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Empathy for pain is the ability to perceive and understand the pain in the other individual.
Recent studies suggested that rodents have this social ability. GABAergic system has
receptors in the brain structures involved in emotional processes as well as in the insular
cortex. This area has been described as an important key in modulation of pain and
empathy. The present study has investigated the role of insula and its Benzodiazepine-
GABAA system on social modulation of pain induced by cohabiting with a mouse
submitted to sciatic nerve constriction, a neuropathic pain model. The insular cortex
function was assessed by the structure inactivation (Experiments 1 and 2); the role of
GABA system was evaluated by systemic treatment of midazolam (MDZ 0.5, 1, and
2 mg/kg) (Experiment 3); and the role of GABAA receptors of insula were studied by
bilateral MDZ (3 and 30 nmol/0.1 µl) microinjections in the structure (Experiment 4). Male
Swiss mice were housed in groups or dyads. On dyads, after 14 days of cohabitation
they were divided into two groups: cagemate nerve constriction and cagemate sham
(CS). After 14 days of familiarity, cagemates were evaluated on the writhing test.
For group-housed, insula inactivation did not change nociception. For dyad-housed,
cohabiting with a mouse in chronic pain increased the nociceptive response and the
insula inactivation has reverted this response. Systemic MDZ attenuated nociception
and intra-insula MDZ did not alter it. Our results suggest that cohabitation with a pair
in chronic pain induces hypernociception, insula possibly modulates this response and
the GABA system is also possibly involved, but not its insular mechanisms.
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INTRODUCTION

The ability to perceive emotions, discriminate them and using
this information to guide thoughts and actions is named
empathy, the central feature of the emotional intelligence (Mayer
et al., 1990; Lamm et al., 2011). Furthermore, empathy can
be understood as an affective and cognitive process of social
modulation on emotional responses (Grenier and Luthi, 2010).
In this context, the ability to perceive pain has also both clear
adaptive and evolutive values (Williams, 2002).

The painful phenomenon has been characterized as a
subjective and multidimensional experience (Neugebauer
et al., 2009). Its perception and processing result from
perceptual, sensory, cognitive, and affective-emotional
components (Kim et al., 2014) modulated by the central
nervous system in cortical and subcortical structures within pain
pathway (Bornhovd et al., 2002; Gebhart, 2004, Suzuki et al.,
2004).

This multidimensional pain processing arrangement can be
explained by the central network of brain structures that process
nociceptive information, i.e., pain pathways. Since cortical
structures (more superior), more directly linked with affective-
emotional experiences, can modulate the sensorial response
of pain through the interaction with more basal structures,
such as those of the limbic system. That interaction can be
observed, for example, in nocifensive responses. In the same
way, experiences and structures more related to the sensorial
component of pain influences and modulates experiences and
structures more related to the affective-emotional component,
such as, for instance, a harmful stimulus that leads to an aversive
memory. In both cases, the pain information is being processed
in series (Ji et al., 2010; Luongo et al., 2013; Neugebauer, 2015).
However, pain inputs can also be processed in parallel, once
same-level structures can modulates and work together to
generate a specific response to a nociceptive stimulus (Price,
2000).

Although the neurobiological mechanisms which modulate
the perceptual and sensory component of pain have been
extensively studied, those involved in the affective-emotional
and cognitive component are less known (Langford et al., 2006;
Borsook and Becerra, 2009; Neugebauer et al., 2009; Shamay-
Tsoory, 2011). Recent studies have been demonstrating that
the affective-emotional pain component is equally activated in
those who are just observing painful or potentially painful
situations (Singer et al., 2004; Shamay-Tsoory, 2011). Specific
researches using animal models have demonstrated that rodents
are able to exhibit one of the major facets of empathy
(Zaki and Ochsner, 2012), the pro-social behavior face to a
conspecific suffering (Langford et al., 2006, 2010, 2011; Ben-Ami
Bartal et al., 2011, 2016; Baptista-de-Souza et al., 2015; Mogil,
2015).

In the light of these findings, researchers have demonstrated
that observing a cagemate in pain can increase or decrease
pain sensation in the observer when subjected to the writhing,
radiant heat paw-withdrawal and the formalin tests (Langford
et al., 2006; Ben-Ami Bartal et al., 2016). In this sense, the
study conducted by our group has evidenced hypernociception

induced by cohabitation with a pair subjected to neuropathic pain
(Baptista-de-Souza et al., 2015).

Even though it is not clear which brain structures and
neurotransmitters modulate this response (Mogil, 2015), the
studies have shown that the reflex face to other experiences results
from a specific group of neurons known as mirror neurons,
which allows the observer to encode and understand other’s
intention by mechanisms of observational learning (Moya-
Albiol et al., 2010). This way, through mirror systems, an
emotional reaction of an animal may generate a similar emotional
representation in the observer, i.e., allowing empathy (Gallese
et al., 2004).

The insular cortex is among the cortical encephalic
structures involved on pain and empathy processes due to
the presence of mirror neurons (Jackson et al., 2006). This
structure is involved on modulation of stimulus intensity,
and prediction of pain (Kross et al., 2011; Shamay-Tsoory,
2011), as well as being responsible for connections between
the sensory cortex and the limbic system (Gasquoine, 2014).
Furthermore, neurons located in the insula are responsive
to painful stimuli, painful situation clues and even when
painful stimuli are applied to another individual (Lamm et al.,
2011).

GABA is one of the several neurotransmitter systems
located in the insula and it is the main inhibitory
neurotransmitter in the mammalian brain (Wiebking et al.,
2014). The GABAergic receptors are located in structures
that modulate emotional and pain processes (Bushnell
et al., 2013; Yowtak et al., 2013; Watson, 2016). For
instance, evidences have demonstrated that imbalances –
decrease or increase – in GABAergic neurotransmissions
and others inhibitory neurotransmitters compared to
excitatory neurotransmitters within the insula leads to an
altered central pain processing and sensitivity (Watson,
2016).

Recently, there has been an increasing interest to
investigate the neurobiological substrate involved in emotional
modulation of pain. Based on this body of evidence, we
hypothesized that insular cortex, specifically its GABAergic
system modulates the hyperalgesia induced by cohabitation
with a mouse subjected to sciatic nerve constriction, a
neuropathic pain model. Here we performed four experiments
to test our hypothesis: (i) intra-insula injections of the
cobalt chloride (CoCl2) in mice housed in groups, to
inactivate the structure; (ii) intra-insula injections of the
CoCl2 in mice housed in pairs; (iii) systemic injections of
midazolam, a GABAA agonist, to investigate the systemic
involvement of GABAergic system; and (iv) intra-insula
injections of the midazolam, to investigate specific GABAA
involvement.

MATERIALS AND METHODS

The experiments were performed in compliance with the
recommendations of the Brazilian Guidelines for Care and Use
of Animals for Scientific and Educational Purposes, elaborated
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by The National Council of control of animal testing (CONCEA).
This study was also approved by the Ethics Committee on Use of
Animals of Federal University of São Carlos (Processes 045/2012
and 4752090415).

Subjects
For this study 194 male Swiss mice at 6–8 weeks of age (Federal
University of São Carlos, SP, Brazil) were housed in groups of 10
per cage (cage size: 41 cm × 34 cm × 16 cm) or in pairs (cage
size: 30 cm × 19 cm × 13 cm). Animals had free access to food
and water in their home cages and were housed in temperature-
controlled room (24 ± 1◦C). Lights were maintained on a 12-h
light/12-h dark cycle (lights on at 7:00 AM), with all behavioral
tests carried out during the light phase of the cycle (9:00 AM –
4:00 PM). Different batches of experimentally naive mice were
used for experiments.

Drugs
The following drugs were used: cobalt chloride, 1 mM.100 nL−1

(CoCl2; Sigma, St. Louis, MO, United States) (Crestani
et al., 2010) and midazolam (MDZ) 3.0 and 30 nmol./0.1 µl
(intra-insula) and 0.5, 1.0, and 2.0 mg.kg−1 (systemic)
[(8-chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo (1,5a)
(1,4)benzodiazepine), Roche, Brazil] (Nunes-de-Souza et al.,
2000; Baptista et al., 2009). CoCl2 and MDZ were dissolved in
sterile saline (0.9% NaCl).

Surgery and Microinjection
Bilateral stainless-steel guide cannulae (25-gauge × 7 mm;
Insight Instruments, Brazil) was implanted in mice under
ketamine and xylazine anesthesia (100 mg.kg−1 and 10 mg.kg−1,
i.p.,) in a stereotaxic frame (Insight Instruments, Brazil) (Baptista
et al., 2009). The guide cannula was fixed to the skull with
dental acrylic and jeweler’s screws. Stereotaxic coordinates for
insula were 0.7 mm anterior to bregma, 3.3 mm lateral and
2 mm ventral to skull surface (Paxinos and Franklin, 2001).
A dummy cannulae (33-gauge stainless steel wire; Fishtex R©,
Brazil) inserted into the guide cannulae at the time of the
surgery was utilized to reduce the incidence of occlusion.
During the surgery animals received ketoprofen (benzene
acetic acid, 5 mg.kg−1) and ceftriaxone (ceftriaxone sodium
hemipentahydrate, 4 mg.kg−1). Before tests mice remained
for 4 to 5 days to recover from the surgery (Würbel,
2011).

Solutions were injected into structures by a microinjection
unit (33-gauge stainless steel cannula, Insight Instruments,
Brazil), that extended 2 mm beyond the tip of the guide
cannula. The microinjection unit was connected to a 10 µl
Hamilton microseringe via polyethylene tube (PE-10) and
the rate of flow was controlled by an infusion pump
(BI 2000 – Insight Instruments, Brazil), programmed to
deliver 0.1 µl of each solution over a period of 60 s. The
microinjection procedure consisted of gently restraining the
mice, inserting the injection unit, infusing the solution for
60 s and keeping the injection unit in place for 90 s. The
movement of a small air bubble in the PE-10 tube, during

and after the microinjection, confirmed the delivery of the
solution.

Sciatic Nerve Constriction
Bennett and Xie (1988) and Sommer (1999) method was used
to reproduce the neuropathic pain model. After ketamine and
xylazine anesthesia (100 mg.kg−1 and 10 mg.kg−1, respectively,
i.p.,), the fascia between the gluteus and biceps femoral is
sectioned and the right sciatic nerve is exposed close to its
trifurcation (Sommer, 1999). The tissue around the nerve was
carefully cut at approximately 8 mm distance and then the
nerve was compressed with three ligatures using sterile non-
inflamatory mononylon 6.0 threads (Bennett and Xie, 1988;
Sommer, 1999).

Nociception Test
Nociception was assessed by the writhing test, previously describe
by Vander Wende and Margolin (Van der Wende and Margolin,
1956). Among animal models used to evaluate pain mechanisms
(Whiteside et al., 2008), the writhing test consists of the
application of irritant substances in the peritoneal cavity of
rodents, allowing the measure of pain by recording the number of
writhes induced by this chemical stimulus. This stimulus induces
a visceral acute tonic and diffuse painful sensation mediated
by spinal and supra spinal sites, evoking different emotional
responses (Tanimoto et al., 2003). In the present study, writhes
were induced by injection of 0.1 ml.10g−1 b.w. 0.6% acetic acid
i.p., 10 min after intra-cerebral CoCl2 and MDZ injection and
30 min after systemic MDZ injection (Nunes-de-Souza et al.,
2000).

General Procedure
After 14 days, the mice were divided into two groups: cagemate
nerve constriction (CNC), in which one animal of each pair
was subjected to sciatic nerve constriction; cagemate sham
(CS), in which one animal from each pair was subjected
to the same surgery but without constriction. After an
additional 14 days of cohabiting, the cagemates (not the mice
subjected to the sciatic nerve constriction or sham) were
evaluated.

After the treatments (intra-insula or systemically) the mice
housed in group (Experiment 1) or cagemates (Experiments
2, 3, and 4) were placed in a cage for 5 min, during
which the number of writhes was recorded. All sessions
were recorded with a camera linked to a computer in an
adjacent laboratory room and data were subsequently evaluated
using the program X-Plo-Rat 2005 1.1.0 (Garcia et al.,
2005).

Some animals underwent to sciatic nerve constriction were
evaluated for the effectiveness of the surgical procedure. For
this evaluation, animals underwent to the hot plate test in
which latency of paw withdrawal was measured. Each mouse
was placed on a metal surface maintained at 52.0 ± 0.2◦C. The
latency to respond to the heat stimulus was measured using a
hand controlled timer. Mice remained on the plate until they
performed hind paw lick or hind paw shake, which are considered
typical nociceptive responses. Animals were removed from the
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TABLE 1 | Effect on mechanical hypersensitivity observed after 14 days of sciatic
nerve constriction.

HOT PLATE TEST

Groups Paw withdrawal latency (s)

SHAM 23.55 ± 0.62

CNC 11.91 ± 0.73∗

Responses are presented as Mean ± SEM (n = 75). ∗p < 0.05 vs. Sham group.

plate immediately after responding or after a maximum of 60 s
(cut off) to avoid tissue damage (Table 1; Baptista-de-Souza et al.,
2015).

Experiment 1: Evaluation of Insular Modulatory Role
in Nociception
For this experiment at 21 days post-birth (weaning) mice were
housed in groups of 10 per cage. Twenty to twenty-five days after
the beginning of cohabiting the subjects underwent stereotaxic
surgery. Four to five days after stereotaxic surgery, animals
received intra-insula saline or CoCl2 microinjections, forming
two groups: saline (animals without insula inactivation); and
CoCl2 (animals with insula inactivation). 10 min later they
were i.p., injected with 0.6% acetic acid (0.1 ml/10g b.w.), the
nociceptive stimulus. The number of writhes during a 5-min
period was recorded. Animals that do not writhing at 5-min
period were excluded from the experiment.

Experiment 2: Evaluation of Insular Modulatory Role
on Social Modulation of Pain and Nociception in
Animals That Cohabited in Pairs With Mice Subjected
to Sciatic Nerve Constriction
At 21 days post-birth, mice were housed in pairs. 14 days
after the beginning of cohabiting, they were divided into two
groups: CNC, in which one animal of each pair was subjected
to sciatic nerve constriction, as described above; and, CS
in which one animal from each pair was subjected to the
same surgery as CNC group but without nerve constriction.
On the 24th day cagemates underwent stereotaxic surgery.
On the 28th day, cagemates were subjected to the same
after-stereotaxic surgery procedures described in Experiment 1
(Figure 1A).

Experiment 3: Evaluation of the Role of Systemic
Midazolam on Nociception in Mice After Cohabited
With a Pair in Chronic Pain Condition Induced by
Sciatic Nerve Constriction
For this experiment, it was utilized the same protocol as
described in Experiment 2, except that cagemate animals
were not submitted to stereotaxic surgery. In the 28th
day, the cagemates received subcutaneous midazolam
or saline injection and, 30 min after, were subjected to
writhing test as the procedure described in Experiment 1
(Figure 1B).

Experiment 4: Evaluation of the Role of Midazolam
Intra-Insula on Nociception in Mice After Cohabited
With a Pair in Chronic Pain Condition Induced by
Sciatic Nerve Constriction
Animals were submitted to the same protocol as described in
Experiment 2, excepted that in the 28th day cagemates received
intra-insula saline or midazolam microinjections and, 10 min
after, were subjected to writhing test described in Experiment 1
(Figure 1A).

Histology
At the end of the tests, all animals of experiments 1, 2, and 4
received a 0.1 µl infusion of 2% Evans blue, according to the
microinjection procedure described above. After ketamine and
xylazine anesthesia (100 mg.kg and 10 mg.kg, i.p.,) animals were
killed by cervical dislocation, their brains were removed, and
injection sites verified histologically according to the atlas of
Paxinos and Franklin (2001). Data from animals with injection
sites outside the required structure were excluded from the
study.

Statistical Analysis
After Levene’s test to confirm the data homogeneity, in
Experiment 1 data were analyzed by using Student’s t-test for
independent samples. In experiment 2, 3, and 4 data were
analyzed by using analysis of variance (ANOVA) of two factors
(factor 1: treatment; and factor 2: cohabitating type). Cases
of significance were further analyzed by Duncan’s multiple
comparison tests. A p-value of 0.05 or less was required for
significance.

RESULTS

Hot Plate: Measurement of Surgical
Procedure Effectiveness in Animals
Subjected to Sciatic Nerve Constriction
Results of the hot plate test revealed statistically significant effects
(t38 = 12.10, p < 0.05). The post hoc Duncan test indicated a
decrease of response latency to the heat stimulus in mice subject
to the sciatic nerve constriction compared to sham animals
(Table 1).

The histological analysis confirmed that 103 mice received
bilateral cannula implantation in the Insula [Experiment 1: Saline
(n = 9), CoCl2 (n = 8); Experiment 2: CS/Saline (n = 7), CS/CoCl2
(n = 7), CNC/Saline (n = 9), CNC/CoCl2 (n = 7); Experiment 4:
CS/SALINE (n = 9), CS/MDZ 3 (n = 8), CS/MDZ 30 (n = 10),
CNC/SALINE (n = 10), CNC/MDZ 3 (n = 9), CNC/MDZ 30
(n = 10)] (Figure 2).

Experiment 1: Evaluation of Insular
Modulatory Role in Nociception
For mice that lives in groups and received intra-insula injections
of saline or CoCl2, Student’s t-test revealed no statistically
significant effects for the type of treatment factor (t15 = −0.98,
p > 0.05) (Figure 3).
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FIGURE 1 | (A,B) Schematic representation of the experimental protocol.

Experiment 2: Evaluation of Insular
Modulatory Role on Social Modulation of
Pain and Nociception in Animals That
Cohabited in Pairs With Mice Subjected
to Sciatic Nerve Constriction
For mice that cohabited in dyads, two-way ANOVA
revealed statistically significant effects for cohabitation factor
[F(1,26) = 19.52, p < 0.05]. Duncan’s test revealed that, despite
of treatment, cohabitating with animals underwent to chronic

constriction injury promotes an increased in number of
writhes in cagemates when compared with respective group
sham.

Although statistical analysis showed a non-effect for treatment
factor [F(1,26) = 3.47; p = 0.07] neither to treatment and
cohabitation factors interaction [F(1,26) = 1.59; p > 0.05],
ANOVA have been shown a p-value very close to significance.
Therefore, Duncan’s test revealed a decrease in number of writhes
only in CoCl2-treated/CNC group when compared with saline-
treated/CNC animals (Figure 4).
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FIGURE 2 | Photomicrographs and schematic representation of histological
results according to the Atlas of Paxinos and Franklin (2001) in insula. The
filled circles represent the sites of drug infusion.

FIGURE 3 | Effects of microinjection in insula (n = 17) of saline or CoCl2
(1 mM/0.1 µl) on number of writhing in mice housed in groups. Data are
presented as mean ± SEM.

Experiment 3: Evaluation of Systemic
Midazolam Treatment on Nociception in
Mice After Cohabited With a Pair in
Chronic Pain Condition by Sciatic Nerve
Constriction
Two-way ANOVA revealed statistically significant effects for
cohabitation factor [F(1,82) = 13.38; p < 0.05] and for treatment
factor [F(3,82) = 4.10; p< 0.05]. Duncan’s test revealed an increase
of writhes in cagemates that cohabitating with animals subjected
to chronic constriction injury when compared with animals that
cohabited with a sham animal. Post hoc test also revealed that

FIGURE 4 | Effects of microinjection in insula (n = 30) of saline or CoCl2
(1 mM/0.1 µl) on number of writhing in mice housed in pairs. Data are
presented as mean ± SEM. ∗p < 0.05 vs. respective saline group. #p < 0.05
vs. respective CS group. CNC, cagemate nerve constriction; CS, cagemate
sham.

the higher dose of (MDZ) (2.0 mg.kg) decreased the number of
writhes in CNC animals compared to respective saline group.
None of the doses of midazolam interferes with the number
of writhes in CS animals, compared to respective saline group
(Figure 5A).

Experiment 4: Evaluation of Midazolam
Intra-Insula Treatment on Nociception in
Mice After Cohabited With a Pair in
Chronic Pain Condition Induced by
Sciatic Nerve Constriction
For mice that received intra-insula injections of MDZ
two-way ANOVA followed by post hoc Duncan’s test
demonstrate statistically significant effects for cohabitation
factor [F(1,39) = 10.32; p < 0.05] but no effects for treatment
factor [F(2,39) = 0.17; p > 0.05] compared to respective saline
group. Duncan’s test revealed an increase of writhes in cagemates
that cohabitating with animals subjected to chronic constriction
injury when compared with animals that cohabited with a sham
animal (Figure 5B).

DISCUSSION

The present findings corroborate with previous studies where
the cohabitation with a cagemate in chronic pain condition
was able to promote hyperalgesia (Baptista-de-Souza et al.,
2015). Interestingly, the insula inactivation, induced by CoCl2
attenuated the nociceptive response only in animals that
cohabited with a cagemate in chronic pain condition, but on the
other hand did not alter the number of writhes in mice housed
in groups. Nevertheless, systemic treatment with midazolam
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FIGURE 5 | (A) Effects of midazolam (0.5, 1.0, and 2.0 mg/kg, s.c.) or saline
systemic injections (n = 89) on number of writhing in mice housed in dyads.
Data are presented as mean ± SEM. ∗p < 0.05 vs. respective saline group.
#p < 0.05 vs. respective CS group. CNC, cagemate nerve constriction; CS,
cagemate sham. (B) Effects of microinjection in insula (n = 57) of midazolam (3
and 30 nmol/0.1 µl) or saline on number of writhing in mice housed in dyads.
Data are presented as mean ± SEM. #p < 0.05 vs. respective CS group.
CNC, cagemate nerve constriction; CS, cagemate sham.

(2.0 mg.kg−1) decreased the hyperalgesia induced by living with
a pair undergone through sciatic nerve constriction. However,
we found that activation of GABAA receptors in the insula did
not change this hypernociceptive effect induced by conspecific
submitted to neuropathic pain model.

Several findings have been demonstrated that rodents showed
emotional reactions (Mony et al., 2018) face to the conspecific
suffering pain, and that cagemate condition is able to influence
their pain sensitivity (Langford et al., 2006, 2011). Recently,
our group has shown an anxiogenic-like effect by analyzing
behavioral changes in anxiety parameters in mice tested on
elevated plus-maze and open field tests after coexisting with a

conspecific submitted to sciatic nerve constriction (Baptista-de-
Souza et al., 2015), which is an evidence that strengthens the
significance of social factors and their affecting role on pain
sensitivity (Mogil, 2017).

On the other hand, previous studies have considered chronic
pain as a stressful situation (Ulrich-Lai et al., 2006; Vachon-
Presseau et al., 2013), and it could alter nociception in different
ways (attenuation or increase responses) (Coutinho et al., 2002;
Tramullas et al., 2012). Furthermore, it has been demonstrated
that induction of stress reverted emotional contagion of pain in
mice (Martin et al., 2015). Concerning these evidences, Baptista-
de-Souza et al. (2015), specifically in the protocol used in our
study, did not observe differences on corticosterone levels in
mice that cohabited 14 days with a cagemate in chronic pain
condition, suggesting that this effect is not related to stress, but to
an emotional contagion, i.e., an evolutionary behavior precursor
of empathy in mammals (Preston and de Waal, 2002).

Moreover Langford et al. (2006), have shown that the
observation of a conspecific in pain allow sensitization in
pain pathways, inducing the called “state of priming” in the
brain. In this way, a nociceptive stimulus applied after a
certain previous emotional situation (priming) leads to the
exacerbation of the subsequent painful experience in cagemates,
but not in strangers (Langford et al., 2006; Ben-Ami Bartal
et al., 2011). In brief, we suggested that cohabitation with an
animal in suffering (emotional situation – priming) was able
to promote the sensitization of pain neural circuits in the
cagemate, and consequently, when the animal was submitted
to a painful situation, the nociceptive sensation would be
exacerbated.

Among the encephalic areas that could modulate these
responses, the insula has a significant role in painful or potentially
painful situations and on social modulation of pain (Peyron et al.,
2000; Decety et al., 2016). To confirm the evidence cited above,
our second experiment demonstrated that insula inactivation
produced a decrease on abdominal writhes number in CNC but
not in CS group.

The insular cortex exhibits an extensive and multifaceted
connectivity during painful situations (Saper, 1982; Starr et al.,
2009). Studies have demonstrated that activation of insula could
produce antinociceptive and pronociceptive effects (Derbyshire
et al., 2004; Craggs et al., 2007). Concerning this, patients with
insula lesions can present complex altered behavioral in painful
situations, as asymbolia, but without affecting the nociceptive
threshold (Berthier et al., 1988).

Also regard the role of insular cortex in the modulation
of pain, Langford et al. (2010) have demonstrated that insula
lesions in mice were able to attenuate facial expressions of pain
without affecting the number of writhes, evidencing that the
inactivation of this structure in an acute pain situation alters
the emotional component of pain significance, but not the
sensorial behavior component-related to pain. In our work, the
insula inactivation decreased the number of abdominal writhes,
attenuating the hyperalgesia only in a cagemate that cohabited
with a mouse subjected to sciatic constriction, an emotional
situation, without altering the nociceptive response in mice
housed in groups.
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The first experiment was performed in order to investigate the
involvement of insular cortex in the pain response per se (without
emotional influence). We considered that is an important
previous evaluation to better featuring the role of this cortical
area in the emotional component of pain. However, we observed
that the inactivation of insula in animals that lived in groups
(normal experimental situation) (Experiment 1) did not alter
the pain response. Therefore, we have been showed the insula
inactivation, induced by CoCl2 attenuated the nociceptive
response only in animals that cohabited with a cagemate in
chronic pain condition.

Although we considered the control situation is the
animal living with a SHAM cagemates, this type of
cohabitation (in pairs) is different of those commonly
applied in laboratory environmental, wherein the animals
living in groups. Curiously, the number of writhes in
mice treated with saline and that living in groups was
superior compared with those in the same condition
but that lived in pairs. This fact leads to consider that
the pattern of writhing in both control situations (saline
treatment) can be explained by housing the animals in pairs or
groups.

Mice are social animals and the isolation can be responsible
for behavior alterations, including pain sensitization (Puglisi-
Allegra and Oliverio, 1983). Suchlike a social isolation, we
believe that the housing with small groups or pairs can
promote a bigger state of vigilance when compared with
animals that cohabitate in larger groups. According to aversive
brain system model (Gray and McNaughton, 2000), this
major vigilance threshold leads to non-defensives behavior
inhibition, like those related to pain. Therefore, although
the writhes average of the control group that lived in
pairs show up smaller than the average in the same group
of the animals that lived in groups; they are similar to
those observed in the experiments of our groups (Baptista-
de-Souza et al., 2015). This fact leads us to propose the
hypothesis that the pain threshold is related to the cohabitation
type.

Although the neurochemical substrate involved in empathy
for pain is not yet established (Mogil, 2015), subjects in chronic
pain conditions display neurotransmitter system imbalances in
some encephalic structures (Bushnell et al., 2013; Watson, 2016)
as well as comorbidities with emotional disturbances (Gamsa,
1990; Edwards et al., 2016).

In this context, the experiments 3 and 4 investigated the
involvement of the GABAA-benzodiazepine receptors system
in the social modulation of pain through systemic or intra-
insula midazolam microinjections. We observed that a higher
dose of systemic midazolam reversed hyperalgesia induced
by cohabitation in the CNC group, demonstrating a possible
involvement of the neurotransmitter system on emotional
process.

Although the analgesic effects of midazolam have already been
reported by the literature (Rodgers and Randall, 1987; Niv et al.,
1988; Nishiyama et al., 1999), specifically in the writhing test
(Nunes-de-Souza et al., 2000), in the present study the analgesic
effect was observed only by the highest dose in dyads, i.e.,

demonstrating its effects only on the emotional component of
nociception.

Furthermore, Ben-Ami Bartal et al. (2016) have been
reported that midazolam impaired helping behavior in rats,
one of the faces of empathy, whereby withdrawals the
emotional aspect of experimental condition and this effect
is not due to the indirect sympatholytic effect. Considering
above mentioned findings, and ours results obtained from
Experiments 2 and 3, we injected intra-insula midazolam.
However, curiously we did not observe changes in the
hypernociception induced by cohabitation with a mouse in
neuropathic pain condition.

Concerning that, it has been described that inactivation by
cobalt chloride (as conducted in Experiments 1 and 2) blocked
several active neurotransmitters within the structure (Kretz,
1984; Lomber, 1999). Thus, the effects of insular GABAergic
system may not have occurred likewise in Experiment 2 due
the coordinated participation of this inhibitor neurotransmitter
with others neurotransmitters (Watson, 2016) in this social
modulation of pain condition.

In addition, dopamine and serotonin have been described
as important neurotransmitters on emotional processes,
nociception and pathology related to empathy, as well,
schizophrenia and autism (Elhwuegi, 2004; Nakamura et al.,
2010; Komuniecki et al., 2012; Flood and Clark, 2014). In the
same way, the study performed by Watson (2016), demonstrated
that the unbalanced excitatory and inhibitory neurotransmitters
within insula could increase thermal hyperalgesia and mechanical
allodynia in subjects in chronic pain conditions.

Likewise the insular cortex, the emotional response and pain
are also processed in the amygdaloid complex (Fields, 1999;
LeDoux, 2000). It has been reported that GABAA receptors
within amygdala processes sensory and affective pain in rats
under neuropathic pain condition (Pedersen et al., 2007). In
addition, previous results of our group had demonstrated
alterations in nociception after inactivation of the amygdala in
mice that lived with a cagemate submitted to a neuropathic model
(Pelarin et al., unpublished).

Taken together, the present study has demonstrated that
(i) cohabitation in pairs with a cagemate in a chronic
pain condition induces hypernociception, (ii) insular cortex
is one of the neural substrate of empathy for pain, (iii)
GABAA-benzodiazepine receptors system is involves on the
modulation of hyperalgesia induced by living with a conspecific
in neuropathic pain condition, and (iv) the activation of
GABAergic neurotransmission within insula did not interfere
in the cagemates nociceptive responses housed with a pair in
chronic pain suffering.

CONCLUSION

This work has performed in order to answer two hypotheses;
the hyperalgesia induced by cohabitation with a mouse
in chronic pain condition is modulates by insular
cortex (confirmed wherein the inactivation of the insula
blocked this effect). Furthermore, this modulation of
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insular cortex would occur by GABAergic system action, which
was not confirmed whereas the midazolam injections in the
insula did not change the pain responses (Experiment 4).
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