
KEGG identified thermodynamically feasible gap-filling solu-
tions for 53 out of the 152 target reactions (Dataset S5), as
compared to the 93 rescued reactions managed when including
the E. coli and yeast metabolites subset of ATLAS. The average
number of solutions per rescued reaction is 2.3 for the E. coli
and yeast metabolites subset of KEGG versus 252.2 for that sub-
set of ATLAS. However, this subset of KEGG did suggest solu-
tions for 8 reactions that the ATLAS equivalent cannot rescue.
A further analysis to understand why the ATLAS database
could not capture these 8 solutions (Dataset S6) found that
these KEGG reactions could not be reconstructed in ATLAS
because of the complex structure of the metabolites.
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We next compared NICEgame to the gap-filling approaches
RAVEN and COBRA, which both also use a mixed-integer
linear programming (MILP) algorithm. With the RAVEN
algorithm, we adjusted the input parameters to include as few
reactions as possible from the database that would still satisfy
the model constraints, such as the mass balances and the basal
growth rate under the defined media. The mathematical formu-
lation in RAVEN is very similar to the one defined by the
NICEgame, however RAVEN does not generate alternative sol-
utions, not allowing to choose the most biologically relevant
solution and to account for problems in the first solution. This
resulted in thermodynamically feasible solutions for 67 out of
the 152 target reactions (Dataset S7). Similarly, COBRA also
minimizes the number of reactions added from the database
to the model to achieve a given metabolic task. The COBRA
algorithm also gives different weights to the reactions of the
database, penalizing uptakes and transporters as compared to
metabolic reactions. A difference with COBRA is that it
accounts for alternative solutions by assigning a bigger weight to
reactions that have already appeared in previous solutions. To
test COBRA against NICEgame, we demanded 10 alternatives
per target reaction. Here, the COBRA gap-filling approach res-
cued 68 reactions. However, the same solution often reappeared,
and there is no systematic enumeration of all minimal solution
sets (Dataset S8). As an example of the reaction ANPRT, the
algorithm identifies the ATLAS reaction rat45874 as a solution
four times. The size of the remaining six solutions ranged
between two and three reactions per solution set.
For the final comparison, the CarveMe gap-filling approach is

also based on a MILP formulation that aims to add the minimal
number of reactions from the universal bacterial model (31) to
the GEM under curation. The method does not generate alter-
native solutions sets. Comparing NICEgame to CarveMe, we
identified thermodynamically feasible solutions for 33 target
reactions and reconciled 24 gaps not curated by NICEgame
(Dataset S9). These additional gap-filling alternatives above those

of NICEgame came from the use of a different database, which
could be considered in the future for NICEgame. For example,
the E. coli and yeast metabolites subset of ATLAS can gap-fill the
target reaction AICART with solution sets of one reaction,
whereas the universal bacterial model provides a solution of 20
reactions. However, the method suggests transporters, such as
CAt6, CITt13, and Cuabc, and pseudoreactions, such as sink_
4hba_c, as part of the solutions. These pseudoreactions are
mathematical inventions to represent parts of the metabolism
that are unknown or not important under certain scope, and
thus not described in a mechanistic way. This type of solution is
not desired since they do not explicitly describe the metabolism
and are trivial.

Validation of the NICEgame Workflow. To validate our work-
flow, a series of tests were conducted to compare the perfor-
mance of the iEcoMG1655 network against the iML1515
network. Single gene knock-out in silico deletions were per-
formed on 15 carbon sources (2) to assess the effect of the
added biochemistry (gene-reaction pairs) on other phenotypes
(Dataset S10). Even though the choice of the gap-filling solu-
tions did not consider the gene essentiality data for these 15
carbon sources, the iEcoMG1655 network showed an increased
ACC compared to iML1515 in all cases. Furthermore, the
MCC remains at the same levels for the two networks. Overall,
the iEcoMG1655 network shows a better performance regard-
ing the FN and, consequently, the TP predictions. Addition-
ally, double gene knock-out simulations with glucose as the
carbon source for the iML1515 and the iEcoMG1655 net-
works. Driven by data availability, we generated in silico
knockouts strains of the gdhA mutant and contrasted our
results against experimental data (32) (Dataset S11). The two
networks show similar performance. We further examined the
feasible flux ranges in the two networks. The iEcoMG1655
network shows more flexibility compared to the iML1515 net-
work, for all the 16 carbon sources examined (Dataset S12).
The average flux range increase varies from about 13.1% to 37.
7%. Furthermore, more reactions can carry flux in the
iEcoMG1655 network. The unblocked reactions mainly are
assigned to the metabolic subsystems of transport and exchange
of metabolites, the cofactor biosynthesis, and the alternate car-
bon metabolism (Dataset S12). Finally, a study was performed
to evaluate the sensitivity of the NICEgame workflow in
retrieving known gene-reaction pairs (Dataset S13). To this
end, we removed essential genes in the iML1515, one at a
time, and all corresponding reactions, generating knock-out
GEMs. NICEgame could correctly retrieve the correct gene-
reaction pairs for 98% of the cases.

Discussion

To address the lack of tools available for the systematic identifi-
cation and reconciliation of metabolic gaps at a genome scale,
we have herein presented the NICEgame workflow. We applied
our workflow to the most recently published E. coli GEM,
iML1515, which contained 148 false-negative essential genes
for the media conditions used in this study. The newly
included biochemistry, meaning reactions and catalyzing genes,
reconciled 69 false-negative genes. However, there are still gaps
in the metabolism of E. coli that remain unresolved. This is
likely due to our selected subset from the ATLAS of Biochemis-
try. In the future, more gaps could be filled by using a bigger
subset to integrate more information from the ATLAS of
Biochemistry with the E. coli metabolic network.
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Fig. 6. (A) The iEcoMG1655 network statistics. The gap-filled network con-
tains 77 novel reactions, two additional genes, and nine new metabolites.
(B) Contingency matrix for gene essentiality prediction accuracy of iEcoMG1655.
NICEgame could reconcile 69 out of the 148 false-negative gene essentiality
predictions leading to an increased accuracy, MCC= 0.60.
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A benefit here of our approach is that it was designed to be a
living tool that adapts with new scientific discoveries; users can
revisit and reevaluate the suggested solution sets for each rescued
reaction when new quantitative and qualitative data are released.
The results generated by NICEgame are experimentally testable,
and future experiments designed to test these findings would pro-
vide interesting information about our understanding of E. coli
metabolism. For instance, the validity of the gap-filling solutions
suggested in this study can be examined by double-gene knock-
out studies, meaning the simultaneous deletion of the gene pre-
dicted as false negative and the sequence predicted by BridgIT to
rescue it. A further indication of the validity of our predictions
would be the in vitro identification of the newly added metabo-
lites in the iEcoMG1655 network, which could be done through
liquid chromatography-mass spectrometry (LC-MS) or NMR
spectroscopy techniques.
In the future, the NICEgame workflow can be extended to

additionally (i) account for transport reactions (33), apart from
biotransformations, for the reconciliation of metabolic gaps, (ii)
handle higher order gene deletions (34) and (iii) aim to the res-
toration of flux through blocked reactions (33).
Overall, NICEgame should advance studies and applications

of any organismal metabolism, as it is applicable to any existing
GEM. Filling metabolic gaps will increase the predictive capa-
bility of GEMs and will thus help advance the fields of biotech-
nology and biomedicine, by suggesting more efficient pathways
and favorable conditions for bio-manufacturing, as well as
novel drug targets and therapeutic strategies. Finally, our
method and the library of alternative solution sets can also be
used as a resource of novelty and discovery in metabolic engi-
neering to design strains with improved performance, such as
higher biomass or product yield.

Materials and Methods

Reconciliation of Annotation. Since the ATLAS of Biochemistry is KEGG (28)-
based, the metabolite identifiers of the iML1515 network first needed to be
translated to KEGG notation. For this purpose, we extracted and compared man-
ually information from the KEGG and the BiGG (35) databases. Overall, 909 out
of the 1,169 metabolites were mapped to a KEGG ID. Apart from the KEGG data-
base, the metabolites of the iML1515 were also mapped similarly to the SEED
(36) database to impose thermodynamic constraints on the model. Here, 1,106
out of the 1,169 metabolites were mapped to a unique SEED ID.

Databases Used for Gap-Filling. To reduce ATLAS in the two subdatabases
used in this study, i.e., the E. coli metabolites subset and the E. coli and yeast
metabolites subset (Dataset S14), we extracted all ATLAS reactions that integrate
intra- and extracellular compounds that are already part of the iML1515 GEM and
reactions that integrate compounds that are already part of the iML1515 and the
Yeast8 (3) GEMs, respectively. Likewise, the E. coli and yeast metabolites subset of
KEGG contains only KEGG (2018 version) reactions among metabolites included
in the iML1515 and the Yeast8 (3) GEMs. For gap-filling using CarveMe, we used
the universal bacterial model (31), a compartmentalized model that contains
transporters and pseudoreactions. The size of the databases is shown in Table 1.

Gap-Filling Formulation. The gap-filling algorithm uses a MILP formulation
and generates binary use variables for each reaction in the database. These varia-
bles indicate whether flux is allowed through a reaction or not. The gap-filling
algorithm is a parsimonious algorithm whose objective is to minimize the num-
ber of active reactions in the metabolic network, demanding at the same time a
basal flux through the biomass reaction in the wild-type model. The mathemati-
cal formulation of the MILP problem is:

max
z

∑zi
s:t:

1 � Fi + 1 � Ri + M � zi ≤ M, ðiÞ
1 � Fi + 1 � Ri + 1 � zi ≥ m, ðiiÞ

Fbiomass ≥ threshold � WT growth rateð Þ,

[1]

where Fi represents the flux variables of the irreversible forward reactions, Ri are
the flux variables of the irreversible backward component reactions of the reversible
reaction i, Fbiomass is the flux variable of the irreversible forward biomass reaction,
WT growth rate is the growth rate predicted by the wild-type model for the given
media, threshold is the parameter that defines the minimally required growth rate
as a percentage of theWT growth rate,M is a big-M value, m is a small value, and
zi are the binary use variables. For this study, the gap-filling was performed for M9
glucose minimal media and aerobic conditions and the wild-type biomass reaction
as an objective function i.e., BIOMASS_Ec_iML1515_WT_75p37M. Neither the car-
bon nor oxygen uptake were constrained, i.e., the maximum allowed uptake rate
was set to 50 mmol

gDW h.
Every time the solver identifies a solution, the solution is integrated as a cut

constraint to the MILP problem, so the solver cannot identify the same solution
more than once:

∑zk > 0: [2]
To avoid generating long pathways, we demanded that the minimum solu-

tion size be less than ten reactions and the subsequent solutions can be at most
five reactions bigger than the minimum size solution.

Identification of Metabolic Gaps. Gene essentiality data (19) were used to
identify putative false-negative reactions. We considered M9 glucose minimal
media and aerobic conditions and the wild-type biomass reaction as an objective
function. We performed a single gene deletion analysis, where a gene was con-
sidered essential in silico if the growth rate of the knockout mutant was less
than 10% of the growth rate of the wild-type. This analysis revealed 258 genes
essential in silico, with 105 of them also being essential in vitro, while 7 of
them were not represented in the experimental data. We identified all reactions
associated with the 148 remaining genes, which numbered 200 in total, and
after a single reaction deletion analysis, we concluded that 152 of them are
essential in silico. We consider that these 152 are falsely essential and thus con-
stitute the target reactions for gap-filling.

Scoring the Alternatives. For each gap-filled model, the output of the frame-
work is a set of ranked alternatives for each rescued reaction. The main criteria
for ranking the different alternatives are the thermodynamic feasibility of the
solution and minimum impact on the model, which means that a solution is
ranked lower the more it alters the biochemistry and the predictive capability of
the model.

To examine the maximum biomass yield under thermodynamic constraints,
thermodynamics-based flux balance analysis (TFA) (37) was carried out for each
alternative. To examine the maximum biomass yield for each alternative solu-
tion, the rescued reaction was blocked, and flux was allowed through the set of
alternative reactions. To define the score, the ratios of the optimal growth rate of
the wild-type GEM to the gap-filled GEM were calculated, and one point is sub-
tracted. If the result of the subtraction was greater than zero, the addition of the
alternative reduced the performance compared to the original GEM, whereas
when the result of the subtraction was less than zero, the addition of the alterna-
tive led to higher performance compared to the original GEM. If a gap-filled
GEM did not predict growth when it was thermodynamically restricted, the alter-
native was rejected. The performance of the gap-filled models without thermody-
namic constraints was also tested. Here to examine the optimal growth rate, flux
balance analysis (FBA) was carried out for each alternative and the results were
analyzed similarly to the TFA test.

Table 1. Size of the databases used for gap-filling

Reactions Metabolites

E. coli metabolites subset of ATLAS 9,810 778
E. coli and yeast metabolites subset

of ATLAS
13,298 1,050

E. coli and yeast metabolites subset
of KEGG

1,756 1,128

Universal bacterial model 5,532 2,861
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The number of reactions of each alternative solution was also considered.
Since the set of reactions of each alternative replaced one reaction in the model,
one point was subtracted from the number of reactions in the solution set.
Organisms tend to favor shorter paths (18), so the alternatives that integrated
fewer reactions were ranked higher than those that integrated more reactions.
An extra point was added for every reaction that was linked to a third level EC
number that was not included in the original GEM, as the integration of such
reactions also entailed the integration of new enzymatic capabilities into the
model. At the metabolite level, for every unique nonnative metabolite, one point
was added.

Lastly, we tested the ability of the models to properly predict gene essential-
ity. To this end, the overall accuracy (ACC) (25) and MCC (23) were calculated for
each gap-filled model and were compared to the wild-type.

MCC =
TP � TN� FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ � TP + FNð Þ � TN + FPð Þ � ðTN + FNÞp , [3]

ACC =
TP + TN

TP + TN + FP + FN
, [4]

where TP stands for true-positive, TN for true-negative, FP for false-positive, and
FN for false-negative gene essentiality predictions.

The values of all the scores were added, and the alternatives were ranked.
The closer the absolute value of the score was to zero, the more similar the per-
formance and the biochemistry of the gap-filled model was to the original
model.

Enzyme Annotation Using BridgIT. For annotating ATLAS reactions, we
used the online version of the BridgIT method with default parameters as
discussed in the original paper (17). The BridgIT method is inspired by the
theory of a lock and key, which assumes that two similar reactions will be
catalyzed by the same enzyme. BridgIT compares the similarity of each
input reaction with all the nonorphan characterized metabolic reactions
cataloged in the KEGG database (reference reactions) and proposes
enzymes associated with the most similar reference reactions as the best
candidate for the input reaction. Therefore, BridgIT systematically screens
for the best promiscuous candidate enzymes that might be able to catalyze
the input reaction. The degree of similarity or probability of catalyzation is
quantified in the BridgIT score, ranging from zero (no similarity) to one
(identical). The optimal threshold value for the BridgIT score is 0.3, mean-
ing predictions with a score higher than 0.3 are considered promising
(17). For each input reaction, BridgIT outputs a list of enzymes with their
EC number ranked in descending order based on BridgIT score. Then, the
EC number is used to query the Uniport (38) database for the correspond-
ing protein sequences in the organism of interest, which in this study was
E. coli K12.

Choosing Gap-Filling Solutions: The iEcoMG1655 Network. The NICEgame
workflow generated over 47,000 solutions for the rescued reactions. However, a
minimal set out of them was used to generate the iEcoMG1655 network. Ther-
modynamically infeasible solutions and solutions that decreased the accuracy of
predictions (solutions that reduce ACC and/or MCC) were rejected (Stage 1 of
solution evaluation). From the remaining solutions, those with BridgIT predic-
tions and those increasing the accuracy of predictions (solutions that improve
ACC and/or MCC) were prioritized (Stage 2 of solution evaluation). Then, the
remaining scores were considered (Stage 3 of solution evaluation). In the case of
solutions set that made it to Stage 3 and had identical scores, all alternatives
were added. To assign genes to the 77 reactions, we chose the BridgIT predic-
tions with the highest BridgIT scores. Predictions involving an essential or a
false-negative gene were rejected.

Validation of the NICEgame Workflow. Single gene essentiality analyses
with thermodynamic constraints were performed on the iML1515 and
iEcoMG1655 networks on minimal media and aerobic conditions for 15 carbon
sources (Dataset S10). Neither the carbon nor oxygen uptake was constrained.
The double gene deletion was performed for both networks with thermodynamic
constraints and for the aerobic glucose minimal media condition. The allowable
flux ranges were calculated for both networks by performing flux variability

analysis with thermodynamic constraints on glucose and the 15 other carbon
sources. Finally, we removed the 257 essential genes on glucose minimal media
and aerobic conditions in the iML1515, one at a time, and all corresponding reac-
tions, generating 257 knock-out GEMs. We then used the NICEgame workflow to
gap-fill each one of the knock-out GEMs by allowing the generation of 1,000 alter-
natives of minimal size, or bigger size if required, and the E. coli metabolites sub-
set as a database for gap-filling. In the case that the gap was filled, we filtered
the solutions to identify if they contain the original essential reactions removed
from the iML1515 network to generate the knock-out GEM (Datasets S13 and
S15). We then used the BridgIT algorithm to associate genes to the reactions
(Datasets S13 and S16). We finally calculated the percentage of retrieved gene-
reaction pairs. For this analysis, we first examined whether the removed reaction
sets are included in ATLAS (Dataset S13). Out of the 257 knock-out GEMs 146
were linked to reaction sets that were not part of ATLAS. We thus consider the
remaining 111 knock-out GEMs.

Software. This work was supported by EPFL through the use of the facilities of
its Scientific IT and Application Support Center. We performed the gap-filling
using the defined MILP formulation in MATLAB (2016a and 2018a) and IBM
ILOG Cplex 12.7.1 as a solver. The simulations were run on a high-performance
computing cluster of 408 nodes. We used two CPUs per simulation and
3,875 MB per CPU. One simulation was defined for a unique combination of
parameters. The analysis of the gap-filling solutions was performed on Mac Pro-
32 GB in MATLAB 2017a and IBM ILOG Cplex 12.7.1 as a solver. The gap-filling
with RAVEN was performed with Gurobi Optimizer Version 9.3 as a solver. The
gap-filling with COBRA and CarveMe was performed in python 3.6 and IBM
ILOG Cplex 12.8.0 as a solver.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information. The code and model have been depos-
ited in Github (https://github.com/EPFL-LCSB/NICEgame) (39).
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