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The ability of Staphylococcus aureus to infect many different tis-
sue sites is enabled, in part, by its transcriptional regulatory net-
work (TRN) that coordinates its gene expression to respond to
different environments. We elucidated the organization and activ-
ity of this TRN by applying independent component analysis to a
compendium of 108 RNA-sequencing expression profiles from two
S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the
S. aureus transcriptome into 29 independently modulated sets of
genes (i-modulons) that revealed: 1) High confidence associations
between 21 i-modulons and known regulators; 2) an association
between an i-modulon and σS, whose regulatory role was previ-
ously undefined; 3) the regulatory organization of 65 virulence
factors in the form of three i-modulons associated with AgrR,
SaeR, and Vim-3; 4) the roles of three key transcription factors
(CodY, Fur, and CcpA) in coordinating the metabolic and regula-
tory networks; and 5) a low-dimensional representation, involving
the function of few transcription factors of changes in gene ex-
pression between two laboratory media (RPMI, cation adjust
Mueller Hinton broth) and two physiological media (blood and
serum). This representation of the TRN covers 842 genes represent-
ing 76% of the variance in gene expression that provides a quan-
titative reconstruction of transcriptional modules in S. aureus, and
a platform enabling its full elucidation.
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The pathogen Staphylococcus aureus causes a variety of human
diseases, ranging from skin and soft tissue infections to in-

fective endocarditis and pneumonia (1). The pathogen can also
thrive as part of the commensal microbiome in the anterior nares
of healthy patients (2). S. aureus adaptation to many different
host environments is enabled, in part, by the underlying tran-
scriptional regulatory network (TRN) that can alter the physio-
logical state of the cell to match the unique challenges presented
by each environment (3–5). Such adaptations require co-
ordinated expression of genes in many cellular subsystems, such
as metabolism, cell wall biosynthesis, stress response, virulence
factors, and so forth. Therefore, a complete understanding of the
S. aureus response to different environments necessitates a
thorough understanding of its TRN. However, since S. aureus is
predicted to have as many as 135 transcriptional regulators (6),
with many more potential interactions among them, a bottom-up
study of its global TRN becomes intractable.
To address this challenge, we previously introduced an in-

dependent component analysis (ICA)-based framework in
Escherichia coli that decomposes a compendium of RNA-
sequencing (RNA-seq) expression profiles to determine the
underlying regulatory structure (7). An extensive analysis of
module detection methods demonstrated that ICA out-
performed most other methods in consistently recovering known
biological modules (8). The framework defines independently

modulated sets of genes (called i-modulons) and calculates the
activity level of each i-modulon in the input expression profile.
ICA analysis of expression profiles in E. coli have been used to
describe undefined regulons, link strain-specific mutations with
changes in gene expression, and understand rewiring of TRN
during adaptive laboratory evolution (ALE) (7, 9). Given the
deeper insights it provided into the TRN of E. coli, we sought to
expand this approach to the human pathogen S. aureus. To
elucidate the TRN features in S. aureus, we compiled 108 high-
quality RNA-seq expression profiles for community-associated
methicillin-resistant S. aureus (CA-MRSA) strains LAC and
TCH1516. Decomposition of these expression profiles revealed
29 independently modulated sets of genes and their activity
levels across all 108 expression profiles. Furthermore, we show
that using the new framework to reevaluate the RNA-seq data
accelerates discovery by: 1) Quantitatively formulating TRN
organization, 2) simplifying complex changes across hundreds of
genes into a few changes in regulator activities, 3) allowing for
analysis of interactions among different regulators, 4) connecting
transcriptional regulation to metabolism, and 5) defining pre-
viously unknown regulons.

Significance

Staphylococcus aureus infections impose an immense burden
on the healthcare system. To establish a successful infection in
a hostile host environment, S. aureus must coordinate its gene
expression to respond to a wide array of challenges. This bal-
ancing act is largely orchestrated by the transcriptional regu-
latory network. Here, we present a model of 29 independently
modulated sets of genes that form the basis for a segment of
the transcriptional regulatory network in clinical USA300
strains of S. aureus. Using this model, we demonstrate the
concerted role of various cellular systems (e.g., metabolism,
virulence, and stress response) underlying key physiological
responses, including response during blood infection.
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Results
ICA Extracts Biologically Meaningful Components from Transcriptomic
Data. We generated 108 high-quality RNA-seq expression profiles
from CA-MRSA USA300 isolates LAC and TCH1516 and two
additional ALE-derivatives of TCH1516. To capture a wide range
of expression states, we collected RNA-seq data from S. aureus
exposed to various media conditions, antibiotics, nutrient sources,
and other stressors (Dataset S3). The samples were then filtered for
high reproducibility between replicates to minimize noise in the
data (SI Appendix, Fig. S1A). The final dataset contained 108
samples representing 43 unique growth conditions, which have
an average R2 = 0.98 between replicates. Using an extended
ICA algorithm (7), we decomposed the expression compen-
dium into 29 i-modulons. An i-modulon contains a set of genes
whose expression levels vary concurrently with each other, but
independently of all other genes not in the given i-modulon.
Akin to a regulon (10), an i-modulon represents a regulatory or-
ganizational unit containing a functionally related and coexpressed
set of genes under all conditions considered (Fig. 1A). While regulons
are determined based on direct molecular methods (e.g.,
chromatin immunoprecipitation sequencing [ChIP-seq], RNA
immunoprecipitation-ChIP, gene-knockouts, and so forth), i-modulons

are defined through an untargeted ICA-based statistical approach
applied to RNA-seq data that is a reflection of the activity of the
transcriptional regulators (Materials and Methods). However,
beyond regulons, i-modulons can also describe other genomic
features, such as strain differences and genetic alterations (e.g.,
gene knockout) that can lead to changes in gene coexpression
(7, 9). The outcome of this approach is a biologically relevant,
low-dimensional mathematical representation of functional modules
in the TRN that reconstruct most of the information content of the
input RNA-seq compendium (SI Appendix, Fig. S1B).
Such formulation also quantitatively captures complex be-

haviors of regulators, such as contraregulation of multiple genes
by the same regulator, coregulation of the same gene by multiple
regulators, and coordinated expression of multiple organiza-
tional units (i-modulons) in various conditions (SI Appendix, Fig.
S1 C and D). Therefore, this model enables simultaneous anal-
ysis of TRNs at both the gene and genome-scale. ICA also re-
constructs the activity of the i-modulons in the samples, which
represents the collective expression level of the genes in the
i-modulon. Each sample in the dataset can be reconstructed as
the summation of the activity of the 29 i-modulons, which makes
the transcriptional state in each condition more explainable.
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Fig. 1. ICA decomposition of S. aureus USA300 RNA-seq database. (A) An i-modulon is a set of genes that are coexpressed and encode products with shared
functions. The PyrR i-modulon, for example (Middle column), is predicted to be under control of pyrR repressor and contains genes that encode enzymes in
pyrimidine biosynthesis (purple) and purine salvage (blue) pathway (Right column). The genes in two different pathways are contraregulated (arrows). (B)
Activity levels of i-modulons are calculated for all conditions (Upper bar chart), allowing for sample specific (e.g., in three different media) comparison of each
i-modulon (boxplot). The activity of all i-modulons are centered around CAMHB base condition, and therefore all i-modulons have mean activity of 0 in this
condition. The centerline of the boxplot represents median value, the box limits represent Q1 and Q3, and the whiskers represent the minimum and
maximum values. (C) A treemap indicating the names and the size of the i-modulons. The i-modulons are named after the transcription factors whose
predicted regulons have highest overlap with the given i-modulon, or based on the shared functionality of genes (e.g., autolysins, translation, B-lactam
resistance) in i-modulon if no known regulator was identified. The number in the parenthesis shows the number of genes in a given i-modulon. An i-modulon
with low or no correspondence with any of the known features is labeled as Unc-1. BLR, β-lactam resistance; SNFR i-modulon consists of genes with altered
expression in the SNFR strain.

Poudel et al. PNAS | July 21, 2020 | vol. 117 | no. 29 | 17229

M
IC
RO

BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental


Conversely, each i-modulon has a computed activity in every
sample, allowing for easy comparisons of i-modulon activities
across samples, that in turn reflect the activity of the corre-
sponding transcriptional regulator (Fig. 1B). The reported ac-
tivity levels are log2 fold-change from the base condition: Growth
in cation adjust Mueller Hinton broth (CAMHB). We compared
the gene sets in the 29 enriched i-modulons against previously
predicted S. aureus regulons in the Reg-Precise database and
other regulons described in various publications (Dataset S4).
I-modulons with statistically significant overlap (false-discovery
rate [FDR] < 1e-05) with a previously predicted regulon were
named after the transcription factor associated with the regulon
(Materials and Methods). We also manually identified i-modulons
that consisted of genes with shared functions (e.g., autolysins,
translation) or those that corresponded to other genomic fea-
tures, such as plasmids, prophages, or strain-specific differences.
Taking these data together, we identified 15 metabolic, 6 func-
tional, 3 virulence, 4 stress response-associated, and 1 strain-
associated (SNFR) i-modulons (Fig. 1C and Dataset S5). Of
the 29 enriched i-modulons, only 1 remains uncharacterized
(Dataset S6). In total, the 29 i-modulons consist of 752 unique
genes, 90 of which are enriched in more than 1 i-modulons.

ICA Disentangles Complex Change in the Transcriptome. Differential
expression analysis of S. aureus in different environmental con-
ditions can yield hundreds of genes that have significantly altered
expression levels, hindering meaningful interpretation. De-
composition of the expression profile into biologically mean-
ingful i-modulons instead allows us to gain a comprehensive
understanding of the change in the transcriptome through the
activities of few regulators. To demonstrate this capability, we
explored the difference in expression profiles of S. aureus grown
in two different media, CAMHB, the standard bacteriologic
medium for routine antimicrobial susceptibility testing world-
wide, and the common physiologically relevant mammalian tis-
sue culture medium RPMI-1640, supplemented with 10% Luria
broth (RPMI+10%LB) to support growth kinetics similar to
CAMHB. Over 800 genes spanning more than a dozen clusters
of orthologous groups (11) categories were differentially
expressed between the two media (SI Appendix, Fig. S2A).
Conversely, there were 15 i-modulons with statistically signif-

icant differential activation (Fig. 2A). Most differentially acti-
vated i-modulons were involved in metabolism (CodY, PurR,
guanine-responsive i-modulon [GR], Gal/Man, Rex, MntR,
PyrR, LacR, CcpA-1, CcpA-2, Urease). The last four i-modulons
were those with functions in virulence (Vim-3, SaeR), Trans-
lation, and the Phi-Sa3 phage-specific i-modulon. Concurrent
activation of the CodY, PurR, and GR i-modulons in
RPMI+10%LB indicates that this media presents a guanine-
limited environment, as activity of all three transcription fac-
tors decrease in response to falling cellular concentrations of
various forms of guanine derivatives (12–15). Consistent with
this hypothesis, we also saw decreased activity of the Translation
i-modulon in RPMI+10%LB. Down-regulation of translation
machinery often occurs during the stringent response, where
cellular GTP is depleted as it is rapidly converted to ppGpp (12,
16–18). Similarly, activation of the MntR i-modulon points to
manganese starvation in RPMI+10%LB, and the decreased
activity of two i-modulons associated with carbon catabolite re-
pressor CcpA (CcpA-1and CcpA-2) reflects a glucose replete
environment (19). Analysis of spent media using HPLC con-
firmed that S. aureus was actively uptaking glucose in
RPMI+10%LB while no glucose was detected in CAMHB (SI
Appendix, Fig. S2B). The shift in activity of i-modulons between
the two media suggests that compared to the bacteriologic me-
dium CAMHB, RPMI+10%LB presents an environment poor
in purines (specifically guanine) and manganese but rich in the
carbon source glucose.

Next, we designed two validation experiments to ensure that
the activity level of i-modulons reflect expected outcomes. To
this end, we chose three i-modulons to validate—CcpA-1, CcpA-
2, and GR—for ease of modifying their activities with supple-
mentation of glucose and purines, respectively. CcpA is the
carbon catabolite repressor in S. aureus that controls central
carbon metabolism and carbon source utilization (20, 21). Its
activity level is indirectly modulated by cellular glucose concen-
tration, although it can also be altered by other glucose-
independent signals (22, 23). CcpA transcriptional effects are
captured in two i-modulons, CcpA-1 and CcpA-2, which contain
73 and 19 genes, respectively. Both i-modulons had far lower
activity in RPMI+10%LB compared to CAMHB. However, the
addition of 2 g/L glucose only led to reduced activity of the
CcpA-1 i-modulon in CAMHB, closely matching its activity in
RPMI+10%LB (Fig. 2B). Similarly, replacement of glucose with
maltose in RPMI+10%LB led to increased activity of the CcpA-
1 i-modulon. The change in glucose concentration, however, had
little effect on the activity level of the CcpA-2 i-modulon, sug-
gesting that the CcpA-1 i-modulon represents direct glucose-
responsive CcpA activity, where as the CcpA-2 i-modulon may
reflect its glucose-independent activity.
In addition to CcpA activity, we also confirmed the activity of

the GR i-modulon. The GR i-modulon contains genes involved
in the purine salvage pathway (xpT, pbuX), peptide transport
(oppB), and LAC-specific virulence factor ssl11. The two genes
in the salvage pathway have been previously demonstrated to be
under the control of the guanine riboswitch in S. aureus strain
NRS384 (15). The presence of this riboswitch was confirmed
using the online RiboSwitch Finder (SI Appendix, Fig. S2 C and
D) (24); no riboswitches were detected for the other two genes.
The activity of the i-modulon was attenuated by guanine sup-
plementation (25 μg/mL), while the addition of adenine had no
effect, demonstrating a guanine-specific activity of the i-modulon
(Fig. 2C).
We additionally validated activities of Agr and PurR

i-modulons using publically available expression-profiling data-
sets (GSE18793 and GSE132179) (25, 26). These datasets in-
clude expression profiles comparing wild-type USA300 strains to
their isogenic agr and purR mutants. As a form of external vali-
dation, we did not incorporate these data into the model. Instead
we projected the expression data onto the model to convert the
gene-expression levels to i-modulon activity levels (Materials and
Methods). Compared to their respective wild-types, PurR
i-modulon had the largest increase in activity in purR::bursa
strain and Agr i-modulon showed the largest drop in activity in
the strain with a disrupted agr system, demonstrating that the
model can capture activities of these i-modulons in the condi-
tions not included in the model (Fig. 2D).
Integration of i-modulons with genome-scale metabolic mod-

els (GEMs) reveal systems-level properties of metabolic regu-
lation. GEMs are knowledge-bases reconstructed from all known
metabolic genes of an organism, systematically linking metabo-
lites, reactions, and genes (27). Integration of i-modulons with
these metabolic models allows us to probe the interaction be-
tween the regulatory and metabolic networks. To visualize this
cross-talk at the systems level, we overlaid the i-modulons onto
central metabolism and amino acid metabolism pathways of the
S. aureus metabolic reconstruction iYS854 (Fig. 3A) (28). The
CcpA-1 and CodY i-modulons dominate regulation of the genes
in these metabolic subsystems of S. aureus. The two CcpA
i-modulons controlled many of the genes in carbon metabolism.
The genes required for the tricarboxylic acid (TCA) cycle were
found primarily in the CcpA-1 i-modulon, with the exception of
genes encoding fumarase and malate dehydrogenase. Additionally,
the CcpA-1 i-modulon contained genes required for degradation of
gluconeogenic amino acids (serine, histidine, and alanine) and secondary
metabolites (chorismate and N-acetyl-neuraminic acid). Also
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included were genes encoding two key gluconeogenic en-
zymes, phosphoenolpyruvate carboxy kinase and fructose-1,6-
bisphosphatase. Genes involved in transport of alternate car-
bon sources were also present.
In contrast to catabolic CcpA-regulated genes, the i-modulon

associated with CodY regulation was dominated by genes par-
ticipating in biosynthesis of amino acids lysine, threonine, me-
thionine, cysteine, histidine, and branched chain amino acids
(BCAA) isoleucine, leucine, and valine (13). Regulation of in-
terconversion between glutamine and glutamate (gltA), a key
component of nitrogen balance and assimilation, was also a part
of the CodY i-modulon. While the two i-modulons (CcpA-1,
CodY) did not share any genes, they intersected at some key
metabolite nodes in central metabolism, including pyruvate,
glutamate, histidine, and arginine. Genes in the CcpA-1
i-modulon encode enzymes that generate pyruvate from amino
acids and use the pyruvate to generate energy through fermen-
tation, synthesize glucose via gluconeogenesis, or synthesize fatty
acids via malonyl-coA. On the other hand, enzymes encoded by
genes in the CodY i-modulon redirect pyruvate to instead syn-
thesize BCAA (isoleucine, leucine, and valine). Similarly, glu-
tamate is directed toward the urea cycle by CcpA-1 and toward
biosynthesis of the aspartate family amino acids by CodY. While
genes required for catabolism of histidine are in the CcpA-1

i-modulon, genes encoding histidine biosynthesis is instead part
of the CodY i-modulon. Interestingly, while CcpA regulates
L-arginine synthesis from L-proline (via putA and rocD), CodY-
regulated genes involved in L-arginine synthesis from L-gluta-
mate (argJ and argB). This dichotomy, combined with the ob-
servation that isoleucine affects CodY-dependent repression
(13), explains why none of argJBCF were expressed in
JE2 ccpA::tetL in CDM, a BCAA-rich medium (29). It is likely
that CodY-and CcpA-mediated repression are both active in
CDM. By controlling the expression of these key metabolic
genes, CcpA-1and CodY i-modulons can readily redirect the
fluxes through different metabolic subsystems.

GEMs Compute Flux-Balanced State that Reflect Regulatory Actions
of CcpA. Metabolic network reconstructions can be converted
into genome-scale models that allow for the computation of
phenotypic states (30). We can compute the optimal flux through
the metabolic network using flux-balance analysis (FBA) (28). In
particular, we can compute the metabolic state that is consistent
with nutrient sources in a given environment to support optimal
bacterial growth. In the previous CcpA i-modulon validation exper-
iment, we observed that changing the carbon source from glucose to
maltose in RPMI+10%LB also led to an unexpected spike in ac-
tivity of the iron-responsive Fur i-modulon (SI Appendix, Fig. S3).

A

B

CodY

PurR
GR
SaeR
MntR

Rex

Gal/Man.
LacR
Vim-3
Phi-Sa3
Urease
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PyrR

Translation
CcpA-1

C

D

Fig. 2. Differential activation of i-modulons in different media conditions. (A) I-modulons from the LAC strain with statistically significant (P < 0.05) dif-
ferential activation in CAMHB versus RPMI+10%LB. (B) Addition of glucose reduced the activity of CcpA-1 in CAMHB (blue bars). Conversely, replacing glucose
with maltose led to higher CcpA-1 activity in RPMI+10%LB. CcpA-2 activity did not change in response to glucose concentration (red bars). (C) The bar plot
shows the activity level of GR i-modulon, which contains the genes under the control of guanine riboswitch (xpt and pbuG). Although many different
conditions can affect the GR i-modulon activity (blue bar), it sharply decreases when guanine is added to the media. Addition of adenine has no effect. Black
dots in B and C represent values from individual samples and error bars represent SD. (D) External validation of Agr and PurR i-modulon activity in the
respective agr and purR mutants.
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To investigate whether there was a possible metabolic role
explaining the increase in Fur activity, we generated two condition-
specific GEMs (csGEMs), starting with iYS854 (28). For both
csGEMs, we computed the state of the metabolic network that
supports growth in RPMI+10%LB, with either glucose or maltose
as the main carbon source (Materials and Methods). We assumed
that CcpA-1 repression was active only when glucose was the main
glycolytic nutrient source (and the corresponding set of reactions
was shut off). Reaction fluxes across the network were then sampled
using FBA, assuming that the bacterial objective was biomass
production (31). Sampling accounts for different network flux
distributions that can achieve the same optimal solutions (i.e., iden-
tical biomass production rates).
Under these conditions, the sum of sampled fluxes through

reactions associated with the Fur i-modulon was significantly
higher in maltose media (Kolmogorov–Smirnov test, P < 0.01,
statistics > 0.9), confirming that the spike in Fur activity could be
a result of metabolic flux rewiring (Fig. 3B). In particular, fluxes
through serine kinase (sbnI, a precursor metabolic step of
staphyloferrin B biosynthesis) and ornithine cyclodeam-inase
(sbnB) were significantly increased (Fig. 3C). These changes
came as a result of flux rewiring away from deactivated metabolic
steps. For example, due to arginase (rocF) deactivation, the flux
through half of the urea cycle and ornithine cyclodeaminase was
lower. Similarly, serine deaminase (sdaB)—located two meta-
bolic steps downstream of serine kinase—was deactivated due to
simulated down-regulation of genes in the CcpA-1 i-modulon,
and flux through phosphoglycerate dehydrogenase, serine kinase,
and phosphoserine phosphatase was decreased. We computed
the sum of fluxes producing each metabolite as a proxy for

intracellular concentrations and found that the calculated values
were significantly larger in maltose media for 68 metabolites,
including ammonium, glutamate, and isocitrate. The majority of
the TCA cycle was shut off in the glucose-specific GEM (due to
simulated repression of citB, icd, odhA, sdhABCD, and sucCD),
and therefore the concentration proxy for isocitrate was essen-
tially null while that of citrate was not (Fig. 3D). Previous studies
have shown that citB deletion results in increased intracellular
concentration of citrate (32). Apart from being an intermediate
in the TCA cycle, citrate can be utilized in the model as a pre-
cursor to staphyloferrin A and staphyloferrin B biosynthesis
(which are included in the Fur i-modulon), or it can be converted
back to oxaloacetate and acetate via citrate lyase. All three
routes were part of the solution space, with citrate lyase carrying
the largest median flux. Taken together, these modeling simu-
lations suggest that utilizing maltose instead of glucose induces
metabolic flux rewiring toward reactions associated with the Fur
i-modulon.

An i-Modulon Details Possible Scope and Functions of Sigma Factor
σS. Global stress response in S. aureus is modulated by the al-
ternate sigma factor σB (33, 34). Alhough two other alternate
sigma factors, σS and σH, have been recognized in this organism,
their exact functions and full regulon are not as well understood
(35, 36). We identified two i-modulons that correspond to sigma
factors σB and σS. The SigB i-modulon contained genes encoding
σB (sigB), anti-σB (rsbW), and anti-σB antagonist (rsbV). The
activity of SigB i-modulon was correlated with sigB expression
(Pearson R = 0.55, P = 8.2e-11) (Fig. 4A), with the highest
activation in stationary phase (OD600 = 1). Furthermore, a conserved
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29-bp motif was enriched from 28 unique regulatory regions of SigB
i-modulon genes (Methods and Materials and SI Appendix, Fig. S4A).
As the regulatory role of σB has been previously explored in detail
(34, 37–40), we focused here on the less understood regulatory role
of σS. Although σS is important for both intracellular and extracel-
lular stress response, its full regulon has yet to be defined (36, 41).
ICA identified a large i-modulon with 137 genes, including sigS itself
(which encodes σS). As with the SigB i-modulon, expression of the
sigS gene correlated to activity of the ICA-derived SigS i-modulon
(Pearson R = 0.77, P = 4.26e-22) (Fig. 4B). Previous studies have
shown that CymR represses sigS expression and therefore may lead
to its decreased activity (42). We confirmed this relationship as the
SigS i-modulon activity was anticorrelated with the CymR i-modulon
activity (Pearson R = −0.68, P = 8.23e-10) (SI Appendix, Fig. S4B).
To further characterize σS, we looked for conserved motifs in

the regulatory regions of the genes in the i-modulon and found a
21-bp purine-rich motif (E-value = 7.7e-8) in the regulatory re-
gion of at least 56 genes in the SigS i-modulon (Fig. 4C).
Comparisons against a known prokaryotic motif database
revealed that the S. aureus σS motif was most similar to that of
the σB (MX000071) motif in Bacillus subtilis (E-value = 1.62e-
02) (Materials and Methods). Next, we analyzed the distance
between the center of the motif and the transcription initiation
site. For most genes, the motif was present at or around 35 bp
upstream of the translation start site, although motifs were also
found further upstream (Fig. 4D). Of the 137 genes in the
i-modulon, only 56 (41%) had an assigned function in the ref-
erence genome, further highlighting our limited understanding
of σS functionality. However, many of the annotated gene
products were key factors in controlling cellular state. These
included factors regulating virulence (sarA, sarR, sarX), antimi-
crobial resistance (cadC, blaI), metabolism (arcR, argR), cell wall
biogenesis (vraRST), biofilm formation (icaR), and DNA dam-
age repair (recX). Genes encoding proteins critical for stress
response, such as universal stress protein (Usp), toxin MazF,
competence proteins ComGFK, and cell division protein were
also present.

The SigS i-modulon also plays a critical role in the so-called
“fear vs. greed” trade-off in S. aureus. Previously described in
E. coli, this trade-off describes the allocation of resources toward
optimal growth (greed) versus allocation toward bet-hedging
strategies to mitigate the effect of stressors in the environment
(fear) (7, 43). This balance is reflected in the transcriptome
composition as an inverse correlation between the activities of
the stress-responsive SigS i-modulon and the Translation
i-modulon (Fig. 4E). Unlike E. coli, however, this relationship
was independent of growth rate, as growth rate had weak cor-
relation with Translation i-modulon expression activity (Pearson
R = 0.094, P = 0.514). Interestingly, mapping this trade-off
highlighted a possible difference in survival strategy between
the two USA300 strains. TCH1516 tended toward a greedy
strategy with high Translation i-modulon activity, while LAC was
more likely to rely on bet-hedging or fear.

ICA Reveals Organization of Virulence Factor Expression. ICA cap-
tured systematic expression changes of several genes encoding
virulence factors. Previous studies described over half a dozen
transcription factors with direct or indirect roles in regulation of
virulence factor expression in S. aureus (44). The number of
regulators, and their complex network of interactions, make it
extremely difficult to understand how these genes are regulated
at a genome scale. In contrast, ICA identified only three
i-modulons (named Agr, SaeR, and Vim-3) that were mostly
composed of virulence genes (Fig. 5A). The activity level of Agr
had extremely low correlation with that of SaeR and Vim-3,
suggesting that Agr may have only limited cross-talk with the
other two i-modulons in our conditions (SI Appendix, Fig. S5A).
However, the activity levels of SaeR and Vim-3 were negatively
correlated (Pearson R = −0.57, P = 8.6e-11). As the two
i-modulons contain different sets of virulence factors, the nega-
tive correlation points to a shift in the virulence state where
S. aureus may adopt different strategies to thwart the immune
system. Collectively, the three virulence i-modulons revealed
coordinated regulation of 65 genes across the genome. These
results suggest that the complexity behind virulence regulation

A B
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D

E

Fig. 4. Profiling alternate sigma factor S. The expression levels of sigB (A) and sigS (B) genes and the activity levels of their respective i-modulons show strong
positive correlation. (C) The regulatory region (150 bp upstream of the first gene in operon) of genes in the SigS i-modulon contained a conserved purine-rich
motif. (D) The positions (relative to transcription start site) of the enriched motif within the regulatory sites of genes in the SigS i-modulon. For many genes in
the SigS i-modulon, the motif was present 35 bp upstream of the translation start site. (E) Greed vs. fear trade-off is reflected in the activity of the Translation
(greed) and SigS (fear) i-modulons. LAC showed increased propensity for fearful bet-hedging strategy while TCH1516 relied on a greedier strategy.
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can be decomposed into discrete signals and the virulence
state of S. aureus can be defined as a linear combination of
these signals.
The SaeR i-modulon contained 27 genes, including the genes

for the SaeRS two-component system. The activity level of this
i-modulon strongly correlated with the expression level of saeRS,
further supporting the idea that the genes in this i-modulon are
regulated (directly or indirectly) by SaeRS (Pearson R = 0.80,
P = 1.38e-25). Furthermore, the virulence genes chp, coa, ssl11,
sbi, map, lukA, and scn, previously reported to be under the
control of SaeRS (45), were also found in this i-modulon. The
activity of SaeR i-modulon was strongly associated with purine
metabolism. PurR, the transcription factor that regulates the
genes of purine biosynthesis, has been recently implicated in
regulation of virulence factors (25, 46). Consistent with this ob-
servation, the activity level of the SaeR i-modulon correlated
well (Pearson R = 0.77, P = 8.9e-23) with the activity of the PurR
i-modulon (Fig. 5B). Thus, SaeR may act as a bridge between
virulence and metabolism.
Similarly, the Agr i-modulon contained the agrABCD genes

involved in regulation of the quorum-sensing agr regulon (47,
48). As most of our samples were collected during early- to
midexponential growth phase, the Agr i-modulon remained in-
active in these conditions (SI Appendix, Fig. S5B). Only acidic
conditions (pH 5.5) and treatment with translation inhibitors
linezolid and mupirocin activated Agr during exponential growth
(Fig. 5C). Both pH- and translation inhibition-dependence of agr
expression have been previously reported (49–52). Un-
expectedly, the Agr i-modulon was activated to a much greater
extent by these factors than high cell density (OD 1.0), for which
its role in quorum sensing is extensively characterized.
The Vim-3 virulence i-modulon consisted of genes required

for siderophore and heme utilization (sbnABC, hrtAB), capsule
biosynthesis (cap8a, capBC, cap5F), and osmotic tolerance (kdpA,

betAT, gbsA). The Vim-3 i-modulon had maximal activity under a
hyperosmotic condition introduced by 4% NaCl and when grown
to stationary phase (OD 1.0) in CAMHB (SI Appendix, Fig. S5C).
The increased expression of capsule biosynthesis genes have been
shown to be responsive to change in osmotic pressure as well as
iron starvation, which is consistent with the inclusion of iron
scavenging and osmotic tolerance genes in the i-modulon with the
capsular biosynthesis genes (53, 54).
We further identified a prophage Phi-Sa3–associated i-modulon

as a putative i-modulon required for virulence. The Phi-Sa3
i-modulon consists of genes in the Phi-Sa3 prophage and several
genes encoding DNA replication and repair enzymes. Excluded
from the i-modulon were the virulence factors that were horizon-
tally acquired along with the phage (scn and chp) (55), which now
fell under the control of SaeR. Of the four phages in S. aureus
strain Newman, Phi-Sa3 is the only prophage that is unable to
generate complete viral particles when challenged with DNA
damaging agent mitomycin (56). However, evidence suggests
that this prophage is still active in USA300 strains and its genes
are expressed during lung infection, where it may play a role in
establishing infection (57). Corroborating this hypothesis, we
found that the activity of the Phi-Sa3 i-modulon correlated highly
with the Vim-3 i-modulon (Pearson R = 0.62, P = 9.9e-13)
(Fig. 5D). As the Phi-Sa3 i-modulon does not contain any virulence
genes, the phage itself may play an accessory role in establishing
virulence.

ICA model Provides a Platform for In Vivo Data Interpretation.
Transcriptomic models based on ICA can also be used to in-
terpret new in vivo and ex vivo expression profiles, leading to
greater clarity when compared to analysis with a graph-based
TRN model (SI Appendix, Supplementary Note 1). Expression
profiling data can be projected onto the i-modulon structure of
the TRN, derived from our dataset, to convert the values from
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Fig. 5. Global regulation of virulence factors. (A) The three virulence i-modulons (SaeR, Agr, Vim-3) and the genomic positions of the genes in their re-
spective i-modulons are mapped. The signals encode over 25 virulence factor-associated genes. (B) PurR i-modulon activity is highly correlated with virulence
i-modulon SaeR. (C) Challenge with low pH, linezolid, and mupirocin leads to strong activation of agr in exponential growth phase. Interestingly, this ac-
tivation is stronger than that induced by stationary phase (OD600 = 1.0). Activation of agr was much weaker under all other experimental conditions con-
sidered (Upper bar chart). (D) Coactivation of Phi-Sa3 i-modulon with virulence i-modulon Vim-3.
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gene-expression levels to i-modulon activity levels (Materials and
Methods). This projection can supplement gene differential ex-
pression analysis by identifying regulators that are driving the
large changes in gene expression often seen in vivo.
We projected microarray data (GSE61669) taken at 24 h

postinfection from a rabbit skin infection model (58). After 24 h,
1,232 differentially expressed genes were reported. Projection of
the data on to the model showed that these changes in differ-
ential expression are being driven by simultaneous activation of
CodY and Fur i-modulons and inactivation of SigB, PurR, Agr,
and Translation i-modulons (Fig. 6A).
In time-course data, projecting expression data onto the model

can also help us understand the dynamics of different regulators
during infection. We projected previously published time-course
microarray data collected from S. aureus USA300 LAC grown in
tryptic soy broth (TSB), human blood, and serum (59). Bacteria
grown to an exponential phase in TSB was used as inoculum for
all samples; we used this as our new base condition for the
projected data. Therefore, all i-modulon activity levels in this set
represent log2 fold-change in activity from this base condition.
Once transferred to serum, the activities of Fur and CodY
i-modulons in serum increased dramatically, with Fur being ac-
tivated immediately after exposure to serum while CodY acti-
vated slowly over time to reach a similar level as Fur by 2 h
(Fig. 6B). The large change in activity coupled with the sizeable
number of genes in each i-modulon (80 and 45 genes in CodY
and Fur, respectively) indicates that S. aureus reallocates a
considerable portion of its transcriptome to reprogram amino
acid and iron metabolism in serum. PurR and SaeR activity also
increased, although their magnitude of change was dwarfed by
the changes in activities of CodY and Fur. On the other hand,
Agr activity declined and remained low over the 2-h period.
Because agr positively regulates a number of virulence genes,
dynamic changes in its activity level could be expected in serum.

Consistent with the model prediction, previous studies have
demonstrated that agr transcription is dampened in human se-
rum due to sequestration of autoinducing peptide by human
apolipoprotein B (60, 61).
We next calculated the differences in i-modulon activities in

blood and serum at the final 2-h time point. Fur, CodY, PurR,
SaeR, and Agr had similar activity levels in both blood and se-
rum (Fig. 6B). Therefore, the activities of these regulators are
likely governed by the noncellular fraction of the blood.
I-modulons PyrR, SigB, Translation, VraR, CcpA-1, and CcpA-2
had higher activity levels in blood than in the serum (Fig. 6C).
Glucose concentration in blood is lower than in serum, which
likely explains the shift in CcpA-1 activity (62). The lower glu-
cose concentration relieves CcpA-mediated repression of its
regulon, leading to higher expression. The shift in the PyrR
i-modulon also corroborates previous study, which demonstrated
that S. aureus strain JE2 (a derivative of LAC) requires more
pyrimidine when growing in blood than in serum (63). The sig-
nals or cues driving the change in activity of the other i-modulons
(SigB, Translation, VraR, and CcpA-2) remains unknown.
Overall, the i-modulon analysis revealed that during acute in-
fection, CodY and Fur play key roles in rewiring the S. aureus
metabolism in serum and blood when compared to TSB, while
SaeR (and not Agr) drives the virulence gene expression. In
addition, SigB, Translation, and VraR i-modulons are uniquely
activated by the cellular fraction of the blood and may thus be
responding to unique stresses they impart. However, these ob-
servations are limited as the baseline for comparisons for most of
these analyses were in vitro growth in TSB. Although the dif-
ferentially activated i-modulons may point to important roles
that each of the associated regulators play during acute infection,
further analysis is still required to understand their relative
contribution. The model is also limited in that it is currently
blind to the regulators that are not captured in any of the
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Fig. 6. ICA analysis of in vivo and ex vivo data. (A) Change in i-modulon activities at 24 h postinfection in a rabbit skin infection model. (B) Activity levels of
select i-modulons in serum over the 2-h time period. The thick line represents the mean activity across all replicates and the thin line represents activity in each
individual replicate (n = 4). Activity levels were around the inoculum values, (C) Comparison of i-modulon activity between serum and blood and 2-h time
point. The dashed red line is the 45° line; i-modulons below the line have higher activity in blood and those above the line have higher activity in serum. Red
shaded area contains i-modulons with less than fivefold change in activity in both conditions.
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29 i-modulons. This limitation will be alleviated over time as we
incorporate more RNA-seq data that is being generated at an
ever-increasing pace.

Discussion
Here, we described an ICA-based method to elucidate the or-
ganization of the modules in TRN in S. aureus USA300 strains.
Using this method, we identified 29 independently modulated
sets of genes (i-modulons) and their activities across the sampled
conditions. This framework for exploring the TRN provides
three key advantages over traditional methods, especially when
working with nonmodel organisms: 1) The method provides an
explanatory reconstruction of the TRN; 2) it is an untargeted,
and therefore unbiased, approach; and 3) the approach utilizes
expression profiling data, an increasingly ubiquitous resource.
First, i-modulons quantitatively capture the complexities of

transcriptional regulation and enable a new way to systematically
query the transcriptome. By recasting the data in terms of ex-
planatory i-modulons, we gained a deeper understanding of large
changes in transcription profiles between CAMHB bacteriologic
media and the more physiologically relevant mammalian tissue
culture-based media RPMI+10%LB. The analysis reduced the
number of features needed to capture most of the information in
the transcriptome from hundreds of genes to 15 i-modulons.
Additionally, quantified activity levels of i-modulons also en-
abled integration of regulatory activity with metabolic models
and revealed coordination between metabolic and regulatory
networks. Such reduction in complexity and the integration of
different aspects of S. aureus biology (e.g., virulence, metabolism,
stress response, and so forth) will be crucial to understanding the
mechanisms that enable successful infection in vivo.
Second, this method presents a platform for untargeted, global

analysis of the TRN. Due to its untargeted nature, we also
identified two key virulence features of S. aureus. ICA revealed
coordinated regulation of genes in capsule biosynthesis, osmotic
tolerance, and iron starvation (Vim-3 i-modulon). Both capsule
formation and siderophore scavenging are important in nasal
colonization (64, 65). Similarly, growth of S. aureus in synthetic
nasal medium (SNM3) increases the expression of genes re-
quired for osmotolerance. Therefore, theVim-3 i-modulon may
represent a concerted regulation of genes required for successful
nasal colonization. We also identified the Phi-Sa3 phage
i-modulon, whose activity level correlated with that of the Vim-3
i-modulon. The Phi-Sa3 i-modulon did not include the virulence
genes (e.g., sak, scn, and others) that were acquired with the
phage, suggesting that phage-replication genes were expressed
independently of the virulence genes. Given that its activity was
correlated with Vim-3, this phage may also play an important
role in nasal colonization.
Finally, ICA uses RNA-seq data to extract information about

the TRN, making it more accessible to nonmodel organisms,
including S. aureus. Reconstructing the TRN with traditional
methods is highly resource intensive, as they require targeted
antibodies or specialized libraries of plasmids containing all
transcription factors of interest (66). While these approaches
have given us great insights into TRNs of model organisms like
E. coli (10), such comprehensive data are not available for most
microbes. Several studies have attempted to circumvent this by
comparing the expression profiles of wild-type S. aureus strains
with their counterpart with either knocked out or constitutively
active transcription factors. However, these approaches often
overestimate the regulatory reach of the transcription factor, as
such genetic changes can trigger the differential expression of
genes not directly under the regulator’s control. By identifying
i-modulons consisting of independently regulated sets of genes,
the ICA-based method improves on these approaches as it able
to segregate specific regulator targets (7). While many expres-
sion profiles are required to build such a model, a rapidly

growing number of expression profiles are already publicly
available on the Gene Expression Omnibus. Indeed, utilizing
only RNA-seq data, we predicted the previously unknown reg-
ulon of stress-associated sigma factor σS and its possible roles in
biofilm formation and general stress response. With the growing
number of available expression profiles, such characterizations
can be extended to other undefined or poorly defined regulons.
Therefore, in the absence of a comprehensive set of targeted
antibodies against S. aureus transcription factors, reanalyzing the
publicly available database with ICA could be used to further
reconstruct its TRN.
We have shown that ICA-based decomposition can be utilized

to build a quantitative and explanatory model of S. aureus TRN
from RNA-seq data. Application of this model enabled us to
query metabolic and regulatory cross-talk, discover new potential
regulons, find coordination between metabolism and virulence,
and unravel the S. aureus response during growth in blood. Due
to this versatility, this model and other models generated
through this framework may prove to be a powerful tool in any
future studies of S. aureus and other nonmodel organisms.

Materials and Methods
RNA Extraction and Library Preparation. S. aureus USA300 isolates LAC,
TCH1516, and ALE derivatives of TCH1516 (SNFR and SNFM) were used for
this study. The growth conditions and RNA preparation methods for data
acquired from Choe et al. has been previously described (67). Detailed
growth conditions, RNA extraction, and library preparation methods for
other samples have also been already described (68). Briefly, an overnight
culture of S. aureus was used to inoculate a preculture and were grown to
midexponential growth phase (OD600 = 0.4) in respective media (CAMHB,
RPMI+10%LB, or TSB). Once in midexponential phase, the preculture was
used to inoculate the media containing appropriate supplementation or
perturbations. Samples were collected at ODs and time points indicated in
the metadata (Dataset S3). All samples were collected in biological dupli-
cates, originating from different overnight cultures. Samples for control
conditions were collected for each set to account for batch effect.

Determining Core Genome with Bidirectional BLAST Hits. To combine the data
from the two strains, core genome-containing conserved genes between the
LAC (GenBank: CP035369.1and CP035370.1) and TCH1516 (GenBank:
NC_010079.1, NC_012417.1, and NC_010063.1) were first established using
bidirectional BLAST hits (69). In this analysis, all protein sequences of CDS
from both genomes are BLASTed against each other twice with each ge-
nome acting as reference once. Two genes were considered conserved (and
therefore part of the core genome) if 1) the two genes have the highest
alignment percent to each other than to any other genes in the genome,
and 2) the coverage is at least 80%.

RNA-Seq Data Processing. The RNA-seq pipeline used to analyze and perform
QC/QA has been described in detail previously (68). Briefly, the sequences
were aligned to respective genomes, LAC or TCH1516, using Bowtie2 (70,
71). The samples from ALE derivatives, SNFM and SNFR, were aligned to
TCH1516. The aligned sequences were assigned to ORFs using HTSeq-counts
(72). Differential expression analysis was performed using DESeq2 with a
P-value threshold of 0.05 and an absolute fold-change threshold of 2 (73). To
create the final counts matrix, counts from conserved genes in LAC samples
were represented by the corresponding ortholog in TCH1516. The counts for
accessory genes were filled with 0s if the genes were not present in the
strain (i.e., LAC-specific genes had counts of 0 in TCH1516 samples and vice
versa). Finally, to reduce the effect of noise, genes with average counts per
sample <10 were removed. The final counts matrix with 2,581 genes was
used to calculate transcripts per million (TPM).

Computing Robust Components with ICA. The procedure for computing robust
components with ICA has been described in detail previously (7). Log2(TPM + 1)
values were centered to strain-specific reference conditions and used as input of
ICA decomposition. These conditions are labeled: “USA300_TCH1516_U01-
Set000_CAMHB_Control_1”, “USA300_TCH1516_U01-Set000_CAMHB_Control_2”
for TCH1516; and “USA300_LAC_U01-Set001_CAMHB_Control_1”, “USA300_LAC_U01-
Set001_CAMHB_Control_2” for LAC. Next, Scikit-learn (v0.19.0) implementa-
tion of the FastICA algorithm was used to calculate independent components
with 100 iterations, convergence tolerance of 10-7, log(cosh(x)) as contrast
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function and parallel search algorithm (74, 75). The number of calculated
components were set to the number of components that reconstruct 99%
of variance as calculated by principal component analysis. The resulting
S-matrices containing source components from the 100 iterations were clus-
tered with Scikit-learn implementation of the DBSCAN algorithm with e of 0.1,
and minimum cluster seed size of 50 samples (50% of the number of random
restarts). If necessary, the component in each cluster was inverted such that
the gene with the maximum absolute weighting the component was positive.
Centroids for each cluster were used to define the final weightings for S and
corresponding A matrix. The whole process was repeated 100 times to ensure
that the final calculated components were robust. Finally, components with
activity levels that deviated more than five times between samples in the same
conditions were also filtered out.

Determining Independently Modulated Sets of Genes. ICA enriches compo-
nents that maximize the nongaussianity of the data distribution. While
most genes have weightings near 0 and fall under Gaussian distribution in
each component, there exists a set of genes whose weightings in that
component deviate from this significantly. To enrich these genes, we used
Scikit-learn’s implementation of the D’Agostino K2 test, which measures
the skew and kurtosis of the sample distribution (76). We first sorted the
genes by the absolute value of their weightings and performed the K2 test
after removing the gene with the highest weighting. This was done iter-
atively, removing one gene at a time, until the K2 statistic falls below a
cutoff. We calculated this cutoff based on sensitivity analysis on agree-
ment between enriched i-modulon genes and regulons inferred by
RegPrecise (77). For a range of cutoff (between 200 and 600), we ran the
iterative D’Agostino K2 test on all components and checked for statisti-
cally significant overlap of i-modulons with the regulons predicted by
RegPrecise using Fisher’s exact test. For i-modulons with significant over-
lap, we also calculated precision and recall. The cutoff of 280, which led to
the highest harmonic average between precision and recall (F1-score), was
chosen as the final cutoff.

Designating Biological Annotations to i-Modulons. To designate proper an-
notations to i-modulons, we first compiled a dataset containing previously
predicted features, such as regulons, genomic islands, and plasmids. The reg-
ulons in the datasets were inferred by either the RegPrecise algorithm and by
RNA-seq analysis of transcription factor knockout strains or strains with con-
stitutively active transcription factors (Dataset S4) (67, 78–81). Genomic islands
were determined by the online IslandViewer4 tool (82) and phages were
identified with PHASTER (83). For studies using different strains of S. aureus
orthologs for TCH1516 and LAC were determined using bidirectional BLAST
hits. The enriched genes in i-modulons were compared against this dataset for
significant overlap using Fisher’s exact test with an FDR of 10 to 5. With this
analysis 15 i-modulons were enriched with high confidence (precision ≥ 0.5,
recall ≥ 0.2) and 7 were enriched with low confidence. Additionally,
i-modulons containing genes with shared functions (e.g., Translation and
B-lactam resistance) were annotated manually (Dataset S5).

Differential Activation Analysis. Distribution of differences in i-modulon ac-
tivities between biological replicates were first calculated and a log-norm
distribution was fit to the differences. In order to test statistical significance,
absolute value of difference in activity level of each i-modulon between the
two samples was calculated. This difference in activity was compared to the
log-normal distribution from above to get a P value. Because differences and
P value for all i-modulons were calculated, the P value was further adjusted
with Benjamini–Hochberg correction to account for multiple hypothesis
testing problem. Only i-modulons with change in activity levels greater than
5 were considered significant.

Motif Enrichment and Comparison. Genes were first assigned to operons based
on operonDB (84, 85). For i-modulon specific motif enrichments, a 150-bp
segment upstream of all of the genes in the i-modulons were collected. To
avoid enriching ribosome binding sites, the segment started from 15 bp
upstream of the translation start site. For genes in minus strand, the reverse
complement of the sequence was used instead. If genes were part of an
operon, then only the segment in front of the first gene in the operon was
used. Motifs and their positions were enriched from these segments using
the online Multiple Em for Motif Elicitation (MEME) algorithm (86, 87). The
following default parameters we reused: -dna -oc -mod zoops -nmotifs
3 -minw 6 -maxw 50 -objfun classic -revcomp -markov_order 0. Enriched
motifs were compared to combined prokaryotic databases CollecTF, Prodoric
(release 8.9), and RegTransBase (v4) using TomTom (88–91). The parameters

for TomTom were as follows: -oc -min-overlap 5 -mi 1 -dist pearson -evalue
-thresh 10.0.

Metabolic Modeling. We modeled growth in RPMI supplemented with iron,
manganese, zinc, and molybdate by setting the lower bound to the corre-
sponding nutrient exchanges in iYS854 to −1 mmol/gDW/h (the negative sign
is a modeling convention to allow for the influx of nutrients) (28), and −13
mmol/gDW/h for oxygen exchange (as measured experimentally). Addi-
tionally, to account for the utilization of heme by S. aureus terminal oxi-
dases, we removed heme A from the biomass reaction and added as a
reactant in the cytochrome oxidase reaction with the stoichiometric co-
efficient obtained from the biomass reaction (92). Next, we constructed two
csGEMs to compare two conditions with: 1) D-glucose as the main glycolytic
source and 2) maltose as an alternative carbon source. In the first condition,
we set the lower bound to D-glucose exchange to −50 mmol/gDW/h. As-
suming that in the presence of D-glucose, ccpA mediates the repression of
multiple genes (22, 29), we set the upper and lower bounds of the reactions
encoded by genes of the ccpA i-modulon to 0. Specifically, we only turned
off the set of 44 reactions obtained by running the “cobra.manipula-
tion.find_gene_knockout_reactions()”command from the cobrapy package
(93), feeding it the model and the 52 modeled genes which form part of the
CcpA-1 i-modulon. As such, we implemented a method similar to the switch-
based approach (94, 95), in which the boolean encoding for the gene-
reaction rule is taken into account (i.e., isozymes, and protein complexes).
Shutting down all of the reactions yielded a model which could not simulate
growth. We thus gap-filled the first csGEM with one reaction (AcCoa car-
boxylase, involved in straight chain fatty acid biosynthesis). To simulate the
second condition in which maltose serves as the main glycolytic source, we
set the lower bound of maltose exchange to −50 mmol/gDW/h and blocked
D-glucose uptake. No regulatory constraints were added. FBA was imple-
mented with the biomass formation set as the functional network objective,
and fluxes were sampled in both csGEMs 1,000 times using the “cobra.-
sampling.sample” command. To normalize flux values across conditions, we
divided all fluxes by the simulated growth rate. We compared the flux dis-
tribution of each reaction in the two csGEMs using the Kolmogorov–Smirnov
nonparametric test, yielding 93 reactions with significantly differing flux
distributions (P < 0.001) having a statistic larger than 0.99. To identify
whether there is a metabolic basis for the difference the Fur i-modulon
stimulation between conditions, we identified a set of 34 reactions enco-
ded by the 41 modeled genes which are partof the Fur i-modulon (again
using the switch-based approach).

Targeted HPLC (HPLC). For glucose detection, samples were collected every
30 min and filtered as described above. Growth media was syringe-filtered
through 0.22-μm disk filters (Millex-GV, Millipore Sigma) to remove cells.
The filtered samples were loaded onto a 1260 Infinity series (Agilent
Technologies) HPLCy (HPLC) system with an Aminex HPX-87H column
(Bio-Rad Laboratories) and a refractive index detector. The system was
operated using ChemStation software. The HPLC was run with a single
mobile phase composed of HPLC grade water buffered with 5 mM sulfuric
acid (H2SO4). The flow rate was held at 0.5 mL/min, the sample injection
volume was 10 μL, and the column temperature was maintained at 45 °C.
The identities of compounds were determined by comparing retention
time to standard curves of glucose. The peak area integration and
resulting chromatograms were generated within ChemStation and com-
pared to that of the standard curves in order to determine the concen-
tration of each compound in the samples.

Microarray Data Analysis and Projection. All microarray data were down-
loaded from the Gene Expression Omnibus repository (GSE25454,
GSE61669, and GSE18793) and processed with the Affy package in R to get
gene-expression level (59, 96). The GSE25454 dataset consists of micro-
array data from samples grown to exponential phase in TSB (TSB 0 h) and
transferred to either blood, serum, or TSB. Samples were then collected
every 30 min for 2 h. The data were centered on the TSB 0 h time point.
The GSE61669 dataset consists of expression profile from 24-h rabbit skin
infection. These data were centered on the expression profile from the
inoculum. Finally, the GSE18793 expression profile consists of data
comparing wild-type LAC and its isogenic agr mutant. These data were
centered around the wild-type expression profile. Data projection was
used to convert centered gene-expression values to i-modulon activity
level as described previously (7).

Data and Code Availability. All RNA-seq data used to build the model have
been deposited to the Sequence Read Archive (SRA). The normalized log
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TPM, and the calculated S and A matrix of the model can be found in
Datasets 7–9, respectively. The data accession numbers can be found in
Dataset S3 and refs. 67, 68, and 97–99. Both glucose and maltose models
were deposited to BioModels with accession numbers MODEL2005290002
and MODEL2005290001. Their sampled fluxes are also available on Datasets

S1 and S2. Custom code of ICA analysis can be found on Github (https://
github.com/SBRG/precise-db).

ACKNOWLEDGMENTS. This research was supported by NIH National In-
stitute of Allergy and Infectious Diseases Grant 1-U01-AI124316.

1. S. Y. C. Tong, J. S. Davis, E. Eichenberger, T. L. Holland, V. G. Fowler Jr., Staphylococcus
aureus infections: Epidemiology, pathophysiology, clinical manifestations, and man-
agement. Clin. Microbiol. Rev. 28, 603–661 (2015).

2. B. Krismer, C. Weidenmaier, A. Zipperer, A. Peschel, The commensal lifestyle of
Staphylococcus aureus and its interactions with the nasal microbiota. Nat. Rev. Mi-
crobiol. 15, 675–687 (2017).

3. S. S. Dastgheyb, M. Otto, Staphylococcal adaptation to diverse physiologic niches: An
overview of transcriptomic and phenotypic changes in different biological environ-
ments. Future Microbiol. 10, 1981–1995 (2015).

4. C. Goerke, C. Wolz, Adaptation of Staphylococcus aureus to the cystic fibrosis lung.
Int. J. Med. Microbiol. 300, 520–525 (2010).

5. M. Burian, C. Wolz, C. Goerke, Regulatory adaptation of Staphylococcus aureus
during nasal colonization of humans. PLoS One 5, e10040 (2010).

6. J. A. Ibarra, E. Pérez-Rueda, R. K. Carroll, L. N. Shaw, Global analysis of transcriptional
regulators in Staphylococcus aureus. BMC Genomics 14, 126 (2013).

7. A. V. Sastry et al., The Escherichia coli transcriptome mostly consists of independently
regulated modules. Nat. Commun. 10, 5536 (2019).

8. W. Saelens, R. Cannoodt, Y. Saeys, A comprehensive evaluation of module detection
methods for gene expression data. Nat. Commun. 9, 1090 (2018).

9. A. Anand et al., Adaptive evolution reveals a tradeoff between growth rate and
oxidative stress during naphthoquinone-based aerobic respiration. Proc. Natl. Acad.
Sci. U.S.A. 116, 25287–25292 (2019).

10. A. Santos-Zavaleta et al., RegulonDB v 10.5: Tackling challenges to unify classic and
high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res. 47,
D212–D220 (2019).

11. M. Y. Galperin, K. S. Makarova, Y. I. Wolf, E. V. Koonin, Expanded microbial genome
coverage and improved protein family annotation in the COG database. Nucleic Acids
Res. 43, D261–D269 (2015).

12. A. N. King et al., Guanine limitation results in CodY-Dependent and -independent
alteration of staphylococcus aureus physiology and gene expression. J. Bacteriol. 200,
e00136-18 (2018).

13. K. Pohl et al., CodY in Staphylococcus aureus: A regulatory link between metabolism
and virulence gene expression. J. Bacteriol. 191, 2953–2963 (2009).

14. B. Hove-Jensen et al., Phosphoribosyl diphosphate (PRPP): Biosynthesis, enzymology,
utilization, and metabolic significance.Microbiol. Mol. Biol. Rev. 81, e00040-16 (2016).

15. E. M. Kofoed et al., De novo guanine biosynthesis but not the Riboswitch-regulated
purine salvage pathway is required for staphylococcus aureus infection in vivo.
J. Bacteriol. 198, 2001–2015 (2016).

16. A. O. Gaca, C. Colomer-Winter, J. A. Lemos, Many means to a common end: The in-
tricacies of (p)ppgpp metabolism and its control of bacterial homeostasis. J. Bacteriol.
197, 1146–1156 (2015).

17. A. Kriel et al., Direct regulation of GTP homeostasis by (p)ppGpp: A critical compo-
nent of viability and stress resistance. Mol. Cell 48, 231–241 (2012).

18. A. Srivatsan, J. D. Wang, Control of bacterial transcription, translation and replication
by (p)ppGpp. Curr. Opin. Microbiol. 11, 100–105 (2008).

19. M. J. Horsburgh et al., MntR modulates expression of the PerR regulon and super-
oxide resistance in Staphylococcus aureus through control of manganese uptake.
Mol. Microbiol. 44, 1269–1286 (2002).

20. M. R. Sadykov et al., CcpA coordinates central metabolism and biofilm formation in
Staphylococcus epidermidis. Microbiology 157, 3458–3468 (2011).

21. C. R. Halsey et al., Amino acid catabolism in staphylococcus aureus and the function of
carbon catabolite repression. MBio 8, e01434-16 (2017).

22. K. Seidl et al., Effect of a glucose impulse on the CcpA regulon in Staphylococcus
aureus. BMC Microbiol. 9, 95 (2009).

23. J. Leiba et al., A novel mode of regulation of the Staphylococcus aureus catabolite
control protein A (CcpA) mediated by Stk1 protein phosphorylation. J. Biol. Chem.
287, 43607–43619 (2012).

24. P. Bengert, T. Dandekar, Riboswitch finder—A tool for identification of riboswitch
RNAs. Nucleic Acids Res. 32, W154–W159 (2004).

25. W. E Sause et al., The purine biosynthesis regulator PurR moonlights as a virulence
regulator in Staphylococcus aureus. Proc. Natl. Acad. Sci. U.S.A. 116, 13563–13572
(2019).

26. G. Y. C. Cheung, R. Wang, B. A. Khan, D. E. Sturdevant, M. Otto, Role of the accessory
gene regulator agr in community-associated methicillin-resistant Staphylococcus au-
reus pathogenesis. Infect. Immun. 79, 1927–1935 (2011).

27. I. Thiele, B. Ø. Palsson, A protocol for generating a high-quality genome-scale met-
abolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

28. Y. Seif et al., A computational knowledge-base elucidates the response of Staphy-
lococcus aureus to different media types. PLoS Comput. Biol. 15, e1006644 (2019).

29. A. S. Nuxoll et al., CcpA regulates arginine biosynthesis in Staphylococcus aureus
through repression of proline catabolism. PLoS Pathog. 8, e1003033 (2012).

30. E. J. O’Brien, J. M. Monk, B. O. Palsson, Using genome-scale models to predict bi-
ological capabilities. Cell 161, 971–987 (2015).

31. A. M. Feist, B. O. Palsson, The biomass objective function. Curr. Opin. Microbiol. 13,
344–349 (2010).

32. Y. Ding et al., Metabolic sensor governing bacterial virulence in Staphylococcus au-
reus. Proc. Natl. Acad. Sci. U.S.A. 111, E4981–E4990 (2014).

33. M. J. Horsburgh et al., sigmaB modulates virulence determinant expression and stress
resistance: Characterization of a functional rsbU strain derived from Staphylococcus
aureus 8325-4. J. Bacteriol. 184, 5457–5467 (2002).

34. A. Basu, K. E. Shields, C. S. Eickhoff, D. F. Hoft, M. N. F. Yap, Thermal and nutritional
regulation of ribosome hibernation in staphylococcus aureus. J. Bacteriol. 200,
e00426-18 (2018).

35. K. Morikawa et al., Expression of a cryptic secondary sigma factor gene unveils nat-
ural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog. 8,
e1003003 (2012).

36. H. K. Miller et al., The extracytoplasmic function sigma factor σS protects against both
intracellular and extracytoplasmic stresses in Staphylococcus aureus. J. Bacteriol. 194,
4342–4354 (2012).

37. U. Lorenz et al., The alternative sigma factor sigma B of Staphylococcus aureus
modulates virulence in experimental central venous catheter-related infections. Mi-
crobes Infect. 10, 217–223 (2008).

38. L. Tuchscherr et al., Sigma factor SigB is crucial to mediate staphylococcus aureus
adaptation during chronic infections. PLoS Pathog. 11, e1004870 (2015).

39. M. M. Senn et al., Molecular analysis and organization of the sigmaB operon in
Staphylococcus aureus. J. Bacteriol. 187, 8006–8019 (2005).

40. S. Tamber, J. Schwartzman, A. L. Cheung, Role of PknB kinase in antibiotic resistance
and virulence in community-acquired methicillin-resistant Staphylococcus aureus
strain USA300. Infect. Immun. 78, 3637–3646 (2010).

41. U. Mäder et al., Staphylococcus aureus transcriptome architecture: From laboratory to
infection-mimicking conditions. PLoS Genet. 12, e1005962 (2016).

42. W. N. Burda et al., Investigating the genetic regulation of the ECF sigma factor σS in
Staphylococcus aureus. BMC Microbiol. 14, 280 (2014).

43. J. Utrilla et al., Global rebalancing of cellular resources by pleiotropic point mutations
illustrates a multi-scale mechanism of adaptive evolution. Cell Syst. 2, 260–271 (2016).

44. C. Jenul, A. R. Horswill, Regulation of staphylococcus aureus virulence. Microbiol.
Spectr. 6, GPP3-0031-2018 (2018).

45. Q. Liu, W. S. Yeo, T. Bae, The SaeRS two-component system of Staphylococcus aureus.
Genes (Basel) 7, 81 (2016).

46. M. I. Goncheva et al., Stress-induced inactivation of the Staphylococcus aureus purine
biosynthesis repressor leads to hypervirulence. Nat. Commun. 10, 775 (2019).

47. R. P. Novick et al., The agr P2 operon: An autocatalytic sensory transduction system in
Staphylococcus aureus. Mol. Gen. Genet. 248, 446–458 (1995).

48. R. P. Novick, E. Geisinger, Quorum sensing in staphylococci. Annu. Rev. Genet. 42,
541–564 (2008).

49. L. B. Regassa, M. J. Betley, Alkaline pH decreases expression of the accessory gene
regulator (agr) in Staphylococcus aureus. J. Bacteriol. 174, 5095–5100 (1992).

50. B. Weinrick et al., Effect of mild acid on gene expression in Staphylococcus aureus.
J. Bacteriol. 186, 8407–8423 (2004).

51. L. B. Regassa, R. P. Novick, M. J. Betley, Glucose and nonmaintained pH decrease
expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect.
Immun. 60, 3381–3388 (1992).

52. H. S. Joo, J. L. Chan, G. Y. C. Cheung, M. Otto, Subinhibitory concentrations of protein
synthesis-inhibiting antibiotics promote increased expression of the agr virulence
regulator and production of phenol-soluble modulin cytolysins in community-
associated methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemo-
ther. 54, 4942–4944 (2010).

53. P. Pöhlmann-Dietze et al., Adherence of Staphylococcus aureus to endothelial cells:
Influence of capsular polysaccharide, global regulator agr, and bacterial growth
phase. Infect. Immun. 68, 4865–4871 (2000).

54. J. C. Lee, S. Takeda, P. J. Livolsi, L. C. Paoletti, Effects of in vitro and in vivo growth
conditions on expression of type 8 capsular polysaccharide by Staphylococcus aureus.
Infect. Immun. 61, 1853–1858 (1993).

55. N. J. Verkaik et al., Immune evasion cluster-positive bacteriophages are highly prev-
alent among human Staphylococcus aureus strains, but they are not essential in the
first stages of nasal colonization. Clin. Microbiol. Infect. 17, 343–348 (2011).

56. T. Bae, T. Baba, K. Hiramatsu, O. Schneewind, Prophages of Staphylococcus aureus
Newman and their contribution to virulence. Mol. Microbiol. 62, 1035–1047 (2006).

57. M. B. Jones et al., Genomic and transcriptomic differences in community acquired
methicillin resistant Staphylococcus aureus USA300 and USA400 strains. BMC Geno-
mics 15, 1145 (2014).

58. N. Malachowa, S. D. Kobayashi, D. E. Sturdevant, D. P. Scott, F. R. DeLeo, Insights into
the Staphylococcus aureus-host interface: Global changes in host and pathogen gene
expression in a rabbit skin infection model. PLoS One 10, e0117713 (2015).

59. N. Malachowa et al., Global changes in Staphylococcus aureus gene expression in
human blood. PLoS One 6, e18617 (2011).

60. M. M. Peterson et al., Apolipoprotein B Is an innate barrier against invasive Staphy-
lococcus aureus infection. Cell Host Microbe 4, 555–566 (2008).

61. P. R. Hall et al., Nox2 modification of LDL is essential for optimal apolipoprotein
B-mediated control of agr type III Staphylococcus aureus quorum-sensing. PLoS
Pathog. 9, e1003166 (2013).

62. K. Tonyushkina, J. H. Nichols, Glucose meters: A review of technical challenges to
obtaining accurate results. J. Diabetes Sci. Technol. 3, 971–980 (2009).

17238 | www.pnas.org/cgi/doi/10.1073/pnas.2008413117 Poudel et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008413117/-/DCSupplemental
https://github.com/SBRG/precise-db
https://github.com/SBRG/precise-db
https://www.pnas.org/cgi/doi/10.1073/pnas.2008413117


63. J. Connolly et al., Identification of staphylococcus aureus factors required for path-

ogenicity and growth in human blood. Infect. Immun. 85, e00337-17 (2017).
64. K. O’Riordan, J. C. Lee, Staphylococcus aureus capsular polysaccharides. Clin. Micro-

biol. Rev. 17, 218–234 (2004).
65. R. M. Stubbendieck et al., Competition among nasal bacteria suggests a role for

siderophore-mediated interactions in shaping the human nasal microbiota. Appl.

Environ. Microbiol. 85, e02406-18 (2019).
66. K. J. Minch et al., The DNA-binding network of Mycobacterium tuberculosis. Nat.

Commun. 6, 5829 (2015).
67. D. Choe et al., Genome-scale analysis of methicillin-resistant Staphylococcus aureus

USA300 reveals a tradeoff between pathogenesis and drug resistance. Sci. Rep. 8,

2215 (2018).
68. S. Poudel et al., Characterization of CA-MRSA TCH1516 exposed to nafcillin in bac-

teriological and physiological media. Sci. Data 6, 43 (2019).
69. R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch, N. Maltsev, The use of gene

clusters to infer functional coupling. Proc. Natl. Acad. Sci. U.S.A. 96, 2896–2901 (1999).
70. S. K. Highlander et al., Subtle genetic changes enhance virulence of methicillin re-

sistant and sensitive Staphylococcus aureus. BMC Microbiol. 7, 99 (2007).
71. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat. Methods

9, 357–359 (2012).
72. S. Anders, P. T. Pyl, W. Huber, HTSeq—A Python framework to work with high-

throughput sequencing data. Bioinformatics 31, 166–169 (2015).
73. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
74. F. Pedregosa et al., Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12,

2825–2830 (2011).
75. A. Hyvärinen, E. Oja, Independent component analysis: Algorithms and applications.

Neural Netw. 13, 411–430 (2000).
76. R. B. D’Agostino, A. Belanger, A suggestion for using powerful and informative tests

of normality. Am. Stat. 44, 316–321 (1990).
77. D. A. Ravcheev et al., Inference of the transcriptional regulatory network in Staph-

ylococcus aureus by integration of experimental and genomics-based evidence.

J. Bacteriol. 193, 3228–3240 (2011).
78. S. Boyle-Vavra, S. Yin, D. S. Jo, C. P. Montgomery, R. S. Daum, VraT/YvqF is required

for methicillin resistance and activation of the VraSR regulon in Staphylococcus au-

reus. Antimicrob. Agents Chemother. 57, 83–95 (2013).
79. M. Kuroda et al., Two-component system VraSR positively modulates the regulation

of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol. Microbiol. 49,

807–821 (2003).
80. A. Delauné et al., The WalKR system controls major staphylococcal virulence genes

and is involved in triggering the host inflammatory response. Infect. Immun. 80,

3438–3453 (2012).

81. M. Falord, U. Mäder, A. Hiron, M. Débarbouillé, T. Msadek, Investigation of the
Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response
and cell wall signal transduction pathways. PLoS One 6, e21323 (2011).

82. C. Bertelli et al.; Simon Fraser University Research Computing Group, IslandViewer 4:
Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res.
45, W30–W35 (2017).

83. D. Arndt et al., PHASTER: A better, faster version of the PHAST phage search tool.
Nucleic Acids Res. 44, W16–W21 (2016).

84. M. D. Ermolaeva, O. White, S. L. Salzberg, Prediction of operons in microbial ge-
nomes. Nucleic Acids Res. 29, 1216–1221 (2001).

85. M. Pertea, K. Ayanbule, M. Smedinghoff, S. L. Salzberg, OperonDB: A comprehensive
database of predicted operons in microbial genomes. Nucleic Acids Res. 37,
D479–D482 (2009).

86. T. L. Bailey, C. Elkan, Fitting a mixture model by expectation maximization to discover
motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

87. T. L. Bailey et al., MEME SUITE: Tools for motif discovery and searching. Nucleic Acids
Res. 37, W202–W208 (2009).

88. S. Kiliç, E. R. White, D. M. Sagitova, J. P. Cornish, I. Erill, CollecTF: A database of ex-
perimentally validated transcription factor-binding sites in bacteria. Nucleic Acids Res.
42, D156–D160 (2014).

89. D. Eckweiler, C. A. Dudek, J. Hartlich, D. Brötje, D. Jahn, PRODORIC2: The bacterial
gene regulation database in 2018. Nucleic Acids Res. 46, D320–D326 (2018).

90. A. E. Kazakov et al., RegTransBase—A database of regulatory sequences and inter-
actions in a wide range of prokaryotic genomes. Nucleic Acids Res. 35, D407–D412
(2007).

91. S. Gupta, J. A. Stamatoyannopoulos, T. L. Bailey, W. S. Noble, Quantifying similarity
between motifs. Genome Biol. 8, R24 (2007).

92. N. D. Hammer, L. A. Schurig-Briccio, S. Y. Gerdes, R. B. Gennis, E. P. Skaar, CtaM is
required for menaquinol oxidase aa3 function in staphylococcus aureus. MBio 7,
e00823-16 (2016).

93. A. Ebrahim, J. A. Lerman, B. O. Palsson, D. R. Hyduke, COBRApy: Constraints-based
reconstruction and analysis for python. BMC Syst. Biol. 7, 74 (2013).

94. S. A. Becker, B. O. Palsson, Context-specific metabolic networks are consistent with
experiments. PLoS Comput. Biol. 4, e1000082 (2008).

95. D. R. Hyduke, N. E. Lewis, B. Ø. Palsson, Analysis of omics data with genome-scale
models of metabolism. Mol. Biosyst. 9, 167–174 (2013).

96. L. Gautier, L. Cope, B. M. Bolstad, R. A. Irizarry, affy—Analysis of Affymetrix GeneChip
data at the probe level. Bioinformatics 20, 307–315 (2004).

97. S. Poudel, Staphylococcus aureus LAC RNAseq. NCBI SRA. https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA470935/. Deposited 10 May 2018.

98. S. Poudel, S.aureus USA300 LAC Vancomycin. NCBI SRA. https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA526539/. Deposited 11 March 2019.

99. S. Poudel, USA300 strain RNAseq. NCBI SRA. https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA634715. Deposited 24 May 2020.

Poudel et al. PNAS | July 21, 2020 | vol. 117 | no. 29 | 17239

M
IC
RO

BI
O
LO

G
Y

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA470935/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA470935/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA526539/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA526539/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA634715
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA634715

