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Simple Summary: Collar-mounted activity monitors using battery-powered accelerometers can
continuously and accurately analyze specific canine behaviors and activity levels. These include
normal behaviors and those that are indicators of disease conditions such as scratching, inappetence,
excessive weight, or osteoarthritis. Algorithms used to analyze activity data are validated by video
recordings of specific canine behaviors, which were used to label accelerometer data. The study
described here was noteworthy for the large volume of data collected from more than 2500 dogs in
clinical and real-world home settings. The accelerometer data were analyzed by a machine learning
methodology, whereby algorithms were continually updated as additional data were acquired.
The study determined that algorithms from the accelerometer data detected eating and drinking
behaviors with a high degree of accuracy. Accurate detection of other behaviors such as licking,
petting, rubbing, scratching, and sniffing was also demonstrated. The study confirmed that activity
monitors using validated algorithms can accurately detect important health-related canine behaviors
via a collar-mounted accelerometer. The validated algorithms have widespread practical benefits
when used in commercially available canine activity monitors.

Abstract: Collar-mounted canine activity monitors can use accelerometer data to estimate dog ac-
tivity levels, step counts, and distance traveled. With recent advances in machine learning and
embedded computing, much more nuanced and accurate behavior classification has become possible,
giving these affordable consumer devices the potential to improve the efficiency and effectiveness
of pet healthcare. Here, we describe a novel deep learning algorithm that classifies dog behavior at
sub-second resolution using commercial pet activity monitors. We built machine learning training
databases from more than 5000 videos of more than 2500 dogs and ran the algorithms in production
on more than 11 million days of device data. We then surveyed project participants representing
10,550 dogs, which provided 163,110 event responses to validate real-world detection of eating and
drinking behavior. The resultant algorithm displayed a sensitivity and specificity for detecting drink-
ing behavior (0.949 and 0.999, respectively) and eating behavior (0.988, 0.983). We also demonstrated
detection of licking (0.772, 0.990), petting (0.305, 0.991), rubbing (0.729, 0.996), scratching (0.870,
0.997), and sniffing (0.610, 0.968). We show that the devices’ position on the collar had no measurable
impact on performance. In production, users reported a true positive rate of 95.3% for eating (among
1514 users), and of 94.9% for drinking (among 1491 users). The study demonstrates the accurate
detection of important health-related canine behaviors using a collar-mounted accelerometer. We
trained and validated our algorithms on a large and realistic training dataset, and we assessed and
confirmed accuracy in production via user validation.
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1. Introduction

Much as recent progress in smartwatches has enabled new telehealth applications [1–4],
recent progress in internet-connected pet wearables, such as collar-mounted activity mon-
itors, has prompted interest in using these devices to improve the cost and efficacy of
veterinary care [5]. Just as with smartwatches in human telehealth, accelerometer-based ac-
tivity monitors have emerged as an inexpensive, low-power, and information-rich approach
to pet health monitoring [6–8].

Accelerometer-based pet activity monitors analyze the moment-to-moment movement
measured by a battery-powered accelerometer. They are typically attached to the pet via a
collar, though attachment methods may be more elaborate in research settings. Using the
device’s accelerometer signal (sometimes in combination with gyroscope, magnetometer,
GPS, or other sensor signals), collar-mounted activity monitors can accurately estimate pet
activity levels [9–14], step count, and distance traveled [12].

In recent years, advances in machine learning have allowed pet activity monitors to
move beyond estimating aggregate activity amounts, to detecting when and for how long a
pet performs common activities such as: walking, running, lying down, or resting [15–17],
these biometric capabilities have progressed to include increasingly specific and varied
activities such as drinking, eating, scratching, and head-shaking [8,16,18–21].

The benefits of accurate and quantitative behavior detection in pet health are extensive.
Pet activity monitors have been shown to be useful in the detection and diagnosis of
pruritis [22,23] and in potential early prediction of obesity [24]. They have also been used
in monitoring response to treatments such as chemotherapy [25]. Furthermore, statistical
analysis of activity and behavior monitoring on large numbers of pets can be an expedient
approach to medical and demographic studies [24].

Although several studies have demonstrated and measured the accuracy of activity
recognition algorithms [8,16,18–21], the datasets used to train and evaluate the algorithms
are typically not representative of the broad range of challenging environments in which
commercial pet activity monitors must function. For instance, most existing studies use
exclusively healthy dogs and are often run in controlled environments that promote well-
defined and easily detectable behaviors with a low risk of confounding activities.

Unfortunately, real-world algorithm performance often lags far behind the perfor-
mance measured in controlled environments [26,27]. For instance, existing studies typically
ensure careful installation of the device in a specific position on a properly adjusted collar.
In real-world usage, collars vary in tightness and often rotate to arbitrary positions unless
the activity monitor device is very heavy. Collar rotation and tightness [28], as well as
the use of collar-attached leashes [29], can compromise performance. In our experience,
confounding activities like riding in a car or playing with other pets can produce anoma-
lous results if not adequately represented in training datasets. Finally, some studies use
multiple accelerometers or harness-mounted devices [30], which limit applicability in many
consumer settings.

The work described here was performed as part of the Pet Insight (PI) Project [31], a
large pet health study to enable commercial pet activity monitors to better measure and
predict changes in a pet’s health by:

• Sourcing training data from project participants and external collaborators to build
machine learning training databases and behavior detection models such as those
described in this work.

• Combining activity data, electronic medical records, and feedback from more than
69,000 devices distributed to participants over 2–3 years to develop and validate
proactive health tools.

• Using the resulting datasets, currently covering over 11 million days in dogs’ lives, to
enable insights that support pet wellness and improve veterinary care.

This work presents the results of the PI Project’s efforts to develop and validate these
behavior classification models [32], including an evaluation of model performance in a
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real-world context and addressing limitations from controlled research settings such as
device fit and orientation.

2. Materials and Methods
2.1. Activity Monitor

Data were collected primarily via a lightweight canine activity monitor (Figure 1,
Whistle FIT®, Mars Petcare, McLean, VA, USA), which was designed and produced specifi-
cally for this study. Smaller amounts of data were collected via the commercially available
Whistle 3® and Whistle GO® canine activity monitors. All three devices used the same
accelerometer. Unlike the Whistle FIT®, these latter devices are furnished with GPS re-
ceivers and cellular radios. However, in all cases, the behavior classification in this study is
performed using only the output of the devices’ 3-axis accelerometers.
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Device dimensions are shown in (a), and a device in use is shown in (b). The device often rotates to different positions
around each dog’s collar. The device can attach to most dog collars up to 1” (25 mm). Attachment detail is shown in (c). The
two other devices used this study (the Whistle 3® and the Whistle GO®) are larger and heavier.

2.2. Accelerometry Data Collection

All monitoring devices acquired accelerometry data and uploaded it according to their
usual operation. That is, the devices acquired 25–50 Hz 3-axis accelerometry data for at
least several seconds whenever significant movement was detected. Data were compressed
and annotated with timing data using a proprietary algorithm. Data were temporarily
stored on-device and then uploaded at regular intervals when the devices were in Wi-Fi
range. Uploads were processed, cataloged, and stored in cloud-hosted database services
by Whistle servers. The compressed accelerometry data were retrieved on demand from
the cloud database services in order to create the training, validation, and testing databases
used in this study.

2.3. Animal Behavior Data Collection

Animal behavior data were collected (summarized in Table 1 and further described else-
where in this report) and used to create two datasets used in model training and evaluation:

• Crowd-sourced (crowd) dataset. This dataset contained both (a) long (multi-hour) in-
clinic recordings, as well as (b) shorter recordings submitted by project participants.
This large and diverse dataset was meant to reflect real-world usage as accurately
as possible.

• Eating and drinking (eat/drink) dataset. This dataset consisted of research grade sensor
and data using a protocol designed to represent EAT and DRINK behaviors. Other
observed behaviors were incidental.
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Table 1. Datasets derived from animal data.

Dataset Protocol Name Location Description

Crowd

In-Clinic
Crowd-Sourcing

Banfield Pet
Hospital clinics

Dogs that were awaiting in-clinic
care were outfitted with activity

monitors and were video recorded
for several hours each performing

typical in-kennel behaviors.

PI Participant
Crowd-Sourcing

Multi-source: For
instance, at-home,

in-car, during walks
and hikes.

Participants in the Pet Insight
Project used smartphones to video

record their dogs while wearing
activity monitors in every-day

situations. Collar fit, device
orientation, environment, and

animal behavior were meant to be
representative of real-world usage.

Eat/drink Waltham Eat/Drink
Study

WALTHAM Petcare
Science Institute

Dogs were video recorded eating
and drinking by researchers at the

WALTHAM Petcare
Science Institute.

Collar fit and orientation were
controlled, and dog behaviors

exhibited were
relatively consistent.

For brevity, we refer to these datasets simply as the crowd and eat/drink datasets.

2.4. Eat/Drink Study Protocol

This study was conducted using dogs owned by the WALTHAM Petcare Science
Institute and housed in accordance with conditions stipulated under the UK Animals
(Scientific Procedures) Act 1986. Briefly, the dogs were pair housed in environmentally
enriched kennels designed to provide dogs free access to a temperature-controlled interior
and an external pen at ambient temperature. Dogs were provided with sleeping platforms
at night. The dogs had access to environmentally enriched paddocks for group socialization
and received lead walks and off-lead exercise opportunities during the day. Water was
freely available at all times and dogs were fed to maintain an ideal body condition score.
The study was approved by the WALTHAM Animal Welfare and Ethical Review Body.
One hundred and thirty-eight dogs across 5 different breeds (72 Labrador Retrievers, 18
Beagles, 17 Petit Basset Griffon Vendeens, 14 Norfolk Terriers and 17 Yorkshire Terriers)
took part for two consecutive days each. Each dog was recorded once a day during its
normal eating and drinking routine using a GoPro camera (GoPro, San Mateo, CA, USA).

In this study, either one (ventral only) or four (ventral, dorsal, left, and right) activity
monitors were affixed to a collar. For each observation, the collar was removed from the
dog, the correct number of activity monitors were attached, and then shaken sharply in
view of the camera to provide a synchronization point that was identifiable in both the
video and accelerometer signals (so that any time offset could be removed). The collar
was then placed on the dog at a standardized tightness. The dogs were recorded from
approximately one minute before feeding until approximately one minute after feeding.
In order to increase the diversity of the dataset, collar tightness was varied between a
two-finger gap and a four-finger gap, and food bowls were rotated between normal bowls
and slow-feeder or puzzle-feeder bowls. For each data recording, researchers noted the
date and time, device serial number(s), collar tightness, food amount and type, and various
dog demographic data.
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2.5. Crowd-Sourcing Protocol

Pet Insight participants were requested to use smartphones to video record their pets
performing everyday activities while wearing activity monitors. The participants were
told that the activity monitor should be worn on the collar but were not given any other
instructions about how the collar or monitor should be worn. Participants were asked
to prioritize recording health-related behaviors like scratching or vomiting, but to never
induce these events and to never delay treatment in order to record the behaviors. As a
participation incentive, for every crowd-sourced video used, the PI project donated one
dollar to a pet-related charity.

After recording each video, participants logged into the PI crowd-sourcing website,
provided informed consent, uploaded the recorded video, and completed a short question-
naire confirming which pet was recorded and whether certain behaviors were observed.
The device automatically uploaded its accelerometry data to Whistle servers.

2.6. In-Clinic Observational Protocol

This study was conducted at several Banfield Pet Hospital (BPH) clinics. Its objective
was to acquire long-duration (multi-hour) naturalistic recordings to augment the shorter
crowd-sourced recordings, which were typically several minutes or less in duration.

Randomly selected BPH clients who chose to participate signed fully informed consent
forms. Their dogs were outfitted with Velcro breakaway collars with one attached activity
monitor device each. Collar tightness and orientation were not carefully controlled. Video
was recorded via a 4-channel closed-circuit 720 p digital video security system. Video
cameras were ceiling- or wall-mounted and oriented towards the in-clinic kennels so that
up to four dogs could be observed at a time. For each recording, researchers noted the date
and time, the device serial number, and the dog/patient ID number.

2.7. Video Labeling

All uploaded videos were transcoded into a common format (H.264-encoded, 720 p
resolution, and up to 1.6 Mb/s) using Amazon’s managed Elastic Transcoder service, and
their audio was stripped for privacy. Video start times were extracted from the video
metadata and video filenames. Matching device accelerometry data were downloaded
from Whistle’s databases, and automatic quality checks were performed.

Videos were then labeled by trained contractors using the open-source BORIS (Be-
havioral Observation Research Initiative Software V. 7.9.8) software application [33]. The
resulting event labels were imported and quality-checked using custom Python scripts
running on one of the PI project’s cloud-based web servers. Labels were stored alongside
video and participant metadata in a PostgreSQL database.

All video labeling contractors were trained using a standardized training protocol, and
inter-rater reliability analyses were performed during training to ensure consistent labeling.
Videos were labeled according to a project ethogram [8,15,20]. This report describes several
of these label categories.

Labelers divided each video into valid and invalid regions. Regions were only valid if
the dog was clearly wearing an activity monitor and was fully and clearly visible in the
video. Invalid regions were subsequently ignored. In each valid video region, the labeler
recorded exactly one posture, and any number (0 or more) of applicable behaviors.

Postures (Table 2) reflect the approximate position and energy expenditure level of the
pet, while behaviors (Table 3) characterize the pet’s dominant behavior or activity in a given
moment. For instance, during a meal, a dog might exhibit a STAND posture and an EAT
behavior. While pausing afterwards, the same dog might exhibit a STAND posture and
no behavior. Multiple simultaneous behaviors are rare but possible, such as simultaneous
SCRATCH and SHAKE behaviors.
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Table 2. Postures Ethogram.

Posture Activity

LIE DOWN Lying down.
SIT Sitting still with little to no movement
STAND Standing still with little to no movement.
WALK Purposeful walking from one point to another.
VIGOROUS Catch-all for high-energy activities such as running, swimming, and playing.

MIXED Default category for any other posture, for ambiguous postures, and for postures
that are difficult to label due to rapid changes.

Table 3. Behaviors Ethogram.

Behavior Activity

DRINK Drinking water.
EAT Eating food, as in out of a bowl. Does not include chewing bones or toys.
LICKOBJECT Licking an object other than self, such as a person or empty bowl.
LICKSELF Self-licking, often due to pain, soreness, pruritis, or trying to clear a foreign object.
PETTING Being pet by a human.
RUBBING Rubbing face or body on an object or person due to pruritis.
SCRATCH Scratching of the body, neck, or head with a hind leg.

SHAKE
Shaking head and body, as in when wet. Does not include head-shaking that is
clearly due to ear discomfort, which is labeled separately and has not been
included in this report.

SNIFF Sniffing the ground, the air, a person or other pet
NONE ‘Default’ class indicating that no labeled behavior is happening.

2.8. Training Data Preparation

Although accelerometer data and smartphone video data were both time-stamped us-
ing the devices’ network-connected clocks, inaccuracies led to alignment errors of typically
several seconds, and sometimes much longer. Short activities such as SHAKE, in particular,
require more accurate alignment. We aligned approximately 1200 videos manually by
matching peaks in accelerometer activity to labels for high-intensity behaviors like SHAKE
and SCRATCH. We used these manual alignments to develop and validate an automatic
alignment algorithm that aligned the remaining videos.

We created each of the two training datasets (crowd and eat/drink) by:

1. Selecting appropriate videos from our database.
2. Limiting the number of entries per dog to 30 (some dogs are overrepresented in

our database).
3. Allocating all of each dog’s data into one of 5 disjoint cross-validation folds.
4. Downloading each dataset and labeling each time-point with a posture

and/or behavior(s).

The specific method of separating data into cross-validation folds (step 3 above) is
critical [34]. Classifiers trained on individual dogs have been shown to over-perform on
those dogs relative to others, even if those classifiers are trained and evaluated using
separate experimental observations. Gerencsér et al. experienced an accuracy reduction
from 91% for a single-subject classifier to 70–74% when generalizing to other dogs [35].
Consequently, we were careful to ensure that all of a dog’s videos fall in a single fold, so
that data from a single dog is never used to both train and evaluate a classifier.

The overall data acquisition process, from video capture (red), accelerometer data
(blue) to a completed dataset (purple), is shown in Figure 2.
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Figure 2. Data acquisition flow. Dogs wearing collar-mounted activity monitors were video recorded performing behaviors
of interest or performing everyday activities. Videos were uploaded and the behaviors exhibited in them were manually
labeled (tagged). The devices automatically uploaded accelerometer (activity) data to cloud servers, and the device data
were aligned with the video labels to remove any temporal offset. The aligned labels and accelerometer time series were
combined into datasets suitable for training machine learning (ML) models.

2.9. Deep Learning Classifier

Our deep learning classifier is based on our FilterNet architecture [32]. We imple-
mented the model in Python using PyTorch v1.0.1 [36] and the 2020.02 release of the
Anaconda Python distribution (64-bit, Python 3.7.5). We trained and evaluated our models
on p2.xlarge instances on Amazon Web Services [37] with 4 vCPUs (Intel Xeon E5-2686 v4),
61 GB RAM, and a NVIDIA Tesla k80 GPU with 12 Gb RAM, running Ubuntu 18.04.4.

We used the crowd dataset for cross-validated training and evaluation (Figure 3).
Specifically, we trained and evaluated five different models, using a different held-out fold
as a test set for each model. We combine the models’ predictions for each of the five test
sets for model evaluation, as described below. We also generated behavior classifications
for the eat/drink dataset using one of the models trained on the crowd dataset (that is, we did
not use the eat/drink dataset for model training). There were no dogs in common between
the crowd and eat/drink datasets, so cross-validation was not needed in this step.
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Figure 3. Model training and evaluation data flow. The crowd dataset consisted of naturalistic, highly diverse data divided
by dog into five folds. The eat/drink dataset focused on high-quality eating and drinking data. Behavior classification models
were trained and evaluated in a cross-validated fashion (where a given model i is trained on all folds of data except fold i)
on the crowd dataset, and the first of these five models was also evaluated on the eat/drink dataset. Confusion matrices and
classification metrics were produced for each dataset using the resulting predictions.
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2.10. Evaluation

For evaluation, we modeled the task as two multi-class classification problems, one
for behaviors and one for postures. At each time point in each video entry in a dataset we
recorded the labeled behavior and posture, and every 320 ms we calculated the most likely
predicted behavior and posture. We tallied the labeled and predicted pairs from all five
test folds together using the PyCM multiclass confusion matrix library to create separate
behavior and posture confusion matrices [38]. We used the PyCM package to calculate
metrics derived from the confusion matrices [39].

As the MIXED posture is used primarily for expediency in labeling, we dropped
any time points with MIXED labels from the postures confusion matrix, and replaced
any MIXED-class posture predictions with the next most likely prediction for that time
point. We also excluded any time points with more than one simultaneous labeled behavior
(about 3% of the data) from the behaviors confusion matrix.

Furthermore, following Uijl et al. [8], we excluded any time points within 1 s of a
class transition in both classification problems. However, also similar to [8], we treated
the SHAKE class differently due to its very short duration. For SHAKE, we only excluded
the outer one-third second. In dropping these transition regions, we attempted to follow
established convention for minimizing the effects of misalignment in labeling, and to make
our reported results easier to compare to related works.

Performance of these models was evaluated based on widely used metrics in the
machine learning field including F1 scores. These metrics can be expressed in terms of the
number of true and false positive predictions (TP and FP) and the number of true and false
negative predictions (TN and FN). They include precision ( TP(TP + FP) ), sensitivity or
recall ( TP(TP + FN) ), and specificity ( TN(TN + FP) ). F1 scores examine the relationship
between the precision and recall of a model to better understand a model’s accuracy.

2.11. User Validation

Although the crowd dataset is meant to be representative of real-world data, it is
subject to biases such as underrepresentation of behaviors that are unlikely to be video
recorded, such as riding in cars or staying at home alone. Furthermore, it is impossible
to anticipate all of the myriad situations that may serve as confounders. Consequently,
we ran real-world user validation campaigns on the two behaviors that users are most
likely to be aware of, EAT and DRINK behavior. We defined events as periods of relatively
sustained, specific behaviors detected with high confidence, such as eating events (meals)
consisting of several minutes of sustained eating behavior. We adapted our production
system, which runs the models described in this study in near-real time on all PI project
participants, to occasionally send validation emails to participants when an EAT or DRINK
event had occurred within the past 15 min. Respondents categorized the event detection as
correct (“Yes”) or incorrect (“No”) or indicated that they were not sure. Users were able to
suggest what confounding event may have triggered any false predictions. We excluded
any responses that arrived more than 60 min after an event’s end, as well as any “Not
Sure” responses.

3. Results
3.1. Data Collected

After applying the steps described above, the crowd dataset contained data from
5063 videos representing 2217 subjects, and the eat/drink dataset contained data from
262 videos representing 149 unique dogs. The distribution of weights and ages represented
in these datasets is shown in Figure 4, while a breed breakdown is given in Table 4.
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Table 4. Breed or breed category breakdown for the crowd and eat/drink datasets.

Breed Crowd Eat/Drink

Mixed 923 0
Unknown/Other 413 0
Beagle 38 18
Boxer 26 0
Bulldog 44 0
Collie 23 0
Great Dane 25 0
Hunting dog 43 0
Norfolk Terrier 0 14
Petit Basset Griffon Vendéen 0 17
Pug 39 0
Retriever 128 72
Shepherd 68 0
Sled dog 44 0
Small dog 189 0
Spaniel 20 0
Yorkshire Terrier 195 17
# Unique breeds 338 0

These datasets also differed in the length and frequency of labeled events, as shown
in Table 5. The crowd and eat/drink datasets contain 163.9 and 22.4 h of video data labeled
as VALID, respectively.

The EAT class was highly represented in both the crowd dataset (because participants
were specifically requested to submit videos of their dogs at mealtime, since it is an
easily filmed and important behavior) and in the eat/drink dataset (due to study design).
The eat/drink dataset included only small amounts of incidental LICKSELF, SCRATCH,
PETTING, and SHAKE behavior, while the crowd dataset contained many of these events
because participants were repeatedly reminded of their importance.

The distribution of lengths for each label class was highly skewed, with many short
labels and a smaller number of longer labels (Figure 5). The distribution of SHAKE labels
was less skewed, likely because it is typically a short behavior and less prone to interruption.
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Table 5. Summary of labeled crowd and eat/drink datasets.

No. Valid Videos

Eat/Drink Dataset Crowd Dataset

#
Videos

#
Labels Mean Length (s) Total Length

(H:M:S)
#

Videos
#

Labels Mean Length (s) Tota Length
(H:M:S)

5367 10,529 56 163:51:46 262 409 188 21:26:15
Behaviors

DRINK 1072 1586 12.6 5:33:14 151 311 5 0:25:52
EAT 1484 3063 43.4 36:57:31 260 375 65 6:46:33

LICKOBJECT 897 2056 5.6 3:11:45 121 212 5.7 0:20:18
LICKSELF 464 1405 12.4 4:50:11 8 8 7.3 0:00:58
SCRATCH 416 679 6.8 1:16:41 4 5 4.0 0:00:20
PETTING 510 901 6.7 1:41:03 72 92 2.0 0:04:04
RUBBING 271 605 7.0 1:10:32 0 0 0 0:00:00

SHAKE 552 689 1.7 0:19:09 48 64 1.0 0:1:04
SNIFF 2668 9696 3.9 10:31:56 241 1082 5.0 1:36:46

Postures
LIE DOWN 1340 2407 65.7 43:56:24 10 11 58.8 0:10:46

MIXED 4072 11,538 9.9 31:49:27 261 1492 30.0 12:44:22
VIGOROUS 633 1968 8.7 4:45:24 15 24 6.9 0:02:44

SIT 1500 2784 19.8 15:18:20 136 263 21.0 1:32:42
STAND 3725 9090 22.5 56:44:37 234 1294 19.0 6:55:51
WALK 1255 4101 9.9 11:16:34 5 21 6.0 0:02:06
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3.2. Classification Accuracy

Cross-validated classification metrics for the crowd dataset are given in Table 6, and
classification metrics obtained from evaluating the eat/drink dataset using a model trained
on the crowd dataset are given in Table 7. Subsequent sections may report behaviors only
due to postures having less accurate labels and are typically used in an aggregate form
where individual misclassifications are less important.

Table 6. Classification metrics for the crowd dataset.

Behavior #
Dogs

#
Videos

Prevalence
(Support)

Sensitivity
(Recall) Specificity Accuracy Precision

(PPV)
F1

Score

Behavior
DRINK 752 1019 3.9% 0.874 0.995 0.99 0.870 0.872

EAT 1101 1442 28% 0.902 0.967 0.948 0.915 0.908
LICKOBJECT 460 629 1.8% 0.410 0.990 0.98 0.439 0.424

LICKSELF 257 398 3.4% 0.772 0.990 0.982 0.728 0.749
PETTING 204 307 0.96% 0.305 0.991 0.984 0.237 0.267
RUBBING 158 235 0.73% 0.729 0.996 0.994 0.584 0.648
SCRATCH 158 303 0.60% 0.870 0.997 0.997 0.676 0.761

SHAKE 251 435 0.13% 0.916 1.00 1.00 0.795 0.851
SNIFF 946 1747 5.3% 0.610 0.968 0.949 0.517 0.559
NONE 2051 4636 55% 0.892 0.898 0.895 0.914 0.903

Posture
LIE DOWN 674 1223 22% 0.826 0.913 0.894 0.724 0.772

SIT 726 1275 9.9% 0.409 0.915 0.865 0.347 0.375
STAND 2028 4241 58% 0.793 0.900 0.838 0.916 0.850

VIGOROUS 289 468 2.9% 0.764 0.985 0.978 0.605 0.675
WALK 599 905 7.7% 0.903 0.969 0.964 0.706 0.793

Table 7. Classification metrics for the eat/drink dataset *.

#
Dogs

#
Videos

Prevalence
(Support)

Sensitivity
(Recall) Specificity Accuracy Precision

(PPV)
F1

Score

Behavior
DRINK 71 99 1.7% 0.949 0.999 0.998 0.957 0.953

EAT 147 259 33% 0.988 0.983 0.984 0.966 0.977
LICKOBJECT 70 95 1.6% 0.658 0.998 0.992 0.821 0.731

SNIFF 142 231 5% 0.780 0.981 0.971 0.681 0.728
NONE 149 262 58% 0.959 0.968 0.963 0.977 0.968

Posture
SIT 79 79 11% 0.447 0.940 0.886 0.481 0.464

STAND 149 262 88% 0.938 0.469 0.883 0.930 0.934

* Not reported for categories with <0.05% support, <25 dogs, or <50 videos.

Of the metrics in Tables 6 and 7, only sensitivity and specificity are independent of
class prevalence.

The “behaviors” confusion matrix for the crowd dataset is shown in Figure 6 in non-
normalized and normalized forms. The non-normalized confusion matrix gives raw tallies
(that is, the total number of one-third second time points) of predicted and labeled classes,
and the normalized confusion matrix gives the percentage of each actual label classified
by the algorithms as a given predicted label (so that the percentages in each row sum
to 100%). The non-normalized matrix is dominated by correctly predicted NONE and
EAT samples, due to their high prevalence and effective classification in this dataset. The
normalized matrix suggests the reliable classification of DRINK, EAT, NONE, and SHAKE.
The LICKSELF and SCRATCH classes are of moderate reliability, and the LICKOBJECT,
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PETTING, RUBBING, and SNIFF classes exhibit some systematic misclassification and are
of lesser reliability.
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3.3. Effect of Device Position on Performance

The system’s classification performance, as measured by F1 score, shows no significant
dependence on device position (Figure 7).
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orientation. Error bars are 95% confidence intervals on the mean, as determined by bootstrapping. The classification
accuracy per class was similar between the four positions, indicating that system accuracy is not substantially affected by
collar rotation.

3.4. User Validation

Participants responded far better than expected to user validation efforts. Users
opened emails, clicked through to the web form, and submitted validation results for 55%
of the EAT validation emails and 42% of the DRINK validation emails.

Responses are summarized in Table 8. As described above, we excluded any responses
that arrived more than 60 min after an event’s end, as well as any “Not Sure” responses.
The positive (“Yes”) validation rate was approximately 95% for both event types. As
expected, the rate of users responding “Not Sure” was far greater for DRINK (12%) than
for EAT (2%).

Table 8. Summary of user EAT and DRINK validation responses.

Event Users
Valid Responses

ConfoundersResponse N %

EAT 1514
Yes 2488 95.3% Drinking, vomiting/regurgitation, eating grass,

licking (pan/bowl/self), chewing
(bone/toy), playing.No 123 4.7%

DRINK 1491
Yes 2579 94.9% Eating, licking, sniffing, chewing

(bone/toy), petting.No 140 5.1%

As the production system generates candidate EAT and DRINK events, it calculates
a confidence score (the mean algorithm confidence over the event’s duration) that varies
between 0 and 1.0, and drops any events with a score below a threshold of 0.3. Figure 8
shows how the percentage of “Yes” responses (the true positive rate) varied with this
confidence score. For EAT events, the rate grew from 83% for the lowest-confidence bin
(0.3–0.4) to 100% (201 out of 201) for the highest-confidence bin (0.9–1.0). Since users do
not see the confidence score, this trend suggests that the EAT validation data are relatively
reliable. The DRINK data show a less convincing trend, which is consistent with users’
lower awareness of DRINK events.
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It is unfortunate that, of the behavior classes measured in this work, only EAT is likely
to exhibit the level of user awareness required for validation using this method.

4. Discussion
4.1. Comparison with Previous Work

We compared our dataset and results with several previous works (Table 9), and we
tabulated several important qualitative differences between the datasets (Table 10). In
comparing these results, it is important to account for:

• Class distribution. Each dataset exhibits a different distribution of behaviors. In general,
classifiers exhibit better F1 scores for common behaviors than for rare behaviors. The
classifier sensitivity and specificity are relatively insensitive to this distribution, so we
recommend using these metrics for comparing performance across different datasets.

• Dataset collection methods. Classifiers are more accurate when applied to high-quality
datasets collected under controlled conditions. Accuracy can drop substantially in nat-
uralistic versus laboratory settings [26,27]. Classifiers benefit from consistent device
position, device attachment, and collar tightness, and they also benefit when the la-
beled behaviors as well as the collection environment are consistent and well-defined.

Previous works have used relatively controlled and high-quality datasets, similar
to the eat/drink dataset in this work [8,18,19,21]. As expected, our crowd sourced dataset
exhibits a far greater diversity of weights, ages, and breeds than our eat/drink dataset, since
the eat/drink subjects are sampled from several relatively homogeneous subpopulations.

The classification performance of the classifier presented here on the EAT and DRINK
classes in the eat/drink dataset advances the sensitivity, specificity, and F1 score for these
classes. Sensitivity and specificity are independent of class prevalence. The balance
between sensitivity and specific is a design choice, so we have calibrated our algorithms to
favor specificity in order to minimize false positives.
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Table 9. Comparison of this work to other published results.

Reference #
Dogs

Prevalence
(Support)

Sensitivity
(Recall) 1 Specificity 1 Accuracy Precision

(PPV)
F1

Score

crowd dataset
(this study)

DRINK 752 3.9% 0.874 0.995 0.990 0.870 0.872
EAT 1101 28% 0.902 0.967 0.948 0.915 0.908

LICKOBJECT 460 1.8% 0.410 0.990 0.980 0.439 0.424
LICKSELF 257 3.4% 0.772 0.990 0.982 0.728 0.749
PETTING 204 0.96% 0.305 0.991 0.984 0.237 0.267
RUBBING 158 0.73% 0.729 0.996 0.994 0.584 0.648
SCRATCH 158 0.60% 0.870 0.997 0.997 0.676 0.761

SHAKE 251 0.13% 0.916 1.000 1.000 0.795 0.851
SNIFF 946 5.3% 0.610 0.968 0.949 0.517 0.559

eat/drink dataset
(this study)

DRINK 71 1.7% 0.949 0.999 0.998 0.957 0.953
EAT 147 33% 0.988 0.983 0.984 0.966 0.977

LICKOBJECT 70 1.6% 0.658 0.998 0.992 0.821 0.731
SNIFF 142 5% 0.780 0.981 0.971 0.681 0.728

Griffies et al. 2018 [19]
SCRATCH 2.12% 0.769 0.997 0.992 0.861 0.812

SHAKE 0.8% 0.722 0.998 0.996 0.726 0.724

den Uijl et al. 2016 [18]
DRINK 206 0.76 0.97 0.86 0.81

EAT 242 0.77 0.97 0.84 0.80
SHAKE 145 0.91 1.00 0.79 0.85

den Uijl et al. 2017 [8]
DRINK 23 0.89 0.87 1.00 1.00 0.94

EAT 23 0.92 0.73 0.99 0.73 0.81
SHAKE * 51 0.98 0.95 0.95 0.99 0.98

Kiyohara et al. 2015 [21] DRINK 2 0.02 0.14 0.04
EAT 2 0.28 0.34 0.31

1 Best sensitivity and specificity for each class are in boldface. * SHAKE registered per-event as opposed to per-time-sample in this analysis.

Table 10. Dataset collection methods in similar published studies.

Reference * Device Position Collar Fit Environment Behaviors

Crowd dataset
(this study) Uncontrolled Uncontrolled Uncontrolled

(highly varied) Naturalistic

Eat/drink dataset
(this study) Controlled Controlled Controlled

(lab/kennel) Semi-controlled

Griffies et al., 2018 [19] Controlled Controlled Controlled
(animal shelter) Naturalistic

den Uijl et al., 2017 [8] Controlled Controlled
Controlled
(track/field
and indoors)

Semi-controlled

* Relevant data collection details not available for den Uijl et al. 2016 [18] or Kiyohara et al. 2015 [21].

The classifiers’ performance on SCRATCH in the challenging crowd dataset also ad-
vances the state of the art. Comparable detection of LICKOBJECT, LICKSELF, PETTING,
RUBBING, and SNIFF has not been previously demonstrated to our knowledge. We note
that SCRATCH, LICKSELF, and RUBBING behaviors are highly relevant to dermatological
health and welfare applications [19], and that PETTING is an important confounder that
can be easily misclassified as SCRATCH or LICKSELF in classifiers that are not exposed
to this behavior. We have found the classifiers’ detection of SHAKE to be highly accurate
(though susceptible to temporal misalignment between device and video data, due to the
short event lengths). It is difficult to compare the per-time-sample SHAKE classification
metrics here to published per-event metrics due to differing methodologies [8,18].

The device position invariance demonstrated by our classifier is a key property that
enables real-world performance to approach that of controlled studies, allowing accurate
detection of our reported behaviors in home environments.
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4.2. Challenges

In Supplementary Materials, we include seven videos (Videos S1–S7) annotated with
behavior classification predictions, as well as an explanatory figure (Figure S1) and table
(Table S1), in order to demonstrate the system’s operation. The system excels at certain
clearly defined and easily recognizable activities, especially those repeating and universal
movement patterns such as drinking (lapping), walking, running, shaking, and most eating
behaviors. It also performs well on well-defined instances of scratching and self-licking.

Device positioning and collar tightness do not appear to have a strong effect on
system accuracy, meaning that accurate behavior metrics can be acquired via normal
activity monitor usage. An important feature of the devices described in this study is their
insensitivity (invariance) to collar orientation or position (Figure 7). In real-world settings,
and especially with lightweight devices such as the Whistle FIT, the device can be, and
often is, rotated away from the conventional ventral (bottom) position at the lowest point
of the collar.

The system appears to use the angle of a dog’s neck (that is, whether the dog is
looking up or down) as an important behavioral clue. Consequently, activities such
as eating or drinking appear to be less accurate when raised dog bowls are used, and
activities such as sniffing and scratching, and self-licking can go undetected if performed in
unusual positions. Slow-feed food bowls, collars attached to taut leashes, and loose collars
with other heavy attachments can also cause misclassifications, but are often classified
correctly nonetheless.

The class distribution of both datasets is highly imbalanced, which presented a chal-
lenge for algorithm training. For instance, in the crowd dataset, which we used for training,
the EAT class total duration is 117 times greater than that of SHAKE.

It is important to note that the class balance (class prevalence) of these datasets is
not representative of real-world canine behavior. As the videos are typically taken in
stimulating or interesting situations, these datasets exhibit a lower relative prevalence of
LIE DOWN and other low-energy postures. Furthermore, the datasets exhibit much higher
levels of EAT, DRINK, and possibly other behaviors, due to either study design (in the
eat/drink dataset) or because the PI project requested that participants film certain behaviors.

Other sets of activities simply present very similar accelerometer data, such as eating
wet food, which can be confounded with drinking; or being pet by a human or riding
in a moving vehicle, which can be confounded with scratching or self-licking; or even
vigorous playing and ‘tug-of-war’, which can be confounded with shaking and other
activities. These misclassifications become less common as the models improve, but in
some cases confusion may be unavoidable. Some other activities are simply rare or unusual,
for instance, drinking from a stream, drinking from a water bottle, or licking food off of a
raised plate.

A different type of problem relates to activities that are ambiguous even to human
labelers, such as the distinction between eating a small part of a meal versus eating a
large treat. Similarly, label fragmentation, where a long stretch of the labeled activity is
interrupted either by the dog temporarily pausing (for instance, lifting up its head to look
around several times while drinking or while eating a meal) or by discontinuities in the
labeling when the dog leaves the camera’s field of view (since labelers only marked videos
as VALID when the dog was fully and clearly visible). These types of labeling ambiguity
can be very deleterious to certain classification metrics, even though it is questionable
whether the system’s usefulness or real-world accuracy is affected.

User Validation participant comments confirmed our expectation that users were
less aware of DRINK behavior than of EAT behavior. This lack of awareness likely also
contributed to the lower DRINK response rate. It is unfortunate that, of the behavior classes
measured in this work, only EAT is likely to exhibit the level of user awareness required
for validation using this method.
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5. Conclusions

We advanced the science of wearables through the development of novel machine
learning algorithms which validated the sensitivity and specificity for detecting drinking
and eating behavior. We also used a large real-world dataset of 2500 dogs to demonstrate
detection of licking, petting, rubbing, scratching, and sniffing. Ensuring that the wearables
would collect accurate data in a real-world setting, we demonstrated that system perfor-
mance is not sensitive to collar position. In production, users reported high rates of true
positives, consistent with the metrics measured via cross-validation on the crowd training
database. This means that the data collected through the accelerometers in wearables can
provide valuable data which can be applied in diagnosing and treating conditions. A sub-
sequent survey of 10,550 dogs was used to validate the eating and drinking behavior. This
survey takes the data from the laboratory and brings them into the real world to confirm
results. The systems described in this work can further improve via the incorporation
of additional training data and through the improvement of the underlying algorithms.
Through the foundational algorithms built on the vast dataset, a world of opportunity
is opened to further our understanding of animal behavior and advance individualized
veterinarian care with the inclusion of wearables.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11061549/s1, Figure S1: Guide to interpreting supplemental videos, Table S1: Index of
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ERVPY.

Author Contributions: R.D.C., Conceptualization, data curation, formal analysis, investigation,
methodology, software, validation, visualization, writing—original draft preparation; N.C.Y., con-
ceptualization, data curation, formal analysis, investigation, methodology, software, validation,
writing—review and editing; A.B.C., conceptualization, investigation—in-clinic crowd sourcing,
writing—review and editing; C.J., data curation, investigation, methodology, software, writing—
review and editing; D.E.A., conceptualization, data curation, investigation, validation, project ad-
ministration; L.M.P., software, writing—review and editing; S.B., conceptualization support—eating
and drinking study, investigation—experimental work at the WALTHAM Petcare Science Institute,
writing—review and editing; G.W., conceptualization, funding acquisition, methodology, project
administration; K.L., conceptualization, funding acquisition, methodology, resources; S.L., conceptu-
alization, writing—review and editing. All authors have read and agreed to the published version of
the manuscript.

Funding: All funding for this work was provided by Mars Petcare.

Institutional Review Board Statement: This study was approved by the WALTHAM Animal Welfare
and Ethical Review Body (Project Portfolio Management number 58565, June 2017) and conducted
under the authority of the Animals (Scientific Procedures) Act 1986.

Data Availability Statement: Data available on request due to privacy restrictions. The data pre-
sented in this study are available on request from the corresponding author. The data is not pub-
licly available.

Acknowledgments: We are grateful to Leonid Sudakov and Jeannine Taaffe for their support and
vision in enabling the Pet Insight Project; WALTHAM Petcare Science Institute for contributing
extensive training data and for numerous helpful discussions; to the many participants in the Pet
Insight Project; and to the Whistle, Kinship, and Mars Petcare organizations for supporting the
development and publication of this work.

Conflicts of Interest: All authors were employed by Mars Petcare during their contributions to
this work.

References
1. Pewek, L.; Ellis, D.A.; Andrews, S.; Joinson, A. The rise of consumer health wearables: Promises and barriers. PLoS Med. 2016, 13,

e1001953. [CrossRef]
2. Vogenberg, F.R.; Santilli, J. Healthcare trends for 2018. Am. Health Drug Benefits 2018, 11, 48–54.

https://www.mdpi.com/article/10.3390/ani11061549/s1
https://www.mdpi.com/article/10.3390/ani11061549/s1
https://zenodo.org/record/4836665#.YLR8s6ERVPY
https://zenodo.org/record/4836665#.YLR8s6ERVPY
http://doi.org/10.1371/journal.pmed.1001953


Animals 2021, 11, 1549 18 of 19

3. Tison, G.H.; Sanchez, J.M.; Ballinger, B.; Singh, A.; Olgin, J.E.; Pletcher, M.J.; Vittinghoff, E.; Lee, E.S.; Fan, S.M.; Gladstone,
R.A.; et al. Passive detection of atrial fibrillation using a commercially available smartwatch. 2018. JAMA Cardiol. 2018, 3, 409–416.
[CrossRef]

4. Pramanik, P.K.D.; Upadhyaya, B.K.; Pal, S.; Pal, T. Internet of things, smart sensors, and pervasive systems: Enabling connected
and pervasive healthcare. In Healthcare Data Analytics and Management; Dey, N., Ashour, A.S., Bhatt, C., James Fong, S., Eds.;
Academic Press: Cambridge, MA, USA, 2019; pp. 1–58. [CrossRef]

5. Watson, K.; Wells, J.; Sharma, M.; Robertson, S.; Dascanio, J.; Johnson, J.W.; Davis, R.E.; Nahar, V.K. A survey of knowledge and
use of telehealth among veterinarians. BMC Vet. Res. 2019, 15, 474. [CrossRef]

6. Pacis, D.M.M.; Subido, E.D.C.; Bugtai, N.T. Trends in telemedicine utilizing artificial intelligence. AIP Conf. Proc. 2018, 1933,
040009. [CrossRef]

7. Kour, H.; Patison, K.P.; Corbet, N.J.; Swain, D.L. Validation of accelerometer use to measure suckling behaviour in Northern
Australian beef calves. Appl. Anim. Behav. Sci. 2018, 202, 1–6. [CrossRef]

8. den Uijl, I.; Gómez Álvarez, C.B.; Bartram, D.; Dror, Y.; Holland, R.; Cook, A. External validation of a collar-mounted triaxial
accelerometer for second-by-second monitoring of eight behavioural states in dogs. PLoS ONE 2017, 12, e0188481. [CrossRef]
[PubMed]

9. Belda, B.; Enomoto, M.; Case, B.C.; Lascelles, B.D.X. Initial evaluation of PetPace activity monitor. Vet. J. 2018, 237, 63–68.
[CrossRef] [PubMed]

10. Weiss, G.M.; Nathan, A.; Kropp, J.B.; Lockhart, J.W. WagTag: A dog collar accessory for monitoring canine activity levels. In
Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, UbiComp ’13 Adjunct,
Zurich, Switzerland, 8–12 September 2013; ACM Press: New York, NY, USA, 2013; pp. 405–414. [CrossRef]

11. Mejia, S.; Duerr, F.M.; Salman, M. Comparison of activity levels derived from two accelerometers in dogs with osteoarthritis:
Implications for clinical trials. Vet. J. 2019, 252, 105355. [CrossRef] [PubMed]

12. Westgarth, C.; Ladha, C. Evaluation of an open source method for calculating physical activity in dogs from harness and collar
based sensors. BMC Vet. Res. 2017, 13, 322. [CrossRef] [PubMed]

13. Hansen, B.D.; Lascelles, B.D.X.; Keene, B.W.; Adams, A.K.; Thomson, A.E. Evaluation of an accelerometer for at-home monitoring
of spontaneous activity in dogs. Am. J. Vet. Res. 2007, 68, 468–475. [CrossRef] [PubMed]

14. Hoffman, C.L.; Ladha, C.; Wilcox, S. An actigraphy-based comparison of shelter dog and owned dog activity patterns. J. Vet.
Behav. 2019, 34, 30–36. [CrossRef]

15. Kumpulainen, P.; Valldeoriola, A.; Somppi, S.; Törnqvist, H.; Väätäjä, H.; Majaranta, P.; Surakka, V.; Vainio, O.; Kujala, M.V.;
Gizatdinova, Y.; et al. Dog activity classification with movement sensor placed on the collar. In Proceedings of the Fifth
International Conference on Animal-Computer Interaction, Atlanta, GA, USA, 4–6 December 2018; Association for Computing
Machinery: New York, NY, USA, 2018; pp. 1–6. [CrossRef]

16. Brugarolas, R.; Loftin, R.T.; Yang, P.; Roberts, D.L.; Sherman, B.; Bozkurt, A. Behavior recognition based on machine learning
algorithms for a wireless canine machine interface. In Proceedings of the 2013 IEEE International Conference on Body Sensor
Networks, Cambridge, MA, USA, 6–9 May 2013; pp. 1–5. [CrossRef]

17. Petrus, S.; Roux, L. Real-Time Behaviour Classification Techniques in Low-Power Animal Borne Sensor Applications. Ph.D. Thesis,
Stellenbosch University, Stellenbosch, South Africa, 2019. Available online: https://scholar.sun.ac.za:443/handle/10019.1/105744
(accessed on 10 January 2020).

18. den Uijl, I.; Gomez-Alvarez, C.; Dror, Y.; Manning, N.; Bartram, D.; Cook, A. Validation of a Collar-Mounted Accelerometer That
Identifies Eight Canine Behavioural States, including Those with Dermatologic Significance; British Veterinary Dermatology Study
Group: Weybridge, UK, 2016; pp. 81–84.

19. Griffies, J.D.; Zutty, J.; Sarzen, M.; Soorholtz, S. Wearable sensor shown to specifically quantify pruritic behaviors in dogs. BMC
Vet. Res. 2018, 14, 124. [CrossRef] [PubMed]

20. Ladha, C.; Hammerla, N.; Hughes, E.; Olivier, P.; Ploetz, T. Dog’s life. In Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013. Available online: https:
//dl.acm.org/doi/abs/10.1145/2493432.2493519 (accessed on 10 January 2020).

21. Kiyohara, T.; Orihara, R.; Sei, Y.; Tahara, Y.; Ohsuga, A. Activity recognition for dogs based on time-series data analysis. In
Agents and Artificial Intelligence; Duval, B., van den Herik, J., Loiseau, S., Filipe, J., Eds.; Springer International Publishing: Cham,
Switzerland, 2015; pp. 163–184. [CrossRef]

22. Nuttall, T.; McEwan, N. Objective measurement of pruritus in dogs: A preliminary study using activity monitors. Vet. Derm.
2006, 17, 348–351. [CrossRef] [PubMed]

23. Plant, J.D. Correlation of observed nocturnal pruritus and actigraphy in dogs. Vet. Rec. 2008, 162, 624–625. [CrossRef]
24. Morrison, R.; Penpraze, V.; Beber, A.; Reilly, J.J.; Yam, P.S. Associations between obesity and physical activity in dogs: A

preliminary investigation. J. Small Anim. Pract. 2013, 54, 570–574. [CrossRef]
25. Helm, J.; McBrearty, A.; Fontaine, S.; Morrison, R.; Yam, P. Use of accelerometry to investigate physical activity in dogs receiving

chemotherapy. J. Small Anim. Pract. 2016, 57, 600–609. [CrossRef] [PubMed]
26. Twomey, N.; Diethe, T.; Fafoutis, X.; Elsts, A.; McConville, R.; Flach, P.; Craddock, I. A comprehensive study of activity recognition

using accelerometers. Informatics 2018, 5, 27. [CrossRef]

http://doi.org/10.1001/jamacardio.2018.0136
http://doi.org/10.1016/B978-0-12-815368-0.00001-4
http://doi.org/10.1186/s12917-019-2219-8
http://doi.org/10.1063/1.5023979
http://doi.org/10.1016/j.applanim.2018.01.012
http://doi.org/10.1371/journal.pone.0188481
http://www.ncbi.nlm.nih.gov/pubmed/29186154
http://doi.org/10.1016/j.tvjl.2018.05.011
http://www.ncbi.nlm.nih.gov/pubmed/30089547
http://doi.org/10.1145/2494091.2495972
http://doi.org/10.1016/j.tvjl.2019.105355
http://www.ncbi.nlm.nih.gov/pubmed/31554587
http://doi.org/10.1186/s12917-017-1228-8
http://www.ncbi.nlm.nih.gov/pubmed/29116008
http://doi.org/10.2460/ajvr.68.5.468
http://www.ncbi.nlm.nih.gov/pubmed/17472445
http://doi.org/10.1016/j.jveb.2019.08.001
http://doi.org/10.1145/3295598.3295602
http://doi.org/10.1109/BSN.2013.6575505
https://scholar.sun.ac.za:443/handle/10019.1/105744
http://doi.org/10.1186/s12917-018-1428-x
http://www.ncbi.nlm.nih.gov/pubmed/29615019
https://dl.acm.org/doi/abs/10.1145/2493432.2493519
https://dl.acm.org/doi/abs/10.1145/2493432.2493519
http://doi.org/10.1007/978-3-319-27947-3_9
http://doi.org/10.1111/j.1365-3164.2006.00537.x
http://www.ncbi.nlm.nih.gov/pubmed/16961821
http://doi.org/10.1136/vr.162.19.624
http://doi.org/10.1111/jsap.12142
http://doi.org/10.1111/jsap.12587
http://www.ncbi.nlm.nih.gov/pubmed/27709617
http://doi.org/10.3390/informatics5020027


Animals 2021, 11, 1549 19 of 19

27. Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of posture and motion by accelerometry: A validation study in ambulatory
monitoring. Comput. Hum. Behav. 1999, 15, 571–583. [CrossRef]

28. Olsen, A.M.; Evans, R.B.; Duerr, F.M. Evaluation of accelerometer inter-device variability and collar placement in dogs. Vet. Evid.
2016, 1, 2–9. [CrossRef]

29. Martin, K.W.; Olsen, A.M.; Duncan, C.G.; Duerr, F.M. The method of attachment influences accelerometer-based activity data in
dogs. BMC Vet. Res. 2017, 13, 48. [CrossRef]

30. Aich, S.; Chakrabort, S.; Sim, J.-S.; Jang, D.-J.; Kim, H.-C. The design of an automated system for the analysis of the activity and
emotional patterns of dogs with wearable sensors using machine learning. Appl. Sci. 2019, 9, 4938. [CrossRef]

31. Pet Insight Project. Available online: https://www.petinsight.co (accessed on 16 December 2019).
32. Chambers, R.D.; Yoder, N.C. FilterNet: A many-to-many deep learning architecture for time series classification. Sensors 2020, 20,

2498. [CrossRef] [PubMed]
33. Friard, O.; Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations.

Methods Ecol. Evol. 2016, 7, 1325–1330. [CrossRef]
34. Hammerla, N.Y.; Plötz, T. Let’s (not) stick together: Pairwise similarity biases cross-validation in activity recognition. In

Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11
September 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1041–1051. [CrossRef]

35. Gerencsér, L.; Vásárhelyi, G.; Nagy, M.; Vicsek, T.; Miklósi, A. Identification of behaviour in freely moving dogs (Canis familiaris)
using inertial sensors. PLoS ONE 2013, 8, e77814. [CrossRef] [PubMed]

36. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc: New York, NY, USA,
2019; pp. 8024–8035. Available online: http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf (accessed on 6 December 2019).

37. Amazon EC2-P2 Instances. Amazon Web Services, Inc. Available online: https://aws.amazon.com/ec2/instance-types/p2/
(accessed on 6 December 2019).

38. Haghighi, S.; Jasemi, M.; Hessabi, S.; Zolanvari, A. PyCM: Multiclass confusion matrix library in Python. JOSS 2018, 3, 729.
[CrossRef]

39. Steyerberg, E. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating; Springer: New York, NY,
USA, 2009. [CrossRef]

http://doi.org/10.1016/S0747-5632(99)00037-0
http://doi.org/10.18849/ve.v1i2.40
http://doi.org/10.1186/s12917-017-0971-1
http://doi.org/10.3390/app9224938
https://www.petinsight.co
http://doi.org/10.3390/s20092498
http://www.ncbi.nlm.nih.gov/pubmed/32354082
http://doi.org/10.1111/2041-210X.12584
http://doi.org/10.1145/2750858.2807551
http://doi.org/10.1371/journal.pone.0077814
http://www.ncbi.nlm.nih.gov/pubmed/24250745
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://aws.amazon.com/ec2/instance-types/p2/
http://doi.org/10.21105/joss.00729
http://doi.org/10.1007/978-0-387-77244-8

	Introduction 
	Materials and Methods 
	Activity Monitor 
	Accelerometry Data Collection 
	Animal Behavior Data Collection 
	Eat/Drink Study Protocol 
	Crowd-Sourcing Protocol 
	In-Clinic Observational Protocol 
	Video Labeling 
	Training Data Preparation 
	Deep Learning Classifier 
	Evaluation 
	User Validation 

	Results 
	Data Collected 
	Classification Accuracy 
	Effect of Device Position on Performance 
	User Validation 

	Discussion 
	Comparison with Previous Work 
	Challenges 

	Conclusions 
	References

