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Abstract
The pressure prediction technology whereby represents the rock pressure law in the excavation is fundamental to safety 
in production and industrial intelligentization. A growing number of researchers dedicate that machine learning is used to 
accurate prediction of underground pressure changes. However, the existing research which based on the classical machine 
learning rarely considers the cause between inducement of underground pressure and the underground pressure change. In 
this paper, we propose a novel Reinforced and Causal Graph Neural Network, namely RC-GNN, for the prediction task, to 
overcome the shortage of causal logic. First, we build a causal graph by considering internal relations between inducement 
and display of pressure and employ prior knowledge to erect the early and properties of the graph. Second, we construct the 
prediction network for underground pressure by graph convolutional networks and long short-term memory. Finally, we use 
the performance index of underground pressure prediction to design a reinforcement learning algorithm, which achieves 
optimization of the causal graph. Compared to six representative methods, experimental results with 18–60% increases in 
performance on the real prediction task.

Keywords  Underground pressure prediction · Time series prediction · Graph convolutional network · Reinforcement 
learning

1  Introduction

They are confronted with tremendous challenges when 
mankind exploits the underground due to frequent and 
unpredictable underground disasters [1–3]. They are con-
fronted with tremendous challenges when mankind exploits 
the underground due to frequent and unpredictable under-
ground disasters. One of the most frequent is the roof acci-
dent caused by hard forecast underground pressure because 

of the underground structure, which has features like rock 
complexes and is difficult to environmental oversee [4]. It 
is a crucial technology that increases the security of indus-
trial production through UnderGround Pressure Prediction 
(UGPP).

There are two basic approaches currently being adopted 
in research into the UGPP. One is conventional the expert 
system approach based on practical engineering experi-
ence and physical modeling [5–8]. Experts with restricted 
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experience and strict needs for accurate information about 
underground monitoring. However, are unable to develop 
these technologies, which can guide them to exploit under-
ground resources [9]. The other is machine learning meth-
ods [4, 10, 11] have gradually become key techniques for the 
UGPP. Regrettably, time-series UGPP technologies, such as 
regression analysis, SVM and BPNN, exist serious defects 
which are overfitting, lower prediction accuracy and training 
efficiency. This is due to their weakly capturing the com-
posite characteristics of time series, which lack analysis of 
pressure time series data.

It was well known the deep learning methods, especially 
LSTM, can commendably extract time-order character, and 
from now was recently applied to time series forecasting 
fields, such as FireCast [12], Rain Alarm Pro [13], Oilfield 
Production Forecast  [14], COVID-19 [15] etc. Much of 
the research up to now has been inadequate considering 
the latent causal interrelation between human activity and 
natural disasters. Without doubt, human activity frequently 
gives rise to the diversification of natural states to generate 
disasters  [16, 17]. It’s just how it is that underground 
pressure prediction characteristics have the characteristics 
that contain the recessive causal logic. To be specific, 
mining activities have changed the spatial structure of the 
underground rocks, which then causes an underground 
pressure change, as sketched in Fig. 1. Currently, graph 
neural networks are successfully used in handling all kinds 
of graph data, which has permutation-invariance, local 
connectivity, etc [18–20]. Therefore, we ponder reexamining 
the UGPP from the perspective of the graph. We view that 
the underground pressure data can be represented as nodes 
in a graph, which has the obvious causal logic link.

In this paper, we propose RC-GNN, a novel 
Reinforced and Causal Graph Neural Network, for the 
UGPP task, which considers the cause between mining 
with underground pressure change. First, we model a 
hierarchical causal graph based on practical engineering 
experience and physical common sense to reflect the 

causal logic of industrial production. These experiences 
include the advancement of the fully-mechanized face, 
underground pressure testing, and deformation of rock 
under stress. Besides, we provide an inference technology 
based on prior knowledge to conduct graph structure 
estimation to receive an early causal graph. Then, 
we model that a prediction network consists of graph 
convolutional network modules and long short-term 
memory modules to achieve the UGPP task. Aiming at the 
problem that lack of prior knowledge creates inaccurate 
causal graph modeling. We propose a reinforcement 
learning algorithm based on the performance index of 
prediction. The main idea is that the structure of the 
underground pressure causal graph is iteratively optimized 
through a reinforcement learning algorithm. According to 
the desired prediction performance signals of RMSE and 
MAE, the reward space is designed. The environmental 
characteristics of mine are used to design the action and 
state space in the reinforcement learning process.

This study evaluates the proposed framework on 
real datasets, which include advancement information 
of the fully-mechanized face, underground pressure, 
and geologic features. For the purpose of verifying the 
prediction accuracy of our proposal, we compare it with 
six representative methods and then use both RMSE and 
MAE as measuring standards. The present research makes 
several noteworthy contributions, summarized as follows: 

1)	 To the best of our knowledge, this is the first study on 
underground pressure prediction using reinforced and 
causal graph neural networks.

2)	 Modeling the mining effect on underground pressure as 
a causal graph was proposed for the first time.

3)	 The reinforcement learning method is proposed to 
achieve iterative optimization of graph structure.

4)	 The present RC-GNN framework has better 
prediction accuracy on real underground pressure 
datasets compared with state-of-the-art deep learning 
approaches.

Fig. 1   There is an example of 
coal mining in which human 
mining activity causes the 
change of natural states. Work-
ers shift hydraulic support for 
collecting coal, and then cause 
the collapse of the immediate 
roof, which results in the change 
of underground pressure
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2 � Related work

In this section, we first retrospect on research about 
multivariate time series forecasting and then briefly refer 
to methods for graph structure learning. In the end, we 
give the problem definition that this work requires.

Multivariate time series forecasting

Multivariate time series forecasting has been a crucial 
problem for multiple domains (e.g. environmental 
monitoring, industrial security). With the increasing data 
size and enhanced computing power, machine learning will 
become a key constituent part of how these technologies 
develop in the future  [21, 22]. In contrast to classical 
methods such as autoregressive mode  [23], machine 
learning methods overcome their disadvantages by making 
it difficult to fit complex nonlinear characteristics while 
maintaining robustness and also have the advantages of 
greater generalization performance, etc. Deep learning 
approaches are widely used in the multivariate time series 
forecasting field to capture the time-order character of 
nonlinear high-dimensional time series and improve 
forecasting performance. For instance, [12] designed the 
FireCast, which include Convolutional Neural Networks 
and Geographic Information Systems, to predict the high 
risk regions of wildfire on the basis of historical data. To 
effectively forecast the well performance, [14] proposed 
an LSTM framework which considers the coupling 
relationship among multiple influencing factors on the 
strength of statistical property. However, this research 
just treats the statistical property as a threshold value to 
eliminate variables of weaker correlation. Theirs lacks 
research, which has the feature of latent hierarchical 
structure between different data sets. Graph-based 
methods have the ability to represent latent structure 
correspondence for heterogeneous information via the 
nodes and edges in a graph structure  [24]. The above 
research both mentions to discover latent interrelationship 
between heterogeneous information that are conducive to 
improve performance of the pressure prediction. Hence, in 
order to reveal the causal association between the mining 
activity and the underground pressure fluctuation, we 
design a graph-based methods of multivariate time series 
forecasting method.

Graph structure learning

Graph Neural Networks (GNNs), as a powerful tool, 
have been a tremendous success in many fields. In 
general, GNNs assume that the graph as input has a 
distinct structure and accurate relations between nodes. 
In most cases, the graphs have unavoidably noisy or 
ambiguous structures in the real world. To acquire the 
optimal graph structure, a number of research papers 
with respect to Graph Structure Learning (GSL) have 
emerged in recent years [25], and could be roughly divided 
into metric learning, probabilistic modeling, and direct 
optimization approaches. Direct optimization approaches 
have been developed rapidly. Some researchers designed 
a GSL method that was especially used for drawing out 
unidirectional relationships [18]. The other researchers 
proposed a flexible GSL framework that regarded the 
prior information as a set of candidate relations [24, 26]. 
[27] proposed graph embedding method based on DL to 
automatically learn the features of the graph. Nevertheless, 
this research hardly considers the correlation between 
GSL and specific tasks. Therefore, we present a new GSL 
method based on RL that designs the reward function on 
the basis of the prior information and the specific tasks.

3 � Model

3.1 � Problem definition

In this paper, it is the main research target that the 
underground pressure series was forecasted. Given 
the physical truth of underground pressure series, it 
dissatisfies the fundamental assumption that the sampling 
period is a fixed value in the time series forecasted. 
Therefore, we define γs ∈ RN  denotes the value of an 
N-dimensional variable at mining step s, where �s[i] ∈ R 
denotes the value of the i variable at mining step s. Due 
to exceptional data storage equipment and human factors, 
data missing and outliers are possible. We would deal with 
these kinds of issues by treating outliers as data missing 
and then utilizing the Lagrange’s interpolation method to 
make data. For problem description simplicity, we give 
some key definitions as follows:

Definition 1  Underground pressure graph Gs . We use a 
digraph Gs = (Vs,Es) to represent the subsistent causal 
relationship in mining process, where Vs =

{

vs
1
, vs

2
,… , vs

n

}
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is the set of nodes, and Es =
{

es
1
, es

2
,… , es

m

}

 is the set of 
edges. We use n and m to denote the number of nodes and 
edges, respectively, in the causal graph. Let ek =

(

vi, vj
)

∈ E 
to denote a unidirection edge pointing from vi to vj . We 
describe the mathematical characterization of the graph Gs 
as the adjacency matrix, denoted as � ∈ Rn×n.

Definition 2  Multivariate mining series � . Given the mining 
series often have evident the hierarchical structure, we fur-
ther denote the hierarchical structure as � =

(

�� , �� , ��
)

 . Let 
�� denotes the value of the independent variable in the causal 
relationship (e.g. continuous mining activities). Then, we 
use the �� to represent the value of the hidden variable that 
need to be supposed by prior knowledge. We finally describe 
the value of each unit of underground pressures as ��.

Definition 3  Prediction task. An underground pressure 
forecasting task is to predict the underground pressure 
�
�

s+n at mining step s + n through the lookback window 
{

�
�

1
, �

�

2
,⋯ , �

�
n

}

 . Hence, we treat the task as a long-term 
prediction if the mining step is greater than 1, and the other 
task is a short-term prediction.

3.2 � Framework overview

In Fig.  2, it shows that the overview of our RC-GNN 
framework for underground pressure forecasting. Our 
framework roughly can be outlined into three part:

Underground pressure causal graph modeling: We 
propose the heterogeneous and hierarchical causality graph 
to reflect the relationship between the mining activities of 
humans with the variation of underground pressure. We 
build three nodes that have different types of hierarchical 
characteristics in the graph. They are: mining activities, 
underground environment, and underground pressure unit. 
The edge weights show the probability that the cause nodes 
will affect the effect nodes. In the end, we use prior knowl-
edge embedding approaches to learn the original graph 
structure.

Prediction network of underground pressure: We 
utilize the graph convolution modules to capture the 
sequence of spatial features through the original causality 
graph. The LSTM modules then use the sequence of spatial 
features as the input and extract the mining step feature by 
adjusting the positional encoding and the skip connection.

Causal graph structure optimization: It is difficult for 
the original causal graph to accurately describe the complex 
causal relations within mining, the natural environment, and 
underground pressure. Hence, the GCN modules may not 
extract realistic spatial features to reduce the accuracy of 
underground pressure prediction. For this reason, we use a 
reinforcement learning algorithm based on the performance 
index of prediction to optimize the causal graph structure. 
The algorithm combines underground pressure and physical 
significance in designing action and state spaces.

Fig. 2   Knowledge-based and 
data-driven underground 
pressure forcasting framework 
diagram

t sγ

Causality Graph Underground Pressure Prediction Network 
GCN

GCN

GCN

Graph Structure 
Optimization Model

Statistical 
Characteristic

+
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In conclusion, for the underground pressure prediction 
task, we build a causal graph with prior knowledge embed-
ding approaches, and the use a series forecasting network 
consist of GCN and LSTM modules and optimize the causal 
graph structure though a reinforcement learning strategy. 
Design the RC-GNN framework to real-world demand in the 
mining industry, and continuously optimize the graph struc-
ture based on prediction results and expert knowledge. The 
Algorithm 1 outlines the training process of underground 
pressure causal graph learning. There is a detailed imple-
mentation method for these modules as follows.

3.3 � Underground pressure causal graph modeling

In this section, we will introduce how to model a graph to 
represent relationships between mining activity and 
underground pressure in the mining industry. The crack of the 
roof and the deformation of surrounding rock, which is caused 
by the mining activity, induce the change of underground 
pressure according to prior knowledge. We will use a causal 
graph whose graph nodes are divided into three types, as 
presented earlier. The two types of nodes, mining activities and 
underground pressure units, have a clear causal relationship, 
and their data can be measured by sensors. We use the velocity 
value of a fully-mechanized face �� =

[

��
1
, ��

2
,⋯ , ��

s

]

 as the 
feature of the mining activity node �� , and the value of 
underground pressure �� =

[

�
�

1
, �

�

2
,⋯ , �

�
s

]

 as the feature of 
the underground pressure unit nodes �� . The underground 
environment, as a link between the mining activities and the 
underground pressure units, it is feature �� rely on the 
embedding of prior knowledge �� =

[

�
�

1
, �

�

2
,⋯ , ��

s

]

 . The 
mining height and the burial depth can be predefined according 
to actual engineering requirements. The relation between the 
velocity of a fully-mechanized face and the sag of overlying 
strata by equation (1) ∼ (3).

Symbol Definition

��
i

The velocity value of a fully-
mechanized face in the i-th step

�
�

i
The underground pressure value in 

the i-th step

�
�
1

i

The mining height value in the 
i-th step

�
�
2

i

The burial depth value in the i-th 
step

�
�
3

i

The rupture of overburden strata 
in the i-th step

Symbol Definition

�
�
4

i

The degree of the surrounding 
rock deforma-tion and the 
fracturation in the i-th step

�
1

The degree of sag of the main roof
�
2

The degree of unconsolidated 
formation

𝜆̂ Other characteristics of the rock 
stratum

where � is the rupture of overburden strata, 𝜆1, 𝜆2, 𝜆̂ rep-
resents the degree of sag of the main roof, the degree of 
unconsolidated formation and other characteristics of the 
rock stratum. Given the surrounding rock deformation and 
the fracturation was difficult to measure accurately, we arti-
ficially divided into ten levels, represented by numbers from 
one to ten ��4 ∈ {1,⋯ , 10} . We assume that the population 
of underground pressure units follows a normal distribution 
Υ
(

�, �2
)

 , and that the s-step sampling of these is regarded 
as a general sample, with the sample’s expectations and vari-
ance as follows:

where m represents the number of the underground pres-
sure units. The increase in the underground pressure means 
that the underground rock structure has changed based on 
previous research. Therefore, we calculate the mean value 
of the underground pressure 𝛾̄𝜒

i
 at each step, and then use 

it as a basis for that generate the feature of deformation of 
surrounding rock ��4 , illustrated as follows:

(1)𝛾𝛽3 = 𝜆 = 𝜆1 + 𝜆2 + 𝜆̂,

(2)�1 = −125.26e
��
i

24.8 + 1022.8,

(3)�2 = −55.61e
��
i

20.8 + 673.97,

(4)X̄ =
1

sm

sm
∑

i

𝛾
𝜒

i
,

(5)S2 =
1

sm − 1

sm
∑

i

(

𝛾
𝜒

i
− X̄

)

,

(6)�
𝛽4i

i
=
⌈

Θ
(

𝛾̄
𝜒

i

)⌉

,

(7)Θ
�

𝛾̄
𝜒

i

�

= 10

�

∫
𝛾̄
𝜒

i

−∞

1
√

2𝜋S
e

−(x−X̄)2

(2S2) dx

�

.
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Algorithm 1 Underground Pressure Causality Graph Learning Algorithm
Input: The initially underground pressure graph Gs, the multivariate under-

ground pressures series γχ, the priori knowledge series γα, γβ , the initially
parameters of the underground pressure inducement gi, i = 1, · · · , 6

Output: The post-optimized underground pressure graph Go

1: //Compute the maximum underground pressure:
2: for j in range(n):
3: P1j ← Eq.(10); // Compute the max underground pressure under the

action of the mining height in the j-th step
4: P2j ← Eq.(11); // Compute the max underground pressure under the

action of the burial depth in the j-th step
5: P3j ← Eq.(12); // Compute the maxi underground pressure under the

action of the overlying strata in the j-th step
6: P4j ← Eq.(13); // Compute the max underground pressure under the

action of the surrounding rock deformation in the j-th step
7: end
8: //Compute the edge weights:
9: for j in range(1, 5):

10: for d in range(m):
11: ejd ← Eq.(9)
12: end
13: end
14: //Underground Pressure Causality Graph Structure Optimization:
15: for iter in range(Itermax):
16: (RMSE, MAE) ← GCN-LSTM (Gs) // Compute the prediction

accuracy index
17: Ĝs ← LR (RMSE, MAE) // Update graph structure
18: end
19: return Go

Workface
Burial Depth

Mining Height 

Surrounding Rock 

Overlying Strata

Coal Mine Hydraulic Support

Fig. 3   Causality graph modeling

In this work, there are no edges between nodes of the 
same type, and nodes of the different types have uni-direc-
tional relationships (mining activities-underground pressure 
units-underground environment). Hence, to learn the origi-
nal graph structure, we propose the edge generation rule as 
follows:

where Pij represents the maximum underground pressure of 
the j-th underground pressure unit under the impact of i-th 
factor, and it is obtained in line with prior knowledge. The 
empirical equation as follows:

(8)eij = 0.25
, i ∈ {1};

j ∈ {2, 3, 4, 5}

(9)eij =
Pij

∑5

k=2
Pkj

, i ∈ {2, 3, 4, 5};

j ∈ {6,… , 6 + m}

(10)P1j = g1�
�1 + g2,

(11)P2j = g3 ln
(

��2 + g4
)

+ g5,

(12)

P3j = g6e
t0.5
1 ≈ g6

[

1 + t0.5
1

+
t1

2
+

t1.5
1

6
+ o

(

t2
1

)

]

,
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where gi, i = 1,⋯ , 6 represent the parameters of the under-
ground pressure inducement. To sum up, we proposed a 
graph structure learning method that has embedded prior 
knowledge, in which the edge weights of the causal graph 
are capable of automatically changing as the underground 
environment changes.

3.4 � Prediction network of underground pressure

In this section, we will introduce the framework of 
underground pressure prediction, and the framework shown 
in Fig. 3. We extract spatio-temporal features from the causal 
graph that were previously acquired to fulfil the multi-step 
underground pressure prediction task. We utilize the Graph 
Convolution Module to extract the spatial feature sequence 
of the underground pressure causal graph. Then, we regarded 
the spatial feature sequence as the input of the LSTM, which 
extracts the spatial feature sequence. Eventually, we obtain 
the predicted multi-step underground pressure sequence. 
Analogous concepts and techniques have been widely 
used in various domains that have a demand for sequence 
prediction tasks  [28, 29]. We will introduce the technical 
means in this paper as follows.

The Graph Convolutional Neural Networks have a wide 
range of applications and are suitable for nodes and graphs 

(13)

P4j =
(

1 − g6
)

et
0.5
2

≈
(

1 − g6
)

[

1 + t0.5
2

+
t2

2
+

t1.5
2

6
+ o

(

t2
2

)

]

, t1 =
1

s

s
∑

i=1

�
�

i
− �

�

min

�
�3
i
− �

�3
min

,

t2 =
1

s

s
∑

i=1

�
�

i
− �

�

min

�
�4
i

,

of any topology. To better learn the mixed relationships 
of neighborhood nodes, we employed the MixHop Graph 
Convolution Layer, which was inspired by [30].

where �s,�s represent the adjacent matrix of the causal 
graph, and the feature matrix of the nodes, � is the degree 
matrix of �s , �i is the parameter matrix, the �i represent 
the activation function, concretely, ReLU is chosen in this 
paper. Our motivation is to enhance the ability of the Graph 
Convolution Layer to learn mixing relationships between 
heterogeneous nodes by the above method. When we have 
obtained the spatial feature sequence, we still need to 
extract the time feature that is used to achieve the multi-
step prediction of the underground pressure. To be specific, 
to infer the change of underground pressure in the future 
by learning the transformation law of the spatial feature 
over a period of time. LSTM is a classic deep feedforward 
neural network which has been widely used to process time 
series data in various domains. The performance of LSTM 
is sure to not compare favourably with the state-of-the-
art techniques in some tasks. The framework still chooses 
LSTM because it has stable performance in various time 
series forecasting tasks. In this paper, the mathematical 
expression of the LSTM is given as Eq. (1).

(14)�s =
∑

i=0

�
i

(

�−
1

2 (�s)i �
−

1

2�s�
i

)

,

Fig. 4   Decision making mecha-
nism based on reinforcement 
learning

Observation Space

Agent
Action Action

Environment Environment Environment
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where �t, �t, �t, �t represent the input gate, forget gate, output 
gate and memory cell, respectively, �t, �t represent the state 
variable of system and the hidden. The mean squared error 
function is used as a loss function in the training.

Remark 1  It should be emphasized again that sensors acquire 
the sequence data of the underground pressure that does not 
satisfy the assumption of equal time-interval sampling in 
many practical industrial scenarios. Hence, we transformed 
the time sequence into the step sequence when modeled in 
this paper. In essence, the prediction sequence was obtained 
that reflected the change in the underground pressure during 
the next s-th mining action.

3.5 � Causality graph structure optimization

In this section, we will explain the motivation why opti-
mizing the underground pressure causal graph. Then we 
introduce the specific method that is used to achieve graph 
structure optimization. At the end of this section, restricted 
condition of the algorithm is discussed. In a general sense, 
mining industry professionals depend on their own experi-
ence combined with real-world data to establish equations. 
The equations reflect strata behaviors that relationships 
between maximum underground pressure and influence 
factor. In order to ensure safety of mining industry, the cal-
culated maximum underground pressure of workface gen-
erally greatly exceeds the real underground pressure of the 
workface during production. Hence, the adjacent matrix of 
the causal graph build on basic equations of strata behav-
iors has a certain degree of inaccuracy, which may reduce 
the accuracy of underground pressure prediction. Of course, 
the method of manual adjustment parameter also be used to 
continuously adjust the adjacent matrix to obtain a better 
structure of causal graph. However, the method of manual 
adjustment parameters is not suitable for regulation param-
eters of the equations of strata behaviors, which have multi-
parameter value ranges, and it also does not have transfer-
ability (Fig. 4). Reinforcement learning technology can 
overcome this problem well [31].

We propose a graph structure optimization technique based 
on reinforcement learning. To acquire the better causal graph 
structure, a machine intelligence expert is designed to regulate 
the edge weights according to the prescribed strategy. The 
components of the graph structure optimization algorithm 

(15)

⎛

⎜

⎜

⎜

⎜

⎝

𝐢t
𝐟t
𝐨t
𝐜̃t

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

LeakyReLU

LeakyReLU

LeakyReLU

tanh

⎞

⎟

⎟

⎟

⎟

⎠

�

𝐖

�

𝐱t
𝐡t−1

�

+ 𝐛

�

, 𝐜t=𝐟t ⊙ 𝐜t−1 + 𝐢t ⊙ 𝐜̃t,

𝐡t = 𝐨t ⊙ tanh
�

𝐜t
�

,

based on RL are as follows: a machine intelligence expert as the 
agent, causal graph structure as the environment. We designed 
the state observation space Ot =

{

o1
t
, o2

t
, o1

d
, o2

d
, õ1

d
, õ2

d

}

 to 
create the reward function R, where o1

d
, o2

d
 represent the RMSE 

and MSE of the underground pressure prediction error based 
on the original causal graph, o1

t
, o2

t
 represent RMSE and MSE 

of the underground pressure prediction error obtained through 
the t-th generated causal graph, õ1

d
, õ2

d
 RMSE and MSE of the 

desired value.
State space: The state St =

{

eij
}

 represent value of the 
adjacency matrix in the t-th optimization causal graph. The 
state St is affected by the parameter vector gt =

{

gt
j

}

 . If the 
type = 0 is true, one of the parameters in vector gt is change to 
generate vector gt+1 =

{

gt+1
j

}

 , and calculate the new state St+1 
from the vector gt+1 ; If the action’s type = 1 is executed, one 
of the parameters in vector gt−1 is change to generate vector 
gt+1 =

{

gt+1
j

}

 , and calculate the new state St+1 from the vector 
gt+1 . There is difficult to obtain an optimal combination of 
parameters that can reflect relationship between real-world 
underground pressure and influence factors. Hence, we assume 
the final state that satisfy the requirements of RMSE and MSE.

Action space: To reduce the number of iterations of 
graph structure optimization, we designed the action 
at =

{

�1, �2, type
}

 , where Δgj =
(

�1, �2
)

 , �1 = {�,−�} , 
�2 = {1,⋯ , 6} is an equally likely event in the first 
optimization, � is hyper-parameter. As shown in the equation, 
the value of type is related to the state observed value. The 
meaning of this strategy is to only retain the actions that have 
been beneficial to the predicted accuracy.

Reward: We design the reward function based on the state 
observation space.

where Iter represent optimization degree. Then, we have 
taken inspiration by the work of parameter tuning to design 
a method that is used to guarantee the reward function 
which can guide agent achieve the graph structure opti-
mization task. The motivation of this method is the agent 
will be caught in the endless parameter tuning, if the 
desired RMSE and MSE would be design unreasonable. 
Let ôid : =

g(oid)+õid
2

, i = 1, 2 , where g
(

oi
d

)

= (1 − 𝛾𝜀)oi
d
≥ õi

d
 , 

� ∈ (0, 0.1] , ôi
d
, i = 1, 2 is the boundary parameter, � 

(16)type =

{

0, otherwise

1, Rt
accuracy

≤ 0
.

(17)R =

Iter
∑

t=1

Rt
accuracy

,

(18)
Rt
accuracy = sgn

(

o1t − o1d
)

+ sgn
(

o2t − o2d
)

,
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represent cycle index. When R > 0 and oi
t
< ôi

d
, i = 1, 2 

are established at the same time, the parameter vector � is 
called a set of efficient graph structure optimization param-
eters. While increasing the number of cycle indices by one, 
modifying the boundary parameters, and then a new cycle 
of graph structure optimization is performed. The purpose 
of setting R > 0 a condition is to enable the agent to learn 
the law of parameter optimization as shown in the following 
equation.

We still design truncation condition R > Ω𝛾 , where Ω is the 
positive integer. When the optimization process is truncated, 
the last set of effective graph structure optimization 
parameters are called the final parameters, and the boundary 
parameters are the suboptimal target that the task can satisfy. 
The purpose of the above design is to bring the parameter 
tuning behavior of the agent more in line with expert 
experience to avoid waste of efficiency.

4 � Experiment

In this section, we introduce datasets, experimental design, 
and how to use primordial underground pressure data to train 
forecast models that are knowledge-based and data-driven. 
In order to make full use of the advantages of expert knowl-
edge, it is necessary to know prior knowledge such as the 
geological characteristics of the mining area, the roof char-
acteristics of the workface. This knowledge can reduce the 
time required for graph structure optimization to improve 
computational efficiency. Of course, the framework still 
effectively works without the above information.

4.1 � Datasets

The data used in the experiment is from the real-working 
condition of the 22104 fully-mechanized coal mining work-
face at Shangwan coal mine in Shendong mine lot (Fig. 5). 
The topographic features include loess remnant tableland, 
loess hills, and some ravines that have bedrock outcrops [32]. 
The intensive research has been related to the geological 
mining conditions of this mine lot and can be referred to in 
the literature [33]. We give the situation of a fully mecha-
nized mining working face (Table 1) and the characteristics 
of a coal seam roof (Table 2). The data set contains all the 
166 hydraulic supports of the workface which are subjected 
to the mine pressure during 299 feeding operations in one 
month. This data set reflects the relationship between rock 
pressure variation and working face advancement in real 
coal mining projects. In actual production, the working face 
will advance according to the set mining step. Due to the 
influence of factors such as geological conditions and pro-
duction requirements, the time of each advancing process 
is not fixed. This means that the real mining pressure time 
series data does not meet the assumption of equal intervals. 
This is also an important reason for the poor performance 
of various machine learning algorithms in the actual mining 
pressure multi-step prediction task. The dataset is divided 

(19)
Δgm

k
=

∑n

i=1
exp

�

ai
�

�1 = m, �2 = k, type = 0
��

Iter
∑

l=1

exp
�

al
�

.
Table 1   Environmental mining conditions

Mining conditions Value

Burial depth 1164 m∼1260 m
Mining height 6.5 m
Coal seam hardness 1∼3
Unit weight of coal 1.3t/m3

Strike length of workface 330.9 m
Advance length of workface 1510 m
Elevation of coal seam floor 1045.55 m∼1074.44 m
Compressive strength of main roof 24.95Mpa∼52.23Mpa
Compressive strength of immediate roof 21.09Mpa∼28.91Mpa
Protodyakonov coefficient of main roof 4.57
Protodyakonov coefficient of immediate roof 2.56

Table 2   The characteristics of coal seam roof

Roof Lithology Thickness/m

Mian roof Siltite 2.06 ∼ 9.55
Coal seam Coal 4.51 ∼ 7.06
Immediate roof Sandy mudstone 1.71 ∼ 18.03
Unconsolidated formation Unconsolidated formation 53.8 ∼ 95.6

Fig. 5   The mining location
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into a training set, a validation set, and a test set according 
to the ratio of 6:2:2.

4.2 � Evaluation index and experimental settings

In order to evaluate the effect of the model proposed in this 
paper, two indicators, RMSE and MAE, are introduced to 
measure the prediction results. The smaller the values of 
these two indicators, the more accurate the prediction. We 
compare the proposed mine pressure prediction model based 
on reinforcement learning and knowledge embedding with 
five classes of baselines, namely BP, RNN, LSTM, GRU, 
and stacked LSTM. Among them, BP is a machine learning 
algorithm that is often used for mineral pressure prediction 
tasks, and previous studies have proved the effectiveness 
of this algorithm. The rest of the algorithms have been 
research hotspots in recent years and are often used for 
various mineral pressure prediction tasks. Our model is built 
on Pytorch with the built-in Adam optimization algorithm. 
The equipment used in the experiment was sponsored by 
the AT-BDSC laboratory. The experiment is divided into 
the following parts: 

a)	� To verify the effectiveness of the algorithm proposed in 
this paper, we selected a group of continuous hydrau-
lic supports ( #155 - #164) as representatives and per-
formed the ten step prediction tasks one hundred times. 
Then we calculate the RMSE and MAE of each predic-
tion task result and compared them with the baseline.

b)	� To study the influence of the prediction step size on the 
prediction results in the multi-step rock pressure predic-
tion task. We take the ten continuous hydraulic supports 
at the end of the working face as a group, perform five, 
ten and fifteen step prediction tasks respectively. We 
calculate the RMSE and MAE of the prediction results, 
and compare them with the baseline.

c)	� To study the influence of the scale of the same group 
of supports on the prediction results in the multi-step 
rock pressure prediction task. We placed one, five, and 
ten hydraulic supports at the end of the working face 
as a group, and performed ten-step mining. Press the 
prediction task against the typical and compare it with 
the baseline.

d)	� In order to verify that the prediction framework 
proposed in this paper can still complete the prediction 
task under the condition that the prior knowledge is 
missing, inaccurate or completely unknown. The 
verification method is to artificially delete some prior 
knowledge and randomly change prior knowledge and 

settings. Then we take 1ten consecutive hydraulic 
supports at the end of the working face as a group 
and perform a ten-step prediction task. Calculate the 
RMSE and MAE of the prediction results, and save the 
comparison GPU runtime.

4.3 � Main results

In this paragraph, we will show the experimental results in 
detail and analyze them. First, we evaluate the prediction 
performance of different rock pressure prediction frame-
works on typical tasks. Based on the research on the genesis 
of the mine pressure, we have determined the parameters of 
mine pressure inducement g1 = 1.5 , g2 = 30.5 , g3 = −3.5 , 
g4 = 80 , g5 = 0.5 . In order to avoid the possible chance of 
the experimental results, we conducted one hundred pre-
diction experiments under the premise of fixed parameters. 
After eliminating obvious outliers, the best RMSE and MAE 
in the overall prediction results are shown in Table 2. Fig-
ures 6 and  7 reflect the frequency distribution curve of the 
evaluation indicators for one hundred rock pressure predic-
tion tasks. The idea of adopting this evaluation strategy 
comes from [34], which expounds the significance of using 
this evaluation method for the prediction task. The research 
results show that the classical machine learning method is 
difficult to use for the multi-step multivariate rock pressure 
prediction task with sampling at unequal time intervals. The 
prediction framework proposed in this paper outperforms 
classical machine learning methods, but it is still difficult to 
predict large changes in mine pressure. The RMSE and MAE 
of the multi-step prediction results of a single hydraulic sup-
port in RC-GNN are presented in Table 3, and the results far 
exceed those presented in some current studies. It is worth 
noting that existing studies usually employ data sampled 
at equal time intervals for univariate multi-step forecasting 
tasks. In contrast, the prediction framework proposed in this 
paper considers the inducing factors of rock pressure, so it 
achieves better results in multivariate and multi-step rock 
pressure prediction tasks with sampling at different time 
intervals.

In this paragraph, we discuss the influence of the predic-
tion step size on the prediction results in the multivariate 
multi-step prediction task. We intuitively display the RMSE 
and MAE of RC-GNN, GRU, and RNN prediction results 
through histograms. According to the results reflected in 
Fig. 8, it can be concluded that the longer the step size needs 
to be predicted, the worse the result of the rock pressure 
prediction. This is because the traditional machine learn-
ing model only considers the temporal dependencies of the 
surface layer, and does not try to mine the causal relation-
ship between the data. The results shown in Table 3 show 
that the framework proposed in this paper alleviates this 
problem to a certain extent. In the five-step prediction task, 
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compared with the GRU model, the RMSE is reduced by 
48.1%, and the MAE is reduced by 46.4%; When predict-
ing the task, compared to the GRU model, the RMSE is 
reduced by 44.4%, and the MAE is reduced by 60.3%. When 
the prediction framework proposed in this paper performs 
a fifte-step prediction task, the prediction results are 32.4% 

lower in RMSE and 18.1% lower in MAE than when a five 
step prediction task is performed. This result shows that the 
causal graph model of the mine pressure established in this 
paper can better represent the causal relationship between 
the mine pressure and its mine pressure inducement. This 
causal relationship can better reflect the internal relationship 

Fig. 6   RMSE of 100 times 
underground pressure predic-
tions

(a) BP (b) RNN

(c) LSTM (d) SLSTM

(e) GRU (f) RC-GNN
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of the development of things, which helps to improve the 
accuracy of multi-step rock pressure prediction (Tables 4, 5).

In this paragraph, we discuss the influence of the number 
of variables on the prediction results in a multivariate mul-
tistep forecasting task. We still intuitively display the RMSE 
and MAE of the RC-GNN, GRU, and RNN prediction 

results through histograms. According to the results reflected 
in Fig. 9, it can be concluded that the more variables (min-
eral pressure units) that need to be predicted, the worse the 
results of rock pressure prediction. This is also caused by 
the lack of in-depth exploration of the causal relationship 
between variables (mineral pressure units) in traditional 

Fig. 7   MAE of 100 times 
underground pressure predic-
tions

(a) BP (b) RNN

(c) LSTM (d) SLSTM

(e) GRU (f) RC-GNN
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machine learning algorithms. The results shown in Table 6 
show that when performing a single scaffold multi-step pre-
diction task, the prediction results of the prediction frame-
work proposed in this paper reduce RMSE by 17.9% and 
MAE by 31% compared to the LSTM method; When pre-
dicting the task, compared to the LSTM method, the RMSE 
is reduced by 27.1%, and the MAE is reduced by 34.8%. 
The results show that the prediction framework based on the 
causal relationship diagram of rock pressure established in 
this paper can better capture the causal relationship between 

variables, and can improve the prediction accuracy of multi-
variable rock pressure prediction tasks.

In this paragraph, we show the RMSE and MAE of the 
results of a multivariate, multi-step rock pressure prediction 
task under conditions where prior knowledge is missing, 

Table 3   RMSE and MAE of 
one hundred times underground 
pressure predictions

Model RMSE MAE

SLSTM 1.33715 0.26534
BP 0.98549 0.18802
GRU​ 0.94907 0.19753
RNN 0.84617 0.16512
LSTM 0.80498 0.16115
RC-GNN 0.58703 0.10561

(a) RMSE

(b) MAE

Fig. 8   Experimental results of different predicted step sizes

(a) RMSE

(b) MAE

Fig. 9   Experimental results of different numbers of hydraulic sup-
ports

Table 4   RMSE and MAE 
of single-scaffold prediction 
results under ten-step ten-
scaffold condition

Hydraulic 
support

RMSE MAE

HS155 0.54012 0.46086
HS156 0.21758 0.09674
HS157 0.46555 0.36236
HS158 1.10440 0.86070
HS159 0.54433 0.39770
HS160 0.96625 0.73762
HS161 0.30512 0.06086
HS162 0.44170 0.08030
HS163 0.33718 0.06524
HS164 0.99393 0.81537



	 International Journal of Machine Learning and Cybernetics

1 3

inaccurate, or completely unknown. The purpose of design-
ing this part of the experiment is to verify that the reinforce-
ment learning module in the prediction framework proposed 
in this paper can effectively replace the parameter tuning 
behavior of human engineers. In the real world, limited by 
the completeness of environmental information collection, 
it is difficult to obtain a very accurate set of mining pres-
sure inducement parameters. Therefore, in order to obtain 
a better graph network structure, engineers do not wait for 
these parameters without iteration, and observe the predic-
tion results for feedback adjustment. The results in Table 7 

show that the reinforcement learning module in the frame-
work proposed in this paper can assist engineers to complete 
this operation. The prediction framework can automatically 
adjust the mine pressure inducement parameters only by set-
ting the desired RMSE and MAE. Of course, this will take 
some time. Figure 10 presents the error curves of the pre-
diction results of rock pressure for multiple supports under 
the condition of lack of prior knowledge. The results show 
that even if the edge weights cannot be obtained accurately, 
the prediction framework proposed in this paper still has 
the ability to perform the task of rock pressure prediction.

5 � Conclusion

In this paper, we propose a framework that can contribute 
to the multi-step multivariable underground pressure 
prediction task. We model a causal graph to reflect the 
connection between inducement and representation of 
underground pressure. In order to overcome influence 
due to the inaccurate and missing prior knowledge when 
industrial manufacturing process, such as inaccurate prior 
Knowledge and missing environment parameters, give rise 
to the erroneous edge weights of the initial causal graph. 
We propose a reinforcement learning algorithm based 
on the prediction accuracy as feedback information to 
auxiliary obtain better the structure of the causal graph. 

Table 5   Experimental results of different predicted step sizes

Model RMSE MAE

Set 5 SLSTM 0.88765 0.16270
GRU​ 0.96542 0.15556
RNN 0.96035 0.15164
LSTM 0.79716 0.14327
RC-GNN 0.50071 0.08339

Set 10 SLSTM 1.33715 0.26534
GRU​ 0.94907 0.19753
RNN 0.84617 0.16512
LSTM 0.80498 0.16115
RC-GNN 0.58703 0.10561

Set 15 SLSTM 1.19280 0.24858
GRU​ 1.19280 0.24759
RNN 1.43936 0.22439
LSTM 1.34394 0.26993
RC-GNN 0.66289 0.09833

Table 6   Experimental results of different numbers of hydraulic sup-
ports

Model RMSE MAE

Single support SLSTM 0.57783 0.49672
GRU​ 0.66803 0.513393
RNN 1.74432 0.38064
LSTM 0.58556 0.50204
RC-GNN 0.49677 0.38339

Five support SLSTM 0.60970 0.18549
GRU​ 0.64718 0.19545
RNN 1.20924 0.30911
LSTM 0.74617 0.16512
RC-GNN 0.58038 0.097633

Ten supports SLSTM 1.33715 0.26534
GRU​ 0.94907 0.19753
RNN 0.84617 0.16512
LSTM 0.80498 0.16115
RC-GNN 0.58703 0.10561

Fig. 10   Diagram of multi-step underground pressure prediction error

Table 7   The difference between the predicted results of known prior 
parameters and unknown prior parameters

Model RMSE MAE GPU Runtime

Known 0.58703 0.10561 9h11min
prior knowledge
Unknown 0.665294 0.098039 47h53min
prior knowledge
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The prediction network composed of GCN and LSTM 
modules is used to execute the UGPP task, and provide 
the performance index of prediction information for the 
reinforcement learning module.

The prediction framework is tested on the real dataset 
of Shendong Group Shangwan Coal Mine. This dataset 
has characteristics of strong noise and sampling at unequal 
intervals. The experimental results of this research indicate 
that our proposed framework can effectively improve the 
precision of underground pressure prediction and still 
effective in the deficiency of prior knowledge. Given the 
above, we present RC-CNN that is better suited to guiding 
industrial production than the UGPP frameworks that are 
based on deep learning technology. As a matter of fact, one 
of the important factors restricting the machine learning 
techniques, such as deep learning and GNN, applied to the 
mining industry is its own uncertainty. It can be deemed 
that the output of a well-designed prediction framework 
still contains a certain degree of non-Gaussian noise. 
Hence, it is necessary to construct a more comprehensive 
underground pressure causal graph. To more effectively 
guide industrial security, it is necessary that more research 
about model underground pressure causal graph. In 
particular, the construction operations and the construction 
equipment properties are considered in the model.
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