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A B S T R A C T

Camelids produce both conventional heterotetrameric antibodies and homodimeric heavy-chain only antibodies.
The antigen-binding region of such homodimeric heavy-chain only antibodies consists of one single domain,
called VHH. VHHs provide many advantages over conventional full-sized antibodies and currently used anti-
body-based fragments (Fab, scFv), including high specificity, stability and solubility, and small size, allowing
them to recognize unusual antigenic sites and deeply penetrate tissues. Since their discovery, VHHs have been
used extensively in diagnostics and therapy. In recent decades, the number of outbreaks of diseases transmissible
from animals to humans has been on the rise. In this review, we evaluate the status of VHHs as diagnostic and
therapeutic biomolecular agents for the detection and treatment of zoonotic diseases, such as bacterial, parasitic,
and viral zoonosis. VHHs show great adaptability to inhibit or neutralize pathogenic agents for the creation of
multifunctional VHH-based diagnostic and therapeutic molecules against zoonotic diseases.

1. Introduction

The generation of monoclonal antibody (mAb) triggered a revolu-
tion in biotechnology. Therapeutic mAbs belong to the fastest-growing
branch of biotechnology. However, the large size of the molecules may
hinder efficient tissue penetration. This obstacle can be overcome using
Fab or single-chain Fv (scFv) fragments, as they are three to six times
smaller than full-sized antibodies. However, cloning these fragments,
consisting of heavy and light chain variable regions linked by disulfide
bridges or a linker, is challenging and they are not always efficiently
expressed [1].

An alternative approach to avoid these pitfalls is the use of func-
tional fragments of heavy chain antibodies, which are present in the
serum of animals belonging to the Camelidae family. They interact with
the antigen by virtue of one single variable domain referred to as VHHs,
single-domain antibodies (sdAbs), or nanobodies™ (trademark of
Ablynx). They combine the advantages of both immunoglobulins and
small molecules and provide an alternative to conventional antibodies
and binders derived from alternative scaffolds. Sharks also produce a
unique heavy-chain only immunoglobulin that does not associate with
light chains, referred to as IgNAR. V domains of IgNAR are often ap-
plied in biotechnological and biomedical fields (for a review [2]).

The Camelidae family (order: Artiodactyla) consists of six species:
dromedary (Camelus dromedarius), Bactrian camel (Camelus bactrianus),

llama (Lama glama), guanaco (Lama guanicoe), alpaca (Vicugna pacos),
and vicuna (Vicugna vicugna). Animals belonging to this family are well
adapted to live in harsh environments, such as deserts or high altitudes
[3].

2. Structure and sequence of camel heavy chain antibodies

Ungar-Warom et al. [4] and Azwai et al [5] have isolated low mo-
lecular weight Ig-like proteins from dromedary serum. However, the
detailed characterization and demonstration of the potential usefulness
of these proteins stemmed from the work of the Hamers laboratory in
the Free University of Brussels [6]. The authors demonstrated that these
unusual proteins are “heavy-chain only antibodies’’ (HCAbs), devoid of
light chain. These antibodies form homodimers and interact with an-
tigens by virtue of only one single variable domain, referred to as VHH
(VH domain of heavy-chain antibodies) to distinguish it from conven-
tional VH [7]. In contrast to conventional antibodies, HCAbs do not
possess the CH1 domain [6].

The active antigen-binding fragment of heavy chain antibodies can
be cloned and expressed in the form of VHH, which consists of only one
domain (Fig. 1).

The percentage of HCAbs in the bloodstream of camelids varies
greatly among species. It can reach a relatively high level in camels,
ranging from 50% to 80%, whereas the maximum level is 45% in South
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American camelid species [8].
Despite the absence of light chains, the heavy-chain antibodies ex-

hibit a broad antigen-binding repertoire. They exhibit specific char-
acteristics, such as the substitution of three to four hydrophobic re-
sidues (which interact with the VL in conventional antibodies) by more
hydrophilic amino acids. VH possess the conserved Val37, Gly44, Leu45
and Trp47 while in VHH, these amino acids are often substituted
(Val37Phe or Val37Tyr, Gly44Glu, Leu45Arg and Trp47Gly) [9–11].
Furthermore, the complementarity determining regions (CDRs) of
VHHs, and especially CDR3, are statistically longer than those of con-
ventional VH-VL antibodies [12].

3. Unique properties of VHH fragments and their use in
biotechnology

Over the last decades, VHHs have received progressively greater
interest from the pharmaceutical and biotechnology industries, due to
their specific properties. Indeed, VHHs provide the following ad-
vantages over conventional antibodies and their recombinant frag-
ments:

- VHHs are weakly immunogenic in humans, because the genes en-
coding them share high sequence homology with genes belonging to
human VH families 3 and 4 [13,14].

- VHHs consist of only one domain. They can thus be easily en-
gineered, cloned, and expressed with high yields using various ex-
pression systems [15].

- VHHs are highly soluble and stable, even under denaturing condi-
tions or high temperatures [16].

- The high variability of the length and sequence of VHHs allows them
to recognize a variety of protein epitopes, located not only on the
surface of a protein [17], but also buried deep in the clefts [18].
VHHs have been shown to recognize a wide range of epitope types,
from small haptens [16,19] to the binding sites of enzymes [17,20],
and can bind epitopes that cannot be recognized by conventional
antibodies [21].

- The small size and basic isolectric point of VHHs allows them to
penetrate tissues, pass through barriers, such as the blood-brain
barrier [22–26], and bind intracellular antigens.

- VHHs can be efficiently functionalized [27–29] and are widely used
for imaging [24,26,30].

There has been an explosion in the number of publications con-
cerning applications of VHHs that cover their use in pharmaceutical
development or as biotechnological tools [26,31–35]. Here, we mainly
focus on the potential use of VHHs for the diagnosis and the treatment
of zoonotic diseases.

4. Zoonotic diseases

Zoonotic diseases (ZDs) are infections that can be naturally spread
between vertebrate animals and humans. Several recent outbreaks,
such as Ebola and Zika have emphasized the serious impact of these
diseases on human health [36]. Their expansion is related to global
trade, human migration, and climate change. Up to now, the outbreaks
have been contained by the control of human populations in the af-
fected areas, the use of antibiotics, and the development of rapid di-
agnostic tests. However, the emergence of ZDs is still a major challenge
and there is a crucial need for new tools for diagnosis and therapy.
Camelid VHHs could offer an attractive possibility for the development
of such tools in the future.

4.1. Bacterial zoonosis

4.1.1. Campylobacteriosis
Campylobacteriosis is caused mostly by Campylobacter jejuni or

Campylobacter coli. Poultry are naturally infected, without clinical signs,
and it is the leading cause of foodborne gastroenteritis in humans
worldwide [37].

A VHH that binds C. jejuni flagella was isolated by Riazi et al. [38]
and engineered for greater thermal and proteolytic stability. Hussack
et al. [39] obtained a highly stable VHH through the use of error-prone
polymerase chain reaction and disulfide-bond engineering. This VHH,
directed against the flagella, can potently inhibit C. jejunimotility and is
being studied for the prevention or significant reduction of C. jejuni
colonization in the gastrointestinal tract of chickens. Recently Van-
marsenille et al [40] described the isolation and characterization of 6
VHHs against multiple Campylobacter strains. These VHHs which bind
with the major outer membrane protein (MOMP) interacted with 23 C.
jejuni isolates and 5 C. coli isolates. They could potentially be used in
therapy and as a diagnostic tool.

4.1.2. Escherichia coli
Escherichia coli is a facultative gram-negative bacterium that belongs

Fig. 1. Schematic diagram of different types of antibodies (adapted from [23]). A The common structure of an IgG antibody, which composed of two heavy and two
light chains, B the structure of homodimeric camelid antibody only composed of heavy chains, C recombinant antibody-binding domain (VHH).
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to the family Enterobacteriaceae. Although it is normally commensal in
nature and animals, many strains are food and waterborne zoonotic
pathogens. Shiga toxin (Stx)-producing E. coli (STEC) bacteria (which
include enterohemorrhagic E. coli [EHEC]) cause no discernible disease
in their animal reservoirs; however, diarrhea, hemorrhagic colitis, and
hemolytic uremic syndrome (HUS) are common in humans [41]. The
major virulence determinants of STEC are mainly caused by the Shiga
toxins Stx1 and Stx2 [42].

VHHs that neutralize Stx1 and/or Stx2 have recently been obtained
[43–45]. The VHH 2vb27 specific of Stx2 was unable to give protection
against a lethal dose of toxin in mice while a trivalent molecule (two
copies of VHH 2vb27 and one copy of anti-albumin VHH) presented an
extended half-life and was able to neutralize the in vivo effect of toxins
in mouse models [43]. Tremblay et al [44] showed that VHH hetero-
dimers, containing two linked neutralizing VHHs, generally neutralized
Stx much more efficiently than a pool of individual monomers. More-
over co-administration of an effector Ab substantially improved the
ability of Stx toxin-neutralizing VHHs to prevent death or kidney da-
mage in mice following challenge with Stx1 or Stx2.

4.1.3. Listeriosis
Listeriosis is a bacterial infection caused by the gram-positive bac-

terium Listeria monocytogenes. The major source of infection is con-
taminated food. The disease primarily affects elderly people, im-
munocompromised patients, pregnant women, causing abortion, and
newborns [46].

VHHs specific for the invasin, internalin B, of L. monocytogenes have
been isolated [47,48] and can inhibit Listeria invasion in vitro. A crystal
structure between one VHH and internalin B shows that the VHH
competes with c-met, the target cell receptor of this invasin, explaining
the protective effect [48]. Two VHHs that specifically bind to three L.
monocytogenes serotypes (1/2a, 1/2b, and 4b) have been isolated from a
non-immune library [49]. A sandwich ELISA was developed using a
mAb for antibody capture and one VHH, L5-79 for detection, with a
detection limit of 1×104 colony forming units (CFU)/ml of bacteria in
milk.

4.1.4. Anthrax
Bacillus anthracis, the causative organism of anthrax, is a spore-

forming Gram-positive bacillus commonly found in the soil of endemic
areas. Herbivores can be infected while grazing. Recently, anthrax was
detected in Siberia after degradation of the permafrost due to global
warming [50]. B. anthracis is also one of the most important biological
warfare agents, because of its pathogenic nature and spore-forming
capacity [51]. The bioterrorist events in the United States in 2001 re-
vealed that treatment with antibiotics is not always sufficient to prevent
patient deaths, due to the effects of toxins produced by the bacteria.
Neutralizing mAbs may therefore be of great therapeutic value, com-
plementing antibiotic treatment to prevent the toxin-dependent symp-
toms of anthrax [52].

Anthrax is caused by a toxin consisting of protective antigen (PA),
lethal factor (LF), and edema factor (EF). Several VHHs directed against
the three components of the toxin have been shown to be efficient
against Anthrax disease [53,54]. Gene therapy with an adenoviral
vector expressing a bispecific VHH, consisting of two linked VHHs
targeting different PA-neutralizing epitopes, was tested in mice, and
found to protect them from anthrax toxin challenge and anthrax spore
infection [55].

4.2. Parasitic zoonosis

4.2.1. Taeniasis
Taeniasis occurs in the human host, after ingestion of undercooked

pork infected with cysticerci. Cysticercosis is caused by the larval stage
of the pork tapeworm Taenia solium. Humans are the definitive host,
harboring the adult tapeworm in the intestine, but both pigs and

humans can be infected with the cysticerci [56].
The mAbs obtained thus far are not genus-specific, preventing de-

finitive diagnosis of infection by T. solium [57]. Indeed, specific binders
are needed. Deckers et al. [58] have isolated VHHs specific for a gly-
coprotein of T. solium that do not cross react with other Taenia species
and a sandwich ELISA has been developed. This serodiagnostic test
could be helpful in pigs for epidemiological studies and monitoring the
efficacy of control programs.

4.2.2. Trypanosomiasis
African trypanosomiasis (AT), or sleeping sickness, is mainly caused

by a unicellular flagellated protozoan parasite, Trypanosoma brucei
gambiense, belonging to the genus Trypanosoma. AT affects mainly re-
mote rural areas and its distribution coincides mostly with the habitat
of the hematophagous insect vector, i.e., the tsetse fly (Glossina sp) [59].

Multiple VHHs have already been generated against the parasite (for
a review, [60]). Trypanolytic VHH An46 disturbs the endocytic ma-
chinery of the parasite in the flagellar pocket of the parasite. Non-
trypanolytic VHH An33 was made more potent by linking the nontoxic
prodrug cephalosporin mustard (CCM) onto the highly toxic PDM at the
surface of the parasite [61]. Linking this VHH to apolipoprotein L-I
resulted in an immunotoxin that lyses almost all trypanosomes [18].
Another approach is to couple pentamidine, a first-line anti-
trypanosomiasis, to VHH An33 to effectively target the drug to the
parasite. In vivo, a ten-fold lower dose than the minimal full curative
dose of free pentamidin incorporated into this conjugate cured all in-
fected mice, wheras a 100-fold lower dose cured 60% of them [62].
Parasite development in the tsetse fly and subsequent spread of the
parasite can be controlled through the expression of trypanolytic VHHs
in genetically modified tsetse fly symbionts [63]. In addition, VHHs that
target the paraflagellar rod protein of varioius trypanosomes have been
described, but are mainly useful as diagnostic markers of trypanosio-
masis [64]. A VHH (Nb474) directed against T. congolese aldolase
(TcoALD) has been developped for a sandwich immunoassay. This VHH
is highly specific and did not recognize other trypanosomes such as T.
brucei brucei, T. vivax and T. evansi [65,66].

4.3. Viral zoonosis

4.3.1. Influenza
Influenza A viruses (IAV), members of the RNA family

Orthomyxoviridae, consist of up to 144 subtypes, depending on the
variation/combination of the surface glycoproteins, hemagglutinin and
neuraminidase. IAV are further classified as human, swine (SIV), bat,
equine, or avian influenza viruses (AIV). SIV and AIV are transmitted
from pigs or birds to humans, respectively, mostly via direct contact
with infected animals. The infection in humans ranges from mild self-
limiting respiratory-like illness to death. However, pandemic outbreaks
remain unpredictable, as illustrated by the 2009 H1N1 virus (also
named Mexican flu) and H5N1 virus. Occasional zoonotic infections
with these viruses and their high propensity to reassort with SIV have
earmarked them as a major pandemic threat [67].

Several VHHs specific for influenza viruses have been raised against
the nucleoprotein [68] and M2 ion channel protein [69] of Influenza A,
and the neuraminidase [70] and hemaglutinin [71] of H5N1. Most of
these VHHs can neutralize influenza viruses. Ploegh et al. [57]
exploited the ability of VHHs to bind the intracellular nucleoprotein
protein to block viral replication, leading to the possibility of creating
new therapeutic molecules to prevent viral escape due to antigenic
variation. An alternative approach has been to create multivalent VHHs
to increase their antiviral potential: dimers made by the fusion of two
neutralizing VHHs [68,72] or a VHH–fused to an immunoglobulin Fc
region [68]. In vitro antiviral potency was increased from 1 to 2 logs
relative to the monomeric VHH.
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4.3.2. Rabies
The rabies virus (RABV) belongs to the genus Lyssavirus of the RNA

family Rhabdoviridae, within the order Mononegavirales. Despite the
availability of a vaccine against rabies virus (RABV), rabies continues to
claim 55,000 human lives per year, mostly in developing countries in
Asia and Africa [73,74]. The vaccine is mostly used therapeutically as a
post-exposure treatment. For infection combined with a seriously
bleeding injury, the WHO recommends complementing vaccination
with local instillation of human or equine rabies immunoglobulins
(RIG) to neutralize the RABV load in situ. There is currently a critical
shortage worldwide and the WHO is exploring alternative approaches,
such as cocktails of human or humanized neutralizing mAbs [75].

Neutralizing anti-RABV VHHs directed against glycoproteins have
been raised from a VHH phage library generated from the immuniza-
tion of a llama with inactivated rabies vaccine (genotype 1, Sanofi
Pasteur MSD) [71]. The IC50s of the CVS-11 (genotype 1) strain ranged
from 7 to 325 nM. These VHHs were fused to an anti-albumin VHH to
extend its serum half-life and were able to neutralize the virus at pi-
comolar doses [76]. A combined treatment based on VHH and vaccine
(Rabipur, Novartis) acted synergistically to protect mice in an in-
tranasal rabies infection model [77]. However, the principal difficulty
of an antiviral approach against rabies resides in the specific neuro-
tropism of RABV, which makes it not readily accessible once it has
accessed the CNS. At this stage, only molecules capable of crossing the
blood brain barrier and penetrating into neurons would be able to in-
hibit the infection.

4.3.3. Foot-and-mouth disease
Foot-and-mouth disease (FMD) is a contagious viral disease that

affects cattle, swine, sheep, and approximately 70 wildlife species (in-
cluding llama and camel), with a potential for rapid spread between
susceptible animals. The disease has been identified worldwide
whereever livestock are raised. In the last 20 years, there have been
massive outbreaks of FMD in countries formerly free of the disease,
such as the United Kingdom in 2001 [78] and Taiwan in 1997 [79].
Seven antigenically distinct serotypes of FMD viruses have been iden-
tified: O, A, C, Asia 1, SAT1, SAT2, and SAT3 [80]. Emergency vacci-
nation can be used as an effective control measure for FMD outbreaks in
FMD-free regions, such as the European Union, but the development of
novel antiviral therapies that confer rapid protection against FMD is
still needed. Moreover, it is important to develop a rapid diagnostic test
for identification of the various serotypes of the viruses involved in
FMD outbreaks.

VHHs directed against serotype O have been raised. They have
provided only limited protection to pigs. Trimers consisting of two
VHHs specific for FMDV and one VHH specific for porcine Ig have been
constructed to increase their potency and half-life. These trimers pro-
vided better protection to pigs and delayed FMD transmission [81].
Specific VHHs raised against FMD Asia 1 virus have also been obtained.
They have been used to develop diagnostic assays by conjugating them
to either quantum dots [82] or carboxyl-magnetic beads [83].

5. Conclusion

In this review, we provide evidence for the possible use of VHHs as
valuable biomolecules for the diagnosis and treatment of ZDs, including
bacterial, parasitic, and viral zoonosis. VHHs provide many advantages
over conventional antibodies and currently used antibody based frag-
ments. The ease of high-level production, small size, and high stability
make VHHs extremely reliable for genetic and chemical modification,
such as the production of VHH-based fusion proteins to increase the
persistence of VHHs in serum or confer additional functions.
Construction of multivalent VHHs consisting of two or more linked
VHHs targeting various epitopes leads to an increase in their ability to
neutralize toxins [43,44] and viruses [68,72,76,81], suggesting the
development of these approaches for VHHs targeting other viruses not

yet tested.
Presently available anti-viral therapeutic mAbs, at various stages of

pre-clinical evaluation, mostly target surface antigens that are often
diverse or variable in sequence (e.g. HIV gp160, influenza HA): their
efficiency thus requires challenging protein engineering efforts to ob-
tain antibodies that are either broadly neutralizing or robust against
viral escape through antigenic variation (drift). An alternative is the use
of “broadly neutralizing antibodies (bNAb)”, which are antibodies
found in infected mammals able to neutralize most strains of a given
highly antigenically variable pathogen. bNAbs have been isolated from
infected humans against HIV [84], influenza [85], and dengue viruses
[86]. Camelids could also be a source of bNAbs. Indeed antibodies
against MERS-Coronaviruses (MERS-CoV) [87–89], Crimean Congo
hemorrhagic fever virus (CCHFV) [90,91], Rift Valley fever (RFV) [90],
Toxoplasma gondii, and Rickettsia sp. [92] have been found in the sera
of infected camels, whereas antibodies against rabies virus, vesicular
stomatitis virus, and FMD virus have been detected in llamas [93] and
could lead to the possible isolation of specific broadly neutralizing
VHHs.

Many neutralizing VHHs that bind to different sites on the same
target, including hidden antigenic sites, can be isolated from im-
munized or infected camelids. These VHHs can be engineered in various
ways to improve their diagnostic and/or therapeutic properties and
efficacy. In addition, VHHs readily and rapidly penetrate tissues, even
the brain, and it is likely that specific VHH-based constructs will be
developed that can neutralize agents involved in brain infections, such
as influenza [68], Zika, or rabies virus. Overall, VHHs or VHH-based
molecules are potentially valuable diagnostic and therapeutic reagents
to treat ZDs.
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