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ABSTRACT

Recent advances in protein structural modelling have
enabled the accurate prediction of the holo 3D struc-
tures of almost any protein, however protein function
is intrinsically linked to the interactions it makes.
While a number of computational approaches have
been proposed to explore potential biological in-
teractions, they have been limited to specific inter-
actions, and have not been readily accessible for
non-experts or use in bioinformatics pipelines. Here
we present CSM-Potential, a geometric deep learn-
ing approach to identify regions of a protein sur-
face that are likely to mediate protein-protein and
protein–ligand interactions in order to provide a link
between 3D structure and biological function. Our
method has shown robust performance, outperform-
ing existing methods for both predictive tasks. By
assessing the performance of CSM-Potential on in-
dependent blind tests, we show that our method was
able to achieve ROC AUC values of up to 0.81 for
the identification of potential protein-protein binding
sites, and up to 0.96 accuracy on biological ligand
classification. Our method is freely available as a
user-friendly and easy-to-use web server and API at
http://biosig.unimelb.edu.au/csm potential.

GRAPHICAL ABSTRACT

INTRODUCTION

Recent breakthroughs in protein structure prediction by Al-
phaFold (1,2) and RosettaFold (3), have led to a large pro-
portion of the entire proteome for many organisms, now
available in the AlphaFold database (4). These structures,
however, lack crucial interactions, which are important for
understanding protein function. Consequently, the avail-
ability of structural data has prompted an increasing de-
mand for tools that can use these 3D models to help identify
key biologically important interacting regions, which is cru-
cial for a better understanding of their biological functions.

Significant efforts have been made towards identification
of interacting sites on proteins. For prediction of PPI bind-
ing sites previous methods have ranged from those using
only information about the protein sequence as input (5,6),
to more complex methods, which use a combination of out-
puts from neural network architectures in combination with
changes in relative solvent accessibility upon complexation
in a consensus prediction (7). Other approaches have fo-
cused on identification of binding sites more likely to par-
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ticipate in interactions with ligands by exploring structural
features for classification of pocket regions (8–10), repre-
senting an attractive opportunity for elucidating the mech-
anisms by which these compounds interact with proteins
and potentially leading to the design of more safe and effec-
tive drugs. More recently, a geometric deep learning frame-
work has been proposed (11) to extract interaction finger-
prints from protein surfaces which may then be applied to
tasks such as identification of PPI binding sites and binding
pocket classification. Despite the diversity of methods cur-
rently available, in general these have been developed solely
for exploring a specific interaction type, are computation-
ally intensive, and not user friendly.

In this study, we present CSM-Potential, a geometric
deep learning approach to identify areas of a protein sur-
face that are likely to participate in protein-protein interac-
tions (PPIs) and protein–ligand interactions (Figure 1). Our
method is implemented as an easy-to-use and freely avail-
able webserver and an Application Programming Interface
(API) to facilitate integration with existing bioinformatics
pipelines at http://biosig.unimelb.edu.au/csm potential.

MATERIALS AND METHODS

Data sets

Experimentally characterised structures of PPI complexes
were extracted from the PRISM database of non-redundant
PPIs (12) for a total of 8,466 proteins. In addition, 3,536
transient interactions were taken from PDBBind (13),
SabDab antibody:antigen database (14) and the ZDock
benchmark set (15). Proteins were then clustered at a 30%
sequence identity using CD-HIT (16) and one represen-
tative member from each cluster was chosen, resulting in
3,362 unique proteins. A pairwise matrix of all TM scores
for these proteins was then computed followed by hierar-
chical clustering, via scikit-learn AgglomerativeClustering
method, to split our dataset into training and test sets with
3004 and 358 proteins, respectively.

The database used in this work for biological ligand clas-
sification was compiled based on all structures cofactor-
binding proteins available in the Protein Data Bank (PDB)
(17) (accessed on 16 October 2018), where any of the fol-
lowing seven chemical compounds was present: Adenosine
diphosphate (ADP), Coenzyme A (CoA), Flavin adenine
dinucleotide (FAD), heme (HEM), Nicotinamide adenine
dinucleotide (NAD), Nicotinamide adenine dinucleotide
phosphate (NADP) or S-adenosyl methionine (SAM).
These have been selected due to their large of structure
availability in the PDB and for comparison purposes. De-
tails for each ligand, including their chemical structure, are
summarised in Table S1 and Figure S1 in the Supplemen-
tary data. This resulted in 1,853 ADP structures, 490 CoA,
2,020 FAD, 4,448 HEM, 1,269 NAD, 1,212 NAP and 393
SAM. Proteins were then clustered based on their sequence
identity according to the PDB pre-computed sequence clus-
ters, where two proteins were considered to be similar (near-
identical) if the associated clusters of both proteins were the
same. The final dataset used for biological ligand classifica-
tion comprises 1468 structures, which were randomly split
into training (72%), validation (8%) and testing sets (20%).

The approach used for curating structures for both pre-
dictive tasks, PPI binding site prediction and biological lig-
and classification, follows the protocol described in previ-
ous work (11).

Geometric deep learning neural network

In this study, we apply geometric deep learning to the molec-
ular surface of proteins in order to identify regions more
likely to participate in interaction with other proteins and
with biologically relevant ligands. For both predictive tasks,
we trained end-to-end neural networks using the MaSIF
framework (11), which decomposes protein surfaces into
overlapping patches based on a geodesic radius, and then
uses these in combination with geometric and chemical fea-
tures to generate embeddings from learnable Gaussian Ker-
nels (18). Here, we expanded this approach by capturing
a larger geodesic radius size for patch extraction of 12 Å,
and combining this with our well established graph-based
signatures (19), which have been extensively applied to in-
vestigate the role of genetic mutations on protein function
(20–22) and small molecule toxicity (23). These are calcu-
lated directly from the protein structure for each residue at
the surface and then used to extract distance patterns be-
tween atoms characterised by their pharmacophores and
compiled in signatures as cumulative distributions.

For the predictive model aiming to identify PPI interac-
tion sites, as the number of non-interface points was usu-
ally much larger than the number of interface points, dur-
ing training our neural network, a random number of non-
interface points was selected until an equal number of pos-
itive and negative samples was achieved.

Definition of interacting interfaces

PPI interacting interface was defined based on the change in
solvent accessible surface area (SASA) on interaction. Here,
we consider as part of the interface the region of the surface
that becomes inaccessible to solvent molecules upon com-
plex formation. This was done by comparing the difference
in SASA, at the residue level, between the individual pro-
tomers (unbound protein) and within the complex as follow
(24):

�SASA = SASAA + SASAB − SASAAB

where A and B are two proteins participating in a pairwise
interaction.

Residues at the surface of the unbound partners which
were not at the surface on the bound complex (solvent in-
accessible) were then defined as being part of the PPI inter-
face.

For our final dataset of protein–ligand interactions and
following previous work (11), after surface and patch gen-
eration, if the center point of a patch was less than 3 Å from
an atom any of the seven ligands, the patch was labeled as
part of the binding pocket of the corresponding ligand.

WEBSERVER

We have implemented CSM-Potential as a user-friendly
and freely available web server (http://biosig.unimelb.edu.
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Figure 1. CSM-Potential methodology workflow. Experimental data on PPIs and biological ligands were extracted from the curated databases followed
by interface identification based on the 3D structure. These were then used to generate molecular surfaces from which geometrical and physicochemical
properties are calculated. Protein surfaces were then decomposed into overlapping patches based on a geodesic radius of 12 Å, and used in combination
with features calculated on the previous step to generate embeddings from learnable Gaussian Kernels. Finally, neural networks were trained to predict
PPI binding sites and to classify biological ligand binding sites.

au/csm potential). The server back end is developed using
Python via the Flask Framework (version 1.0.2), while the
front end was built using Materialize framework version
1.0.0. The web server is hosted on a Linux Server running
Apache2.

Input

CSM-Potential can be used in two different ways: for the
identification of PPI sites or for the biological classification
of pockets on a protein structure. In both cases, users are
required to provide a protein structure by either uploading
a file in PDB format or by selecting a structure directly from
the PDB or AlphaFold databases using the auto-complete
input field (Supplementary Figure S2A). By default, CSM-
Potential will run predictions on the whole input structure,
however, users may indicate specific monomers to be auto-
matically extracted before running the predictions for struc-
tures where multiple proteins are present. Furthermore,
the biological classification of pockets option requires one
extra step before running the predictions, where the user
must choose from a list of pockets identified using Ghecom
(25) (Supplementary Figure S3A). Finally, for both options,
users may provide an email address, which will be later used
for notifying the user about the job’s results.

Output

For prediction of PPI binding sites (Supplementary Figure
S2B), CSM-Potential summarises interface scores for each
residue on the input protein structure at a sequence level
using the FeatureViewer component (26). In addition, pre-
dicted scores are mapped onto the input 3D structure and
displayed in an interactive viewer using NGLviewer molec-
ular graphics library (27). Finally, users can download their
input protein structure with the predictions annotated on
the b-factor column.

For biological ligand classification (Supplementary Fig-
ure S3B), the results page shows the input 3D structure
with the selected pocket region highlighted by default using
NGLviewer and a downloadable table summarising the pre-
diction score for all seven different biological ligands. For
each ligand, the predicted score represents the likelihood
of binding to the selected pocket. For a given ligand, addi-
tional information, such as molecular weight and number
of hydrogen acceptors and donors, can be accessed via the
Details button on the results table, as well as the ligand de-
piction built via SmilesDrawer (28) based on its canonical
SMILES.

VALIDATION

Performance on training

We evaluated the performance of CSM-Potential to predict
PPI binding sites on two different types of cross-validations
on our training set. For each cross-validation type, we re-
peated the experiments five times and reported mean val-
ues for each evaluation metric. First we randomly selected
80% of our data for training and the remaining 20% for test-
ing. Performance is reported in terms of ROC AUC values,
which were calculated for each protein in the testing set and
overall performance is reported after averaging values for all
entries. Here, our method achieved an overall ROC AUC
of 0.82 on average. Using a similar setup, but varying the
proportion of data split between training and testing sets
to 50% each, the performance of our approach remained
consistent with ROC AUC of 0.79. Additional evaluation
metrics, including Matthews correlation coefficient (MCC)
and F1 score, have been summarised in Supplementary Ta-
ble S2, corroborating the robustness of our trained model
on CV1 and CV2. The final predictive model was then built
using all entries in the training set and evaluated on a blind
test set.
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Figure 2. Performance comparison of CSM-Potential with alternative methods on both predictive tasks: identification of PPI binding sites and biological
ligands binding sites classification. Panel A shows overall median ROC AUC values per protein on predictive models for the identification of PPI binding
sites, while Panel B summarises performance in terms of ROC curves.

To train a predictive model to explore biological ligand
binding sites, here we used the training and validation set
described in the Materials and Methods section. Perfor-
mance on the validation set was assessed at each epoch (one
forward and backward pass of all entries available in the
training set) and used to select the best network after each
epoch. Finally, we sampled each pocket 100 times and av-
eraged the resulting 100 predictions to obtain the final pre-
diction, similar to previous work. At the end of our training
procedure, our approach achieved a balanced accuracy of
up to 0.75 and ROC AUC of 0.87.

Blind test

Here, we compared the results of our PPI binding site pre-
dictive model with those reported for MaSIF-site (11) on
all 358 entries of our blind-test and three subsets of PPI in-
teractions: transient (59), and large (74) and small (74) hy-
drophobic interactions. For comparison purposes, results
are presented in terms of median ROC AUC per protein.
Overall, CSM-Potential achieved a median ROC AUC of
0.90, while MaSIF-site achieved 0.87 ROC AUC. For the
three subsets of PPI interactions, CSM-Potential outper-
formed MaSIF-site for all cases, achieving ROC AUC val-
ues ranging from 0.84 to 0.93 (Supplementary Figure S4).
Furthermore, here we compared the results of our method
with MaSIF-site, SPPIDER (7) and PSIVER (5) on a subset
of 53 single-chain transient interactions. SPPIDER AND
PSIVER have been previously shown to have top perfor-
mance in a critical study assessing the robustness of com-
putational predictors of PPI interfaces (29). Here, CSM-
Potential achieved the highest performance over all other
methods with a ROC AUC of 0.84, while MaSIF-site, SP-
PIDER and PSIVER achieved 0.81, 0.65 and 0.62, respec-
tively (Figure 2A). Additional evaluation metrics (as me-
dian per protein) are shown in Table 1, showing that CSM-
Potential and MaSIF-site have a more balanced prediction

Table 1. Performance comparison for PPI binding site prediction on a
non-redundant blind test

Method AUC MCC F1 Sensitivity Specificity

CSM-Potential 0.84 0.23 0.24 0.78 0.75
MaSIF-site 0.81 0.21 0.20 0.75 0.73
SPPIDER 0.65 0.11 0.19 0.25 0.86
PSIVER 0.61 0.07 0.43 0.43 0.67

when differentiating between interface and non-interface
residues.

For assessing the performance of our predictive model
for the classification of biological ligands binding sites, we
first investigated how accurate CSM-Potential performed
on the blind-test for each specific ligand separately (sum-
marised in Supplementary Figure S5). Accuracies varied
from 0.56 for pockets associated with SAM to 0.96 for pock-
ets where HEM is bound. The former may be related to the
small number of entries for SAM in our training set (only
23 cofactor-binding proteins), while the latter, in addition
to having the highest number of entries available for train-
ing of the predictive model (57 cofactor-binding proteins),
it also shows a more unique chemical structure when com-
pared with the other ligands (Supplementary Figure S1).

Finally, here we compared the results of our method
with three other tools that explore structural features for
pocket classification and have shown to perform well in pre-
vious study (30): MaSIF-ligand (11), KRIPO (8) and Pro-
BiS (9). Except for MaSIF-ligand, the other three methods
have been shown to achieve top performance in a previ-
ous study (30). As KRIPO does not support fingerprints
for the HEME ligand, this was removed from the compar-
ison. Overall, CSM-Potential achieved ROC AUC of 0.96,
which is comparable to MaSIF-ligand with 0.95, and supe-
rior to the performance of KRIPO and ProBiS with ROC
AUC of 0.93 and 0.90, respectively (Figure 2B). A more re-
cent version of the MaSIF framework has been proposed,
namely dMaSIF (31), however we opted to not include it in
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our comparison given that we were unable to run it locally
based on the instructions available.

CONCLUSION

Here, we present CSM-Potential, a webserver that combines
geometric deep learning with our graph based signatures
for predicting likely binding regions based on protein sur-
face. Our method has similar performance to state of the
art methods with robust and accurate predictions on non-
redundant blind test sets for identification of PPI binding
sites and for the classification of biological ligands binding
sites. We believe CSM-Potential will be of great value to the
study of protein function prediction for both more experi-
enced and also non-expert users. Our method is freely avail-
able as an easy-to-use webserver and API to facilitate large-
scale processing and incorporation into analytical pipelines
at http://biosig.unimelb.edu.au/csm potential.

DATA AVAILABILITY

CSM-Potential is freely available (no login or license re-
quired) as an easy-to-use webserver and API at http:
//biosig.unimelb.edu.au/csm potential. Documentation on
how to use the webserver and examples for querying the
API using the Python programming language are available
at http://biosig.unimelb.edu.au/csm potential/help. Finally,
all the experimental data used to train and evaluate the pre-
dictive models described in this work can be accessed at
http://biosig.unimelb.edu.au/csm potential/data.
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