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Patients with chronic hepatitis C (CHC) virus infection who have persistently normal alanine aminotransferase levels (PNALT)
have mild inflammation and fibrosis in comparison to those with elevated ALT levels. The cellular immune responses to HCV
are mainly responsible for viral clearance and the disease pathogenesis during infection. However, since the innate and adaptive
immune systems are suppressed by various kinds of mechanisms in CHC patients, the immunopathogenesis of CHC patients with
PNALT is still unclear. In this review, we summarize the representative reports about the immune suppression in CHC to better
understand the immunopathogenesis of PNALT. Then, we summarize and speculate on the immunological aspects of PNALT
including innate and adaptive immune systems and genetic polymorphisms of HLA and cytokines.

1. Introduction

Hepatitis C virus (HCV) is noncytopathic virus that causes
chronic hepatitis and hepatocellular carcinoma (HCC) [1].
Approximately 70–80% of those acutely infected will become
persistently infected with HCV [1]. Around 30% of CHC
patients exhibit PNALT and show milder disease activity and
slower progression to hepatic cirrhosis [2–6]. However, it is
reported that about 40% of these progress to the active stage
of inflammation, but the incidence of HCC in the PNALT
was lower than that in those with elevated ALT levels [7].
Cellular and humoral immune responses to HCV play an
important role in the pathogenesis of active and nonactive
chronic hepatitis [8].

Numerous studies have indicated that failure of the cel-
lular immune response, including type 1 helper T cells (Th1)
hypo-responsiveness, cytotoxic T lymphocyte (CTL) exhaus-
tion, excessive function of CD4+ CD25+ FOXP3+ regula-
tory T cells, and failure of lymphoid cells via direct binding
and/or infection in B cells, T cells, NK cells, and DCs occurs
in CHC patients [9–21]. Since the liver damage in CHC is
mainly induced by Th1 and/or CTL related responses [22–
24], these responses might be strongly suppressed in PNALT.

Given the involvement of immune responses, genetic fac-
tors including polymorphism of HLA and cyotokine-related

genes could also contribute to the activity of inflammation
in CHC patients [25–37]. Many groups, including us, have
reported on the relationship between certain HLA and ALT
levels in CHC patients [25, 27–29]. Moreover, some groups
indicated the polymorphism of certain cytokines-related
genes contributed to the level of inflammation [30–37]. In
a genomewide association study (GWAS), IL28B polymor-
phism was shown to influence the outcome of Peg-IFN
and RBV therapy [38]. However, although the relationship
between IL28B polymorphism and PNALT is still unclear, a
possible relationship between IL28B polymorphism and the
activity of inflammation has been reported [39, 40].

In this review, we focused on the possible immunopatho-
logical aspects of PNALT and summarize various studies
about the mechanism and genetic host factors involved in the
immune suppression in CHC patients.

2. Mechanism of Immune Suppression
in CHC Patients

2.1. Innate Immune System in Hepatocytes

2.1.1. Immune Suppression in CH-C. Innate immune systems
are important for the initial step of viral infection [41,
42] (Figure 1). Toll-like receptors (TLRs) are a family of
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Figure 1: The schema of innate immune suppression in CHC is shown. The representative suppressive mechanisms are shown in this figure.

innate immune-recognition receptors that recognize molec-
ular patterns associated with microbial pathogens including
single and double-strand RNA. HCV interferes with the
innate immune response and the induction of IFN-beta
via the HCV NS3/4A protease activity, which inhibits the
phosphorylation of IRF-3, a key transcriptional regulator
of the IFN response [43, 44]. HCV NS3 protein interacts
directly with TBK1, and this binding results in the inhibition
of the association between TBK1 and IRF-3, which leads to
the inhibition of IRF-3 activation [45].

2.1.2. Immune Suppression in PNALT. However, since little is
known about the direct relationship between the suppression
of TLR signaling and PNALT, the level of TLR signaling
suppression might contribute to the immunopathogenesis of
PNALT.

2.2. Monocyte, NK, and NK-T Cells

2.2.1. Immune Suppression in CH-C. In addition to the in-
tracellular immune reaction of hepatocytes, monocytes, NK,
and NK-T cells are responsible for the rapid reaction in HCV
infection (Figure 1). Many groups have described that NK
and NK-T cells were suppressed in CHC patients [46–53].
However, whether NK and NK-T cells would be suppressed

in CHC patients is still controversial [48]. The various
backgrounds of CHC patients have resulted in controversial
findings [49]. The function of NK cells is regulated by
a balance of inhibitory and activating signals, which are
mediated by the differential expression of receptors. Takehara
and Hayashi recently reported that the expression of the
inhibitory receptor CD94/NKG2A is upregulated on NK cells
in CHC patients [53]. Another group reported that exposure
to HCVcc modulates the pattern of cytokines produced by
NK cells, leading to reduced antiviral activity [47].

2.2.2. Immune Suppression in PNALT. Previously, it was
reported that HCV-core and NS3 protein triggered the
inflammatory pathway via TLR2, which might affect viral
recognition and activation of the immune system [54]. It was
also reported that peripheral blood monocyte expression of
TLR2 but not of TLR4 correlated significantly with the serum
ALT levels [55]. Concerning the mechanisms of monocyte-
suppression, it was clearly demonstrated that macrophage
cell lines expressing NS3, NS3/4A, NS4B, or NS5A inhibited
the activation of the TLR2, TLR4, TLR7, and TLR9 signaling
pathways. Among the HCV individual proteins, NS5A bound
to MyD88, a major adaptor molecule in TLR, inhibited the
recruitment of interleukin-1 receptor-associated kinase 1 to
MyD88 and impaired the cytokine production in response to
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Figure 2: The schema of adaptive immune suppression in CHC is shown. The representative suppressive mechanisms are shown in this
figure.

TLR ligands [56]. These results indicated that the activation
of monocytes was probably suppressed in low ALT and
PNALT CHC patients.

2.3. Adaptive Immune Systems: T Cells,

B Cells, and Dendritic Cells

2.3.1. Immune-Suppression in CH-C. After the innate im-
mune period, the adaptive immune system including CD4+
T cells, CD8+ cyototoxic T cells, B cells, and dendritic cells
should be involved in a more effective immune response to
HCV.

The HCV antigen-driven proliferation of CD4+ T cells
is weak in patients who develop persistent HCV infection
[57, 58]. It has been demonstrated that depletion of CD4+
T cells results in a weak CD8+ T cell response, which partly
controls viremia, followed by viral persistence in chimpanzee
infection studies [59]. In addition, an appropriate Th1
response is essential to eradicate HCV [60]. It has been
reported that an increased Th2 cytokine response may reduce
the inflammatory and biochemical activity [61]. Moreover,
various studies have indicated that failure of the adap-
tive immune response, including Th1 hypo-responsiveness,
CD8+ CTL exhaustion, excessive function of CD4+ CD25+

FOXP3+ regulatory T cells, and failure of lymphoid cell
via direct binding and/or infection in B cells, T cells, and
DCs occurs in CHC patients [9–21]. Previously, we reported
the direct suppressive effect of HCV on T cell- and B cell-
immunity in CHC by using a lymphotropic HCV strain [14–
17]. However, since the contribution of lymphotropic HCV
to the pathogenesis of PNALT is still not clear, the biological
significance of lymphotropic HCV needs to be analyzed in
future studies. Studies about the relationship between the
infectivity of lymphotropic HCV and PNALT are ongoing
in our laboratory. Tregs constitutively express CD25 (the
IL2 receptor alpha-chain) in the physiological state [62].
In human, this Tregs population, defined as CD4+ CD25+
FOXP3+ cells, constitutes 5% to 10% of peripheral CD4+
T cells and has a broad repertoire that recognizes various
types of self and nonself antigen. Antigens induced by HCV
might induce Tregs to escape from immunological pressure
as reported in persistent infection of EB virus, hepatitis B
virus, and HIV [63–67] (Figure 2).

2.3.2. Immune Suppression in PNALT. More recently, Itose
et al. reported that the frequencies of naturally occurring-
Treg in CHC patients were significantly higher than those
in healthy individuals. The FOXP3 and CTLA4 transcripts
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were higher in PNALT than those in CHC patients [21].
Another group also described that their suppressor ability
is stronger in patients with PNALT than that in those with
active CHC hepatitis [68]. These two studies could be direct
evidence about the relationship between PNALT and the
function of Tregs. Moreover, a unique subset of lymphocytes
might contribute to the immune suppression in PNALT [69]
(Figure 2).

3. HLA and Cytokine-Related Gene
Polymorphism and ALT Level

3.1. HLA Polymorphism. CD8+ CTLs are able to recognize
viral antigens synthesized within infected cells in the form of
short peptides associated with HLA class I molecules [70].
On the other hand, CD4+ Th cells are able to recognize anti-
gens associated with HLA class II molecules [70, 71]. Indi-
viduals that are heterozygous at HLA class I loci are able to
present a greater variety of antigenic peptides to CTL result-
ing in a broader immune response [72]. HLA class I het-
erozygosity was found at a higher rate in patients with slow
progression to AIDS in HIV-1 infection [73]. However, HLA
class I heterozygosity did not affect the inflammatory levels
of CHC patients in our previous study [27]. The frequency
of HLA-A2 tended to be higher in patients with PNALT than
in those with elevated ALT level [27]. A specific HLA class
II allele has been reported to influence the disease severity
[25] or viral clearance in chronic hepatitis C [26]. Yoshizawa
et al. reported that the frequencies of DRB1∗12 (∗1201 and
∗1202), DQB1∗0301, and DRB3∗03 alleles were higher in
patients with asymptomatic HCV carriers than those in liver
cirrhosis patients [28]. Large-scale studies might be able to
verify the ethnic, gender, age, and other genetic factors and
determine the influence of the HLA allele on PNALT.

3.2. Cytokine-Related Gene Polymorphism. Numerous stud-
ies indicated that various kinds of cytokine-related gene
polymorphism were involved in the immunopathogenesis of
CHC. IL10 is a suppressive cytokine that could contribute
to the persistence of HCV infection and low inflammation
level in CHC. Mangia et al. reported that the IL-10 ATA
haplotype was more frequent in patients with spontaneous
HCV RNA clearance (36.0%) than that in patients with
persistent infection (23%) [74]. On the other hand, another
group reported that no effect of IL-1beta and IL-10 gene
polymorphism on the degree of hepatocellular injury was
apparent based on the ALT levels [37]. However, a gender
effect is clearly observed in women carrying the GG high
IL-10 producer genotype. The higher levels of IL-10 present
in such individuals are associated with a higher risk of
inefficient clearance of the HCV and the development of a
chronic HCV infection together with a lower risk of pro-
gression to cirrhosis in female patients [75]. These reports
indicated that IL-10-related gene polymorphism might affect
the level of inflammation in certain conditions. Another
important gene is CCR5Delta32. CCR5Delta32, a 32-base
pair deletion of the CC chemokine receptor (CCR) 5 gene,
is associated with slower human immunodeficiency virus

disease progression in heterozygotes and protection against
infection in homozygotes. Goulding et al. reported that
heterozygosity for CCR5delta32 was significantly associated
with spontaneous hepatitis C viral clearance and with signif-
icantly lower hepatic inflammatory scores [33]. In addition
to these gene polymorphisms, polymorphism of TGF-beta,
TNF-alfa, IL2, IFN-g, and OAS-1 genes might contribute
to the level of inflammation [30–32, 35, 74]. More recently,
GWAS revealed promising results. A genomewide association
of IL28B with the response to pegylated interferon and
ribavirin was reported [38]. Then, another group reported
that different cytokine profiles induced by the IL28 polymor-
phism resulted in different Interferon stimulated genes and
IL28 expression during chronic HCV infection [76]. They
reported that the expression of IL28, MxA, PKR, OAS1, and
ISG15 in hepatic cells was significantly lower in patients with
the response-favorable (rs8099917) T/T genotype compared
to those with T/G or G/G genotypes [76]. A future study
might be able to determine the relationship between IL28
polymorphism and PNALT.

4. Concluding Remarks

In CHC patients, there are many kinds of immune-sup-
pressive mechanisms. However, although the immunopatho-
genesis of PNALT has not been clarified yet, the complexities
of immune reactions likely contribute to the difficulties of
determining the detailed mechanisms of PNALT. Recently,
the technologies of GWAS, immunoassay with increased
numbers of multicolor flow cytometry analysis, and chimera
mice with human hepatocytes and lymphocytes have been
developed. These technologies, together with previous data,
might be able to clarify the immunopathogenesis of PNALT
in CHC.
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