

REVIEW

Toxicology

A review: poisoning by anticoagulant rodenticides in non-target animals globally

Shouta M.M. NAKAYAMA^{1)#}, Ayuko MORITA^{1)#}, Yoshinori IKENAKA^{1,2)}, Hazuki MIZUKAWA³⁾ and Mayumi ISHIZUKA^{1)*}

¹⁾Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan

²⁾Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa

³⁾Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan

ABSTRACT. Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led to secondary poisoning of non-target animals, especially raptors. In spite of the occurrence of many incidents of primary or secondary AR-exposure and poisoning of non-target animals, these incidents have been reported only for individual countries, and there has been no comprehensive worldwide study or review. Furthermore, the AR exposure pathway in raptors has not yet been clearly identified. The aim of this review is therefore to comprehensively analyze the global incidence of primary and secondary AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the published literature, which reported AR residues in the non-target animals between 1998 and 2015, indicated that various raptor species had over 60% AR- detection rate and have a risk of AR poisoning. According to several papers studied on diets of raptor species, although rodents are the most common diets of raptors, some raptor species prey mainly on non-rodents. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of some raptors, AR residues in these animals, as well as in target rodents, could be the exposure source of ARs to raptors.

KEY WORDS: anticoagulant rodenticide, comprehensive review, non-target animal, raptor, residue

Worldwide use of anticoagulant rodenticides (ARs) for vertebrate pest control has frequently led to the unintentional exposures of non-target animals, especially raptors, to these poisons. Recently, more than 420 birds, including 46 bald eagles (*Haliaeetus leucocephalus*), died because of a rat-eradication program on an Alaskan island [2]. Reporting that more than 130 dead raptors found in and around Vancouver, Canada, and virtually 100% of the owls and the hawks in this group, had AR residues in their livers, the Nature News article "killing rats is killing birds" had a strong impact on the world [29]. The occurrence of AR poisoning in raptors is related to many factors, such as the exposure pathway, the degree of ARs inhibiting the target molecule (vitamin K 2,3-epoxide reductase, VKOR), and AR metabolism by cytochrome P450 (CYP).

Although it is thought that raptors are sensitive to ARs, the mechanism for this sensitivity has not yet been revealed. Several toxicokinetic of avian species have been studied. Compared to mammals, eastern screech-owls (*Megascops asio*) have a long elimination half-life of diphacinone in the liver [39]. Furthermore, owls have very low CYP-dependent warfarin metabolic activity compared to rats and other avian species [62]. These facts imply that owls have a limited ability to detoxify ARs. However, toxicokinetics of the other raptor species has been rarely studied.

In spite of frequent incidents of primary or secondary AR-exposure and poisoning in non-target animals, including predatory mammals and birds (especially raptors), these incidents have been reported only in individual countries and there has been no comprehensive worldwide study or review. Therefore, we comprehensively reviewed and analyzed the published literature on AR-exposure occurrence based on the kind of ARs, the country type, and the animal groups. In addition, this review discussed diets of raptors. Some possible exposure pathways in addition to the target rodents were also discussed.

The chemical structures of nine typical anticoagulant rodenticides (ARs) are shown in Fig. 1. ARs are classified into two classes:

^{©2019} The Japanese Society of Veterinary Science

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)

J. Vet. Med. Sci. 81(2): 298–313, 2019 doi: 10.1292/jvms.17-0717

Received: 28 December 2017 Accepted: 26 November 2018 Published online in J-STAGE: 27 December 2018

^{*}Correspondence to: Ishizuka, M.: ishizum@vetmed.hokudai.ac.jp

[#]These authors contributed equally to this work.

Fig. 1. Chemical structure of nine typical ARs (A to I) and vitamin K (J). First-generation anticoagulant rodenticides (FGARs) are represented by the coumarin (warfarin, A, and coumatetralyl, B) and indanedione (diphacinone, C, and chlorophacinone, D) rodenticides. Examples of second-generation anticoagulant rodenticides (SGARs) are brodifacoum (E), bromadiolone (F), difenacoum (G), difethialone (H) and flocoumafen (I). The main chain structures of ARs are similar to that of vitamin K (J).

4-hydroxycoumarin derivatives (coumarin: warfarin, coumatetralyl, brodifacoum, bromadiolone, difenacoum, difethialone, and flocoumafen), and 1,3-indanedione derivatives (indanedione: chlorophacinone and diphacinone are the most commonly used examples).

By the early 1950s, warfarin was being used as a pesticide to control rats and mice [41]. Warfarin and other early ARs, such as coumatetralyl, chlorophacinone, and diphacinone, are called first-generation ARs (FGARs). Multiple ingestions of these compounds are required to cause death in rodents. Since then, FGAR-resistant rats and mice have appeared, so the more potent second-generation ARs (SGARs), such as brodifacoum, bromadiolone, difenacoum, difethialone, and flocoumafen, were developed [41]. SGARs require only a single ingestion to cause death in the targeted rodents. For mice, SGARs have a longer $T_{1/2}$ than FGARs (Table 1): in the plasma, $T_{1/2}$ for SGARs is 20.4–91.7 days, while that for FGARs is 0.52–14.9 days; and in the liver, $T_{1/2}$ for SGARs is 28.1–307.4 days, whereas that for FGARs is 15.8–66.8 days. In addition to longer $T_{1/2}$, SGARs have a lower LD₅₀ than FGARs (Table 2): LD₅₀ for SGARs and FGARs are 0.4–1.75 and 20.5–1,000 mg/kg in mice; 0.35–0.84 and 11–323 mg/ kg in rats; 0.25–8.1 and 0.88–50 mg/kg in dogs; 3.15 and 942 mg/kg in chickens; 0.26–138 and 258–2,150 mg/kg in northern bobwhites; 10 and >100 mg/kg in ring-necked pheasants; and 4.6 and 620–3,158 mg/kg in mallards. In Australian harriers, LD₅₀ for SGARs is 10 mg/kg; and in American kestrels, LD₅₀ for diphacinone (FGARs) is 97 mg/kg. These longer $T_{1/2}$ and lower LD₅₀ for SGARs imply that SGARs are more toxic than FGARs.

		FGA	ARs				SGARs		
	Warfarin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen
$T_{1/2}$ in the plasma									
Mouse ^{a)}	14.9	0.52	-	11.7	91.7	33.3	20.4	38.9	26.6
$T_{1/2}$ in the liver									
Mouse ^{a)}	66.8	15.8	-	35.4	307.4	28.1	61.8	28.5	93.8
Rat	-	-	3	-	-	-	-	-	-
Pig	-	-	5.43	-	-	-	-	-	-
Screech owl	-	-	11.7	-	-	-	-	-	-
Screech owl	-	-	11.7	-	-	-	-	-	-

 Table 1. Eliminated half-life, T_{1/2} (days) for FGARs (warfarin, coumatetralyl, chlorophacinone and diphacinone) and SGARs (brodifacoum, bromadiolone, difenacoum, difethialone and flocoumafen) in animals. Modified from [12, 18, 20, 39, 40, 57]

a) dose=half of LD50.

Table 2. Median lethal dose, LD₅₀ (mg/kg) for FGARs (warfarin, coumatetralyl, chlorophacinone and diphacinone) and SGARs (brodifacoum, bromadiolone, difenacoum, difethialone and flocoumafen) in animals. Modified from [12, 18, 20, 39, 40, 57]

		FG	ARs				SGARs		
	Warfarin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen
Mouse	374	<1,000	141-340	20.5	0.4	1.75	0.8	1.29	0.8
Rat	14-323	-	30	11	0.35-0.5	0.56-0.84	-	0.55	-
Dog	20-50	-	0.88-15	-	0.25-1.0	8.1	-	-	-
Cat	2.5-20	-	5-15	-	<25	>25	-	-	-
Chicken	942	-	-	-	3.15	-	-	-	-
Northern bobwhite	>2,150	-	2,014	258	-	138	-	0.26	-
Ring-necked pheasant	-	-	-	>100	10	-	-	-	-
Mallard	620	-	3,158	-	4.6	-	-	-	-
American kestrel	-	-	97	-	-	-	-	-	-
Australasian harrier	-	-	-	-	10	-	-	-	-

AR EXPOSURE GLOBALLY

From 1998 to 2015, altogether 30 papers were published reporting primary or secondary exposure and poisoning by ARs in nontarget animals. Of these, 19 papers report poisoning of raptors. There are six publications from the U.S.A. [9, 42, 45, 48–50], three from Canada [1, 18, 55], nine from the U.K. [7, 19, 31, 46, 47, 58–61], two from France [13, 25], three from Spain [28, 43, 44], two from Denmark [5, 11], one from Norway [26], and four from New Zealand (NZ) [6, 8, 14, 35]. These reports and the proposed exposure pathways are summarized below.

Presence of ARs in non-target animals

According to the literatures published between 1998 and 2015, totally 2,694 out of 4,891 (55%) individual non-target animals have been found to have a residual accumulation of ARs in their livers (Table 3A). Because the kinds of analyzed rodenticides were different depending on the papers, the number of analysis was different for each compound. Brodifacoum was detected in 31% (n=1,465 out of 4,790) of non-target animals, bromadiolone in 30% (n=1,346 out of 4,513), and difenacoum in 26% (n=1,048 out of 4,001). The other compounds were detected in less than 10% of the animals: flocoumafen in 5.7% (n=175 out of 3,077), difethialone in 5.0% (n=101 out of 2,035), chlorofacinone in 5.6% (n=113 out of 2,013), diphacinone in 5.0% (n=99 out of 1,972), coumatetralyl in 4.5%, (n=108 out of 2,391), and warfarin in 1.0% (n=27 out of 2,639). Some animals had more than two types of ARs in their liver.

High detection-rates of brodifacoum, bromadiolone and difenacoum reflect the relative frequency of use of these SGARs and differences in tissue $T_{1/2}$ values between compounds. Because brodifacoum has longer $T_{1/2}$ compared with the other ARs (Table 1), it would be expected that brodifacoum is detected for a long time and is over-reported relative to the amount of use compared with the other compounds. Because of the high toxicity of SGARs, as indicated by their longer $T_{1/2}$ values in the liver and lower LD₅₀ values relative to FGARs (Tables 1 and 2), the potential adverse effects of SGARs on non-target animals are a particular cause for concern.

AR exposure of non-target animals in each country

In terms of occurrence in each country (Table 3B), residues of rodenticides were detected in 523 out of 560 animals (93%) in Denmark, 241 out of 362 animals (67%) in Canada, 171 out of 288 animals (59%) in NZ, 474 of 812 animals (58%) in the U.S.A.,

1

Table 3. Detection rates and the numbers of non-target animals in which ARs have been detected in their liver, classified based on (A) type of AR, (B) country and (C) animal groups. Altogether, there were 2,694 out of 4,891 individuals (55%) of non-target animals have been reported to have AR residues in their livers between 1981 and 2013 [1, 5–9, 11, 13, 14, 18, 19, 25, 26, 28, 31, 35, 42–50, 55, 58–61]

(A)		FGA	ARs		SGARs				
	Warfarin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen
Detection rate (%)	1.0	4.5	5.0	5.6	31.0	30.0	26.0	5.0	5.7
The number of detection	27	108	99	113	1,465	1,346	1,048	101	175
The number of analysis	2,639	2,391	1,972	2,013	4,790	4,513	4,001	2,035	3,077
									-
(B)	Denmark	Canada	NZ	U.S.A.	Norway	Spain	U.K.	France	
Detection rate (%)	93	67	59	58	53	51	44	23	•
The number of detection	523	241	171	474	16	437	790	42	
The number of analysis	560	362	288	812	30	849	1,809	181	
	<i>a</i> .	D		1 1 1 6		D: 1 1	42	D	

(C)	Carnivora	Raptors	Mammals excluding Carnivora	Birds excluding raptors	Reptiles
Detection rate (%)	56.8	56.6	52.1	52.1	50.0
The number of detection	382	1,892	212	207	1
The number of analysis	672	3,345	407	397	2

Table 4. The number of non-target animal species in which ARs have been detected in the liver. References are given in Table 5

	U.S.A.	Canada	U.K.	France	Spain	Denmark	Norway	NZ	Total ^{a)}
Raptors	13	4	7	4	18	11	2	2	34
Other birds	9	1	-	2	9	-	-	16	34
Carnivora	5	-	3	4	8	2	-	-	15
Cetartiodactyla	1	-	-	-	-	-	-	2	3
Erinaceomorpha	-	-	1	-	2	-	-	-	2
Rodentia	2	-	-	-	-	-	-	-	2
Lagomorpha	-	-	-	-	1	-	-	-	1
Chiroptera	-	-	-	-	-	-	-	1	1
Marsupialia	1	-	-	-	-	-	-	-	1
Reptiles	-	-	-	-	1	-	-	-	1
Total	31	5	11	10	39	13	2	21	94

a) This is not necessarily the sum of the values for each country, because some species were reported in several countries.

16 out of 30 animals (53%) in Norway, 437 out of 849 animals (52%) in Spain, 790 out of 1809 animals (44%) in the U.K., and 42 out of 181 animals (23%) in France. Although these rates seem to imply the degree of AR exposure in each country, it is difficult to compare the percentage with each country, because these percentages probably reflect residue detection limits as well as the relative frequency of use. The minimum detectable amounts of individual ARs described in the study of Denmark and Canada were lower than those of France (e.g. 2–5 to 70–80 μ g/kg for brodifacoum respectively) [1, 5, 11, 13, 18, 25, 55]. On the other hand, the detection limits for brodifacoum were 10–50, 2–20, 5, 1–6, and 1.4–50 μ g/kg of NZ [8, 14, 35], the U.S.A. [9, 42, 45, 48–50], Norway [26], Spain [28, 43, 44], and the U.K. [7, 19, 31, 46, 47, 58–60], respectively. Therefore, high (or low) sensitivity of detection seemingly not always cause over (or under)- estimation, but in some cases might affect accounting of AR exposure. We would like to note that, although AR detection rates were various in eight countries (from 23 to 93%), AR exposure of non-target animals might certainly occur in all eight countries.

The largest number of species in which AR residues have been found in one country (Table 4) was 39 (Spain), followed by 31 (the U.S.A.), 21 (NZ), 13 (Denmark), 11 (the U.K.), ten (France), five (Canada), and two (Norway). In all of these countries except NZ, raptors constituted the majority of exposed species: 18 in Spain, 13 in the U.S.A., 11 in Denmark, seven in the U.K., four in France and Canada, and two in Norway. In NZ, the majority of exposed species were in the group "birds excluding raptors" (16 species). Various species (totally 94 species), especially raptors (34 species), were exposed to ARs.

AR residues in non-target animals have only been reported in these eight countries. This is probably because this research is implemented only in North America, Europe and NZ. However, ARs have been frequently used worldwide [21]. Global AR market data is difficult to obtain because of confidential business information, but estimates are described as hundreds of millions dollars annually in the U.S.A. and European countries [41]. Primary and secondary AR exposure of non-target animals may indeed occur

all over the world, so increased surveys are needed worldwide to determine the extent of the problem.

Classification of animal species exposed to ARs

Table 3C shows that the accumulation of AR residues was detected in 382 out of 672 individuals of *Carnivora* (56.8%), 1,892 out of 3,345 raptors (56.6%), 212 out of 407 mammals excluding *Carnivora* (52.1%), 207 out of 397 birds excluding raptors (52.1%), and 1 out of 2 reptiles (50%). Percentages of *Carnivora*, raptors and reptiles are presumed to be secondary exposure degree, and those of mammals excluding *Carnivora* and birds excluding raptors seem to be primary exposure degree.

Although secondary exposure seems to occur in *Carnivora* and raptors at a comparable frequency, secondary poisoning should be considered to occur in raptors frequently relative to *Carnivora*. Critical liver SGAR concentrations associated with hemorrhaging and mortality have not been defined for most raptor species. However, the potentially lethal range for SGARs in raptors has been described as >100–200 μ g/kg [5, 55, 60]. On the other hand, the lethal concentration of SGARs in *Carnivora* livers have been reported that brodifacoum of 700 μ g/kg was detected in stoat and weasel, bromadiolone of 230 μ g/kg accumulated in stoat, and difenacoum of 1,400 μ g/kg was measured in polecats [31, 46]. Because most of the cited references in the current review did not mention AR concentrations of individual animals, we could not calculate AR-poisoning rate of individual species. However, raptors are presumed to be poisoned by ARs frequently rather than *Carnivora*, because of the low lethal range for SGAR residues in raptors. Moreover, screech owls have longer T_{1/2} for diphacinone compared with rats and pigs (Table 1), and owls have very low warfarin metabolic activity relative to rats and other avian species [62]. The adverse effect of AR exposure on raptors is of interest.

The high AR-exposed rate was reported in various raptor species rather than *Carnivora* species. The number of species ARs detected in more than 60% of individuals was 11 in raptors, and it comprised 48% of 23 raptor species that the number of analysis was more than nine individuals (Note: We did not include the species whose analyzed individual sample size was less than 8. This was to avoid the over-estimation e.g. 100% of detection rate such a case that the one individual detected from the one individual analyzed.). In contrast, 3 species, which had over 60% AR-detection rate, composed 27% of 11 *Carnivora* species that AR residue was examined in more than nine individuals. AR exposure to extensive raptor species implies that various kinds of raptors have a risk of AR poisoning.

SECONDARY EXPOSURE TO AR IN RAPTORS

Frequently reported raptor species

Of the 39 raptor species analyzed, 34 species were reported to have AR accumulation in their liver, and 17 species had more than 60% detection rate of ARs (Table 5): two out of two turkey vultures (*Cathartes aura*; 100%), one out of one short toed snake-eagle (*Circaetus gallicus*; 100%), three out of three marsh harriers (*Circus aeruginosus*; 100%), five out of five moreporks (*Ninox novaeseelandiae*; 100%), 15 out of 17 little owls (*Athene noctua*; 88%), 33 out of 39 Eurasian eagle owls (*Bubo bubo*; 85%), 20 out of 24 bald eagles (*Haliaeetus leucocephalus*; 83%), five out of six short-eared owls (*Asio flammeus*; 83%), 26 out of 32 rough-legged buzzards (*Buteo lagopus*; 81%), 116 out of 145 sparrowhawks (*Accipiter nisus*; 80%), 108 out of 138 red kites (*Milvus milvus*; 78%), 62 out of 80 long-eared owls (*Asio otus*; 78%), 154 out of 206 kestrels (*Falco tinnunculus*; 75%), 26 out of 38 barred owls (*Strix varia*; 68%), 14 out of 22 golden eagles (*Aquila chrysaetos*; 64%), and 192 out of 308 great horned owls (*Bubo virginianus*; 62%).

Of these 17 species, ten species included some individuals, which had liver SGAR concentrations more than 100 μ g/kg (Table 5). The potentially lethal level for brodifacoum residues were reported in some individuals of all ten species: at least five moreporks (610–3,440 μ g/kg), one little owl (574 μ g/kg), four Eurasian eagle owls (133–2,008 μ g/kg), 18 bald eagles (429–2,599 μ g/kg), one sparrowhawk (112 μ g/kg), three red kites (129–222 μ g/kg), two kestrels (240 and 298 μ g/kg), one barred owl (927 μ g/kg), one golden eagle (110 μ g/kg), and 15 great horned owls (100–970 μ g/kg). High bromadiolone concentrations were reported in six species: at least one Eurasian eagle owl (208 μ g/kg), one red kite (490 μ g/kg), one kestrel (679 μ g/kg), one barred owl (1,012 μ g/kg), one golden eagle (154 μ g/kg), and four great horned owls (226–1,080 μ g/kg). High difenacoum accumulations were reported in two Eurasian eagle owls (181 and 281 μ g/kg) and one kestrel (450 μ g/kg), at least. High flocoumafen accumulations were reported in one red kite (400 μ g/kg) and one golden eagle (117 μ g/kg). High difethialone accumulations were reported in one red kite (400 μ g/kg). Four sparrowhawks were reported to have sum SGAR concentrations of 100–157 μ g/kg. Because of the high AR exposure rates and including some individuals that have high liver SGAR concentrations, these ten species are seemingly affected by ARs more severely than other raptor species.

Threatened raptors

A wide variety of raptor species was found to have been exposed to ARs. Furthermore, these reported raptors include species with special conservation status, such as red kites (Near Threatened, IUCN Red List [54]) and the Spanish imperial eagle (*Aquila adalberti*, Vulnerable, IUCN Red List [51]).

Although there are no reports of AR residues in the livers of raptors from Russia or Mongolia, it has been reported that the numbers of breeding pairs of Eastern imperial eagles (*Aquila heliaca*, Vulnerable, IUCN Red List [52]) and Saker falcons (*Falco cherrug milvipes*, Endangered, IUCN Red List [53]) decreased following bromadiolone application [15, 36]. In Japan, diphacinone was used on Ogasawara Island and it was reported that at least three Eastern buzzards (*Buteo japonicus toyoshimai*), classified as locally Endangered (Ministry of the Environment, Government of Japan [33]), might have been poisoned as a result [4, 16]. These

TABLE 3. Presence of AK are medians, with a sh detection rate; and \underline{n} it	s in animal spe harp are standa: s the total num	ectes reported rd error, S. E ber of indivi	u n var . and † duals ir	nous co means 1 which	preval preval	AR conce ence of any AR has bee	/ ARs); N g n detected	µg/kg) gi jives the r	ven are in un number of an	e rorm munum alysis; n ⁺ give	am-maximum, s the number o	or mean ± 5.1 f individuals v	o. (values vith detec	table residu	un an asterisk les; % means
Species	Year	Country	z	\mathbf{n}^+	%	Warfa- rin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen	References
Raptors (39 species analy	zed)														
Turkey vulture Cathartes aura	1998–2001	U.S.A.	2	2	100	<u>n=0</u>	<u>n=0</u>	<u>n=1</u>	<u>n=0</u>	$\underline{n=1}$	<u>n=1</u>	<u>n=0</u>	<u>n=0</u>	ı	[50]
Short toed snake-eagle Circaetus gallicus	2005-2010	Spain	-	-	100	n=0	n=0	n=0	n=0	<u>n=1</u> 9	<u>n=1</u> 10	n=0	n=0	<u>n=1</u> 2	[44]
Marsh harrier Circus aeruginosus	2000–2009	Denmark	3	3	100		n=†			n=†	n=†	'n=†		n=†	[5]
Morepork Ninox novaeseelandiae	1994–1999	NZ	5	5	100		I	ı	ı	n=5 610–3,440	·	ı		ı	[8, 35]
Little owl			17	15	88					n=5	n=1	n=2		n=1	
Athene noctua	2005-2013	Spain	~ c	9	75	n=0			ı	62-574	79.5	2, 56	n=0	33	[28, 44] re1
	6007-0007	Denmark	٨	٨	100		n=r		ı	n=r	n=r	n=Ŧ		n=r	[c]
Eagle owl			39	33	85					n=20	n=13	n=11	n=3	n=7	
Bubo bubo	2005-2013	Spain	21	18	86	n=0	n=0	n=0	n=0	10-2,008	2–208	1 - 281	35-200	3–90	[28, 44]
	2000–2009	Denmark	10	10	100	ı	n=†	·	·	n=†	, n=∱	n=†	·	n=†	[5]
	2009–2011	Norway	∞	S	63	1			I	74–158	n=0	39, 181		13	[26]
Bald eagle Haliaeetus leucocephalus	1995–2009	U.S.A.	24	20	83	n=1 1,400	n=0	n=0	n=0	n=18 429–2,599	n=0	n=1	n=0		[9, 49, 50]
Short-eared owl			9	5	83										
Asio flammeus	1998-2001	U.S.A.	1	0	0	n=0	n=0	n=0	n=0	n=0	n=0	n=0	n=0	ı	[50]
	2000–2009	Denmark	5	5	100		n=†			$n=\uparrow$	n=†	n=†		n=÷	[2]
Rough-legged buzzard			32	26	81		n=3			n=19	n=5	n=23			
Buteo lagopus	1998–2001	U.S.A.	1	0	0	n=0	n=0	0=u	n=0	n=0	n=0	n=0	0=u	ı	[50]
	2000–2009	Denmark	31	26	84		1–3	,		3*–34	0-130	$14^{*}-105$,	n=0	[5]
Sparrowhawk			145	116	80				$\overline{n=3}$	<u>n=53</u>	<u>n=62</u>	<u>06=u</u>	<u>n=1</u>		
Accipiter nisus	2000–2013	U.K.	131	104	79	n=0	n=0	n=0	n=0	n=48	n=57	n=85	3.3	n=0	[19, 59]
	2009–2012	Spain	14	12	86	n=0	n=0		0.34 ± 0.57	13.2 ± 8.1	31.9 ± 22.6	3.6 ± 2.0	n=0		[43]
Red kite			138	108	78					$\overline{n=40}$	<u>n=74</u>	<u>n=78</u>	$\overline{n=1}$	$\overline{n=5}$	
Milvus milvus	1994–2011	U.K.	127	98	LL	n=0	n=0	n=0	n=0	71–222	56–94	4067	n=1	15	[19, 58, 60]
	2005–2010	Spain	×	2	88	n=0	n=0	n=0	n=0	129, 210	5-490	1	n=0	53,400	[44]
	2000–2009	Denmark	ю	3	100	ı	n=†		·	n=†	n=†	n=†	ı	n=†	[5]
Long-eared owl			80	62	78		$\overline{n=4}$	$\overline{n=1}$	<u>n=1</u>	<u>n=39</u>	<u>n=22</u>	<u>n=36</u>		$\overline{n=3}$	
Asio otus	1998–2001	U.S.A.	L	7	29	n=0	n=0	n=1	n=0	n=1	n=1	n=0	n=0	ı	[50]
	2009–2013	Spain	35	24	69	n=0	n=0	ı	0.5 ± 0.4	12-42	77.2 ± 29.6	1-53	n=0	n=0	[28, 43]
	2000–2009	Denmark	38	36	95	•	0*-29		ı	3*-40	0*-33	7*-52		0^{*-2}	[5]
Kestrel			206	154	75		<u>n=12</u>		$\overline{n=3}$	<u>n=71</u>	<u>n=94</u>	n = 106	n=1	<u>n=18</u>	
Falco tinnunculus	2000–2011	U.K.	115	78	68	ı		·		n=21	n=52	n=58	n=1	n=0	[19, 58, 60]
	2003	France	45	ς Έ	75	n=0	n=0	ı	- - - -	80-250	80-250	n=0	1	ı	[25]
	2000-2009 2000-2009	Spain Denmark	71 7	14 59	68	n=u -	n=u 0*-64		0.6 ± 1.8	57.4 ± 54.0 $2^{*}-298$	79.8 ± 34.4 0^{-679}	8.2 ± 0.9 $6.5^{*} - 450$	n=∪	$^{-}$	[45] [5]

RODENTICIDES IN NON-TARGET ANIMALS

Table 5 (continued)															
Species	Year	Country	Z	\mathbf{n}^+	%	Warfa- rin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen	References
Barred owl			38	26	68	<u>n=1</u>		<u>n=2</u>	<u>n=4</u>	<u>n=18</u>	<u>n=20</u>		<u>n=1</u>		
Strix varia	1998–2001	U.S.A.	13	З	23	n=0	n=0	n=1	n=0	n=1	n=1	n=0	n=0	ı	[50]
	1988–2003	Canada	25	23	92	2.6		10	2.5-15	1–927	2-1,012	I	3		[1]
Golden eagle			22	14	64			<u>n=1</u>		<u>n=9</u>	$\overline{L=n}$			$\overline{n=3}$	
Aquila chrysaetos	1996–2001	U.S.A.	7	7	100	n=0	n=0	n=1	n=0	30	n=0	n=0	n=0	,	[49, 50]
	2005-2010	Spain	4	-	25	n=0	n=0	n=0	n=0	n=0	n=0	n=0	n=0	9	[44]
	2009–2011	Norway	16	11	69					11-110	13-154	n=0		15, 117	[26]
Great horned owl			308	192	62	<u>n=4</u>		<u>n=4</u>	$\overline{n=3}$	<u>n=157</u>	<u>n=111</u>	<u>n=1</u>	$\overline{n=7}$		
Bubo virginianus	1994-2012	U.S.A.	136	74	54	730	n=0	n=0	n=0	7-970	28-1,080	22	n=0	ı	[48-50]
	1988-2003	Canada	1/7	118	69	07/-07		8-17	2.5-14	1-010	1-2/0		3-30		[1, 55]
Black kite Milvus migrans	2005–2010	Spain	5	3	60	n=0	n=0	n=0	0=u	<u>n=1</u> 25	n=0	n=0	n=0	n=2 55, 84	[44]
Common buzzard			639	380	60	<u>n=4</u>	<u>n=31</u>		<u>n=2</u>	<u>n=130</u>	<u>n=238</u>	<u>n=236</u>	<u>n=3</u>	<u>n=35</u>	
Buteo buteo	2000-2010	U.K.	407	195	48	n=0	n=0	n=0	n=0	n=24	n=122	n=110			[19]
	2003	France	11	10	91	350-2,000	n=0			80–250	80–290	80–250			[25]
	2005-2013	Spain	80	43	54	n=0	n=0	n=0	0.3, 120	4.9–1,356	1 - 586	2.9 - 1.921	85-539	1-175	[28, 43, 44]
	2000–2009	Denmark	141	132	94		0*-435			2*-613	7.5*–282	$10^{*}-170$		0^{*-115}	[5]
Australasian harrier Circus approximans	1994–1999	NZ	4	2	50					<u>n=2</u> 610, 660	ı	ı			[8, 35]
Screech owl Otus asio	1997–2001	U.S.A.	24	12	50	n=0	n=0	n=0	n=0	$\frac{n=10}{7-800}$	$\frac{n=3}{50-500}$	n=0	n=0	ı	[49, 50]
Red-tailed hawk			362	176	49			<u>n=1</u>	<u>n=1</u>	<u>n=155</u>	<u>n=59</u>				
Buteo jamaicensis	1994–2010	U.S.A.	297	137	46	n=0	n=0	340	180	6-1,600	31-543	n=0	n=0		[48–50]
	2011	Canada	65	39	09				ı	1 - 170	1-64	ı	n=0		[55]
Scops owl Otus scops	2011-2013	Spain	33	16	49	n=0	n=0	n=0	n=0	$\frac{n=9}{3-158.4}$	<u>n=5</u> 2-44	$\frac{n=8}{1-10}$	n=0	$\frac{n=2}{3, 10}$	[28]
Barn owl			769	370	48	$\overline{n=1}$	<u>n=13</u>	$\overline{n=3}$	<u>n=3</u>	<u>n=149</u>	<u>n=235</u>	<u>n=203</u>	<u>n=22</u>	<u>n=25</u>	
Tyto alba	1988–2003	Canada	78	48	62	2.5	,	10 - 20	n=0	10-470	5-720	ı	2.5-720	,	[1]
	2000–2011	U.K.	535	193	36	ı	ı	ı		n=33	n=111	n=115	n=4	n=9	[19, 58, 60]
	2003	France	10	2	70	n=0	640	ı	ı	n=0	80–260	80–260	·	,	[25]
	2005–2013	Spain	99	47	71	n=0	n=0	ı	1.2 ± 1.0	2–839	7.1–180	1 - 198	45-4,463	14–299	[28, 43, 44]
	2000–2009	Denmark	80	75	94		0^{*-18}			4*-957	16^{-252}	11^{-223}		$0^{*}-34$	[5]
Tawny owl			276	109	40		$\overline{u=0}$			<u>n=53</u>	<u>n=65</u>	<u>n=51</u>	$\underline{n=4}$	<u>n=12</u>	
Strix aluco	1990–2010	U.K.	200	45	28				ı	n=12	n=26	n=13		n=0	[19, 60]
	2003	France	5	0	40	n=0	n=0	ı	·	n=0	80, 250	n=0	ı		[25]
	2011-2013	Spain	27	21	78	n=0		ı		2-1582	2-77	1–84	93-430	0-118	[28]
	2000–2009	Denmark	44	41	93		0*-39			3*-220	8*-496	7*-90		0*-42	[5]
Cooper's hawk Accipiter cooperii	1998–2001	U.S.A.	50	18	36	$\frac{n=1}{100}$	n=0	$\frac{n=1}{100}$	n=0	<u>n=12</u> 8–220	<u>n=5</u> 40–600	n=0	n=0	I	[50]

Table 5 (continued)															
Species	Year	Country	Z	\mathbf{u}^+	%	Warfa- rin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen	References
Peregrine falcon Falco peregrinus	1986–2009	U.S.A.	30	3 3	33 75	<u>n=1</u> 1,480	n=0	<u>n=1</u> n=1	n=0	$\frac{n=3}{n=2}$	<u>n=8</u> n=1	n=0	n=0	I	[9, 49, 50]
	2000-2010	U.K.	24	2	29	n=0	n=0	n=0	n=0	n=1	n=7	n=0	·	n=0	[19]
	2009–2011	Norway	5	0	0		ı		ı	n=0	n=0	n=0		n=0	[43]
Northern goshawk		V JII	ς, -		33	-	-	-		<u>n=1</u>	0				1031
	2005-2010	Spain	- 7	o –	50	n=0	0_11	n=0	0_11	38	0_11 0=0	0_11 0=u	0_11	- U=U	[00]
Saw-whet owl Aegolius acadicus	1998–2001	U.S.A.	3	-	33	<u>n=0</u>	<u>0=u</u>	<u>n=1</u>	<u>n=0</u>	<u>n=1</u>	<u>n=1</u>	<u>0=0</u>	<u>0=0</u>		[50]
Bearded vulture Gypaetus barbatus	2005-2010	Spain	e S	-	33	n=0	n=0	n=0	n=0	n=0	<u>n=1</u>	n=0	n=0	n=0	[44]
Snowy owl Nyctea scandiaca	1993, 1998–2001	U.S.A.	e	-	33	n=0	n=0	$\frac{n=1}{260}$	n=0	n=0	n=0	n=0	n=0	ı	[49, 50]
Barbary falcon Falco peregrinoides	2009–2012	Spain	16	5	31	n=0	n=0		<u>n=1</u> 0.1	<u>n=1</u> 0.8	$\frac{n=3}{26.2 \pm 18.6}$	<u>n=1</u> 1.4	n=0		[43]
Eurasian griffon Gyps fulvus	2005-2010	Spain	23	m	13	n=0	n=0	n=0	4	n=0	<u>n=1</u> 208	<u>n=1</u>	n=0	n=0	[44]
Spanish imperial eagle Aquila adalberti	2005–2010	Spain	~	-	13	n=0	n=0	n=0	n=0	n=0	n=0	<u>n=1</u> 8	n=0	n=0	[44]
Sharp-shinned hawk Accipiter striatus	1998–2001	U.S.A.	11	-	6	<u>n=0</u>	<u>n=0</u>	<u>n=1</u>	<u>n=0</u>	<u>n=1</u>	<u>n=1</u>	<u>0=0</u>	<u>n=0</u>		[50]
Broad-winged hawk Buteo platypterus	1998–2001	U.S.A.	11	0	0	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>0=0</u>	<u>0=u</u>		[50]
Black vulture Coragyps atratus	1998–2001	U.S.A.	1	0	0	<u>n=0</u>	<u>n=0</u>	n=0	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	ı	[50]
Merlin Falco columbarius	1998–2001	U.S.A.	-	0	0	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	<u>0=0</u>	<u>0=u</u>		[50]
Gyrfalcon Falco rusticolus	2009–2011	Norway	1	0	0			1		<u>n=0</u>	<u>n=0</u>	<u>n=0</u>		<u>n=0</u>	[43]
Osprey Pandion haliaetus	2009–2011	Norway	3	0	0	ı	ı			<u>n=0</u>	<u>n=0</u>	<u>n=0</u>	ı	<u>n=0</u>	[43]
Birds excluding raptors (40 species analy	yzed)													
Common myna Acridotheres tristis	1994–1999	NZ	З	3	100	I	ı	ı	·	$\frac{n=3}{540-1,270}$	ı	·		ı	[8]
Gray duck Anas superciliosa	1994–1999	NZ	-	-	100	I	I	I	ı	<u>n=1</u> 910	1	ı	ı	I	[8]
Gray heron Ardea cinerea	2005–2010	Spain	1		100	n=0	n=0	n=0	n=0	n=0	$\frac{n=1}{10}$	n=0	n=0	n=0	[44]
Lapland longspur Calcarius lapponicus	2009	U.S.A.	2	2	100	n=0	n=0	n=0	n=0	<u>n=2</u> 560, 2,989	n=0	n=0	n=0		[6]
Rock sandpiper Calidris ptilocnemis	2009	U.S.A.	1	1	100	n=0	n=0	n=0	n=0	<u>n=1</u> 43	n=0	n=0	n=0	ı	[6]

ntinued)	
5 (co)	
Table :	

×															
Species	Year	Country	Z	\mathbf{n}^+	%	Warfa- rin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen	References
Emperor goose Chen canagica	2009	U.S.A.	1	1	100	n=0	n=0	n=0	n=0	$\frac{n=1}{27}$	n=0	n=0	n=0		[6]
Great spotted cuckoo Clamator glandarius	2005-2010	Spain	1		100	n=0	n=0	n=0	<u>n=1</u> 6	n=0	n=0	n=0	n=0	n=0	[44]
Common crow Corvus brachyrhynchos	1997	U.S.A.	1		100	n=0	n=0	n=0	n=0	<u>n=1</u> 1,340	n=0	n=0			[49]
Raven Corvus corax	1996 1995	U.S.A. Canada	14 1 13	14 1 13	100 100	n=0	n=0	n=0	0=u	$\frac{n=14}{1,040}$ 980-2.520	n=0 -	n=0			[49] [18]
Chaffinch Fringilla coelebs	1994–1999	NZ	3	3	100	ı	ı	1		$\frac{n=3}{120-2,310}$	ı	ı	ı	1	[8]
Southern black-backed gull Larus dominicanus	1994–1999	NZ	-		100	I	I	ı	ı	<u>n=1</u> 580	ı	ı	ı	ı	[8]
Gray-crowned rosy finch Leucosticte tephrocotis	2009	U.S.A.	-		100	n=0	n=0	n=0	n=0	<u>n=1</u> 1,219	n=0	n=0	n=0	ı	[6]
Kaka Nestor meridionalis	1994–1999	NZ	ę	m	100	I	I		ı	n=3 1,200–4,100		ı	ı	ı	[8]
Pukeko Porphyrio porphyrio	1994–1999	NZ	8	~	100					$\frac{n=8}{520-1,350}$					[8]
Spotless crake Porzana tabuensis	1994–1999	NZ	-		100	ı	ı			$\frac{n=1}{40}$	ı	ı	ı		[8]
Paradise shelduck Tadorna variegata	1994–1999	NZ	4	4	100	ı				<u>n=4</u> 240–800					[8]
Black bird Turdus merula	1994–1999	NZ	13	13	100	I	ı	ı		<u>n=13</u> 10–1,100		ı	ı	ı	[8]
Northern fulmar Fulmarus glacialis	2009	U.S.A.	1	1	100	n=0	n=0	n=0	n=0	$\frac{n=1}{57}$	n=0	n=0	n=0	ı	[6]
Pelagic cormorant Phalacrocorax pelagicus	2009	U.S.A.	1	1	100	n=0	n=0	n=0	n=0	<u>n=1</u> 44	n=0	n=0	n=0	ı	[6]
Glaucous-winged gull Larus glaucescens	2009	U.S.A.	10	6	06	n=0	n=0	n=0	n=0	<u>n=9</u> 709–4,189	$\frac{n=1}{n=1}$	$\frac{n=2}{n=2}$	n=0		[6]
Rock dove Columba livia	2005-2010	Spain	97	64	66	n=0	n=0	n=0	$\frac{n=64}{550-55,100}$	n=0	n=0	n=0	n=0	n=0	[44]
Weka Gallirallus australis	1994–1999	NZ	55	31	56					$\frac{n=31}{10-2,300}$					[8]
Kakariki Cyanoramphus sp.	1994–1999	NZ	2		50	ı	,	,		<u>n=1</u> 30		ı	·		[8]
Saddleback Philesturnus carunculatus	1994–1999	NZ	4	7	50	ı	ı	ı.		$\frac{n=2}{50, 600}$	ı	ı	ı	,	[8]
Brown kiwi Apteryx australis	1994–1999	NZ	29	14	48	ı	ı	ī		$\frac{n=14}{10-690}$	ı	ı	ı	ī	[8]

Table 5 (continued)															
Species	Year	Country	z	\mathbf{n}^+	%	Warfa- rin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen	References
Lesser black-backed gull Larus fuscus	2005–2010	Spain	∞	ω	38	n=0	n=0	n=0	n=0	n=0	$\frac{n=3}{2-5}$	n=0	n=0	n=0	[44]
Common starling Sturnus vulgaris	2005–2010	Spain	ε	-	33	n=0	n=0	n=0	n=0	n=0	<u>n=1</u> 15	n=0	n=0	n=0	[44]
Calandra lark Melanocorypha calandra	2005–2010	Spain	۲	5	29	n=0	n=0	n=0	$\frac{n=2}{1,040, 2,090}$	n=0	n=0	n=0	n=0	n=0	[44]
Mallard			23	9	26				<u>n=3</u>	<u>n=2</u>	<u>n=1</u>				
Anas platyrhynchos	2003	France	15	- ,		n=0	n=0	·	-		80–250		'	·	[25]
	2002-2010 1994-1999	Spain NZ	0 0	n 19	00 100	n=0 -	n=0 -	n=0 -	/10-2,1/0	-900, 1,230	n=0 -	n=0 -	n=0 -	n=0 -	[44]
Black coot Fulica atra	2003	France	13	ю	23	<u>n=1</u> 23,520	n=0	ı		$\frac{n=1}{80-250}$	$\frac{n=1}{80-250}$	n=0			[25]
Magpie Gymnorhina tibicen	1994–1999	NZ	30	9	20			ı		<u>n=6</u> 80–990	ı		ı		[8, 35]
Robin Petroica australis	1994–1999	NZ	10	7	20	ı	ı	I	ı	<u>n=2</u> 350, 580	ı	·	I	ı	[8, 35]
Red-legged partridge Alectoris rufa	2005-2010	Spain	7	1	14	n=0	n=0	n=0	n=0	n=0	n=0	n=0	n=0	<u>n=1</u> 143	[44]
Eurasian collared-dove Streptopelia decaocto	2005–2010	Spain	∞	-	13	n=0	n=0	n=0	n=0	n=0	<u>n=1</u> 127	n=0	n=0	n=0	[44]
Bellbird Anthornis melanura	1994–1999	NZ	2	0	0	ı				<u>0=0</u>	ı		ı		[8, 35]
Northwestern crow Corvus caurinus	1995	Canada	6	0	0					<u>n=0</u>	ı		ı		[18]
Common moorhen Gallinula chloropus	2003	France		0	0	n=0	n=0	ı		n=0	n=0	n=0	ı		[25]
Whitehead Mohoua albicilla	1994–1999	NZ	12	0	0	ı				<u>n=0</u>	ı		ı		[8, 35]
Tomtit Petroica macrocephala	1994–1999	ZN	5	0	0			ı		<u>0=u</u>	ı		ı		[35]
Fantail Rhipidura fuliginosa	1994–1999	NZ	2	0	0	ı		ı		<u>n=0</u>	ı		ı	ı	[8, 35]
Carnivola (15 species ana	lyzed)														
Skunk Mephitis mephitis	1996	U.S.A.	3	3	100	n=0	n=0	n=0	n=0	n=0	$\frac{n=3}{20-280}$	n=0	ı	·	[49]
Mountain lion Puma concolor	1997–2006	U.S.A.	4	4	100	n=0		<u>n=1</u> <250	n=0	$\frac{n=4}{310-570}$	$\frac{n=4}{370-1,270}$		$\frac{n=1}{<250}$	·	[42]
Bobcat Lynx rufus	1988–2012	U.S.A.	169	148	88	<u>n=11</u> n=11	ı	$\frac{n=67}{30\pm120}$	$\frac{n=10}{n=10}$	$\frac{n=135}{140\pm200}$	$\frac{n=133}{380 \pm 550}$	ı	$\frac{n=50}{40\pm310}$	ı	[42, 45]

Table 5 (continued)															
Species	Year	Country	z	\mathbf{n}^+	%	Warfa- rin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen	References
Weasel			80	69	86		<u>n=15</u>			<u>n=39</u>	<u>n=17</u>	<u>n=60</u>		<u>n=20</u>	
Mustela nivalis	1996–1997	U.K.	10	б	30	n=0	8.5-60	·	·	n=0	250	n=0		n=0	[31]
	2005 - 2010	Spain	-	1	100	n=0	n=0	n=0	n=0	2,930	n=0	n=0	n=0	n=0	[44]
	1984-2008	Denmark	69	65	94	·	4-45	ı	ı	4-159	7-1,610	5-292		3-49	[11]
Feral cat Felis catus	2005-2010	Spain	4	3	75	n=0	n=0	n=0	0=u	<u>n=2</u> 34, 350	<u>n=1</u> 52	$\frac{n=1}{70}$		<u>n=1</u> 72	[44]
Stoat			101	68	67		<u>n=22</u>			$\underline{n=31}$	<u>n=34</u>	<u>n=49</u>		<u>n=25</u>	
Mustela erminea	1996–1997	U.K.	40	6	23	n=0	4.6-9.7	ı	·	120	40–380	n=0	ı	0=u	[31]
	1993-2007	Denmark	61	59	76	•	2-61		1	2-317	3-1,290	2-280		1–86	[11]
Stone marten Martes foina	2005-2010	Spain	19	11	58	n=0	n=0	0=u	n=0	<u>n=5</u> 19–390	$\frac{n=6}{7-17,900}$	$\frac{n=3}{7-520}$	$\frac{n=1}{926}$	<u>n=5</u> 8–230	[44]
Raccoon			16	8	50					<u>n=6</u>	<u>n=2</u>				
Procyon lotor	1992-1997	U.S.A.	9	9	100	n=0	n=0	n=0	n=0	320-5,300	n=0	n=0			[49]
	2005-2010	Spain	10	2	20	n=0	n=0	n=0	n=0	n=0	1,090, 6,800	0=u	n=0	n=0	[44]
Red fox			33	14	42					<u>n=7</u>	<u>n=8</u>	<u>n=1</u>			
Vulpes vulpes	1996	U.S.A.	2	7	100	n=0	n=0	n=0	n=0 j	1,320, 4,010	n=0	n=0		,	[46]
	2005-2010	Spain	31	12	39	0=u	0=u	0=u	n=0	5-4,500	5 - 12,300	78	n=0	n=0	[44]
Domestic dog Canis familiaris	2005-2010	Spain	11	4	36	n=0	n=0	n=0	0=U	0=u	$\frac{n=3}{6-308}$	$\frac{n=1}{4}$	n=0	n=0	[44]
Common genet Genetta genetta	2005-2010	Spain	٢	2	29	n=0	n=0	n=0	0=u	$\frac{n=2}{16, 2, 020}$	$\frac{n=2}{1,350}$	$\frac{n=1}{12}$	n=0	<u>n=1</u> 60	[44]
European otter			14	4	29				<u>n=1</u>		$\overline{n=2}$			<u>n=1</u>	
Lutra lutra	1990–2002	France	11	3	27	n=0	n=0	·	5,000	n=0	6,00, 7,100	n=0	n=0		[13]
	2005-2010	Spain	3	-	33	n=0	0=u	0=u	n=0	n=0	n=0	0=u	0=u	353	[44]
Polecat			133	36	27					$\underline{n=3}$	$\underline{n=17}$	<u>n=22</u>			
Mustela putorius	1992–1999	U.K.	100	31	31	ı (ı (ı		8-70	16-217	5-917	ı	n=0	[49, 50]
	1990-2002	France	33	5	15	0=0	0=U	ı	n=0	n=()	600-9,000	n=()	n=()	ı	[13]
American mink Mustela vison	1990–2002	France	47	٢	15	n=0	n=0		n=4 3,400-8,500	n=0	n=3 1,900–4,200	n=0	n=0	ı	[13]
European mink Mustela lutreola	1990–2002	France	31	1	3	n=0	n=0		0=U	0=U	$\frac{n=1}{5,000}$	n=0	n=0		[13]
Cetartiodactyla (3 species	analyzed)														
White-tailed deer Odocoileus virginianus	1994–1997	U.S.A.	Г	٢	100	n=0	$\frac{n=1}{500}$	$\frac{n=2}{200,930}$	n=0	<u>n=5</u> 120–410	n=0	n=0	ı	ı	[49]
Red deer Cervus elaphus	1994–1999	NZ	37	33	89	ı	ı			<u>n=33</u> <30	I		,		[8, 35]
Domestic pig Sus scrofa	1994-1999	NZ	40	26	65	I	ı	ı	ı	$\frac{n=26}{7-1,780}$		ı	I	ı	[8, 35]

-	COLLC	non
	10001	
ı	(2
-	¢	2

Table 5 (continued)															
Species	Year	Country	N	\mathbf{n}^+	%	Warfa- rin	Couma- tetralyl	Dipha- cinone	Chloro- phacinone	Brodi- facoum	Broma- diolone	Difen- acoum	Difeti- alone	Flocou- mafen	References
Erinaceomorpha (2 specie	es analyzed)														
Algerian hedgehog Atelerix algirus	2011-2013	Spain	106	61	58	<u>n=1</u> 611.8				$\frac{n=18}{5-1,533}$	<u>n=35</u> 6–2,548	<u>n=29</u> 1–659	$\frac{n=4}{71-256}$	n=0	[28]
European hedgehog			170	57	34					<u>n=29</u>	<u>n=28</u>	<u>n=28</u>	<u>n=2</u>	<u>n=6</u>	
Erinaceus europaeus	2004-2006 2005-2013	U.K. Snain	120 50	27 30	23 60	- "	1 1			$50 \pm 10^{\#}$ 3_{-1} 390	$590 \pm 240^{\#}$	$100 \pm 30^{\#}$	- 4 147	n=0 1_79	[7] [78_441
Rodentia (2 species analyz	zed)	Time	2	2	8	5					1		1	ì	1- 67
Gray squirrel Sciurus carolinensi	1981–1997	U.S.A.	7	2	100	<u>n=1</u> 228	n=0	<u>n=1</u> 2,000	<u>n=1</u> 620	<u>n=5</u> 530–4,100	n=0	n=0			[50]
Eastern chipmunk Tamias striatus	1992	U.S.A.	1	1	100	n=0	n=0	n=0	n=0	<u>n=1</u> 3,800	0=U	n=0	ı		[50]
Lagomorpha (1 species an	1alyzed)														
Iberian hare Lepus granatensis	2005-2010	Spain	25	8	32	n=0	n=0	n=0	$\frac{n=7}{580-9,520}$	<u>n=2</u> 130, 270	0=u	<u>n=1</u> 15	n=0	n=0	[44]
Chiroptera (1 species ana	lyzed)														
NZ lesser short-tailed bats Mystacina tuberculata	2009	NZ	12	10	83	ı	ı	$\frac{n=10}{190-680}$	·	I			ı		[9]
Marsupialia (1 species an	alyzed)														
Opossum Didelphis virginiana	1996, 1997	U.S.A.	2	2	001	n=0	n=0	n=0	n=0	$\frac{n=1}{180}$	$\frac{n=1}{800}$	n=0	ı		[49]
Reptile (1 species analyze	(p														
Horseshoe whip snake Hemorrhois hippocrepis	2005-2010	Spain	-	1	001	n=0	n=0	n=0	n=0	n=0	n=0	n=0	0=u	n=1 540	[44]

Fig. 2. Diet composition of ten raptor species, which frequently reported AR-exposure. Predominant prey of raptors is mammal in great horned owls (80%), barred owls (72%), kestrels (65%), Eurasian eagle owls (64%), and red kites (61%), whereas it is bird in sparrowhawks (99%) and golden eagles (73%), fish in bald eagles (70%), and invertebrate in moreporks (99%) and little owls (72%) [3, 17, 22, 24, 27, 32, 34, 37, 56, 63].

incidents imply that poisoning by ARs could have occurred worldwide, despite the lack of studies on the existence of AR residues in the livers of raptors from these areas.

EXPOSURE PATHWAYS

Diets of raptors

Although it is widely thought that preying on the target rodents is the dominant pathway by which raptors are exposed to ARs, there have been a few studies on the relationship between the diets of raptors and the incidence of AR-exposure. This study is the first to discuss the exposure pathways for ARs based on both a comprehensive analysis of primary and secondary AR-exposure worldwide and the diets of raptors.

The most affected raptor species have commonly been thought to prey predominantly on mammals, especially the targeted rodent species. Figure 2 shows the diet composition of raptors whose AR-exposure are frequently reported. Because mammals constitute 60–80% of the diets of great horned owls [3], barred owls [27], kestrels [24], Eurasian eagle owls [37], and red kites [34], targeted rodents can be the source of ARs in some cases. Moreover, ARs were detected in barn owls (*Tyto alba*) pellets that contained rat fur [10]. However, the Eurasian eagle owls occasionally prey on larger mammals (e.g., hares, foxes, and deer) [37], and red kites sometimes feed on hares, rabbits, and as carrion, foxes, stoats, polecats and deer [34]. Therefore, a wide range of mammals can be the source of ARs as well as target rodents. On the other hand, raptors also prey on other animals, such as birds, reptiles, amphibians, fish, and invertebrates. Birds constitute even 99 and 73% of the diets in sparrowhawks [63] and golden eagles [22], respectively; and 26, 21 and 14% in bald eagles [32], red kites [34] and great horned owls [3] following, respectively. In addition, the Eurasian eagle owls occasionally prey on other raptors (e.g., buzzards, falcons, tawny owls, and long-eared owls), and the diets of Eurasian eagle owls also consist of amphibians (28%) [37]. Diets of bald eagles consist of fish (70%) [32]. Invertebrates compose 99, 72 and 25% of prey of moreporks [17], little owls [56] and kestrels [24], respectively. Therefore, preying on targeted rodents does not necessarily explain all causes of secondary AR-exposure in raptors.

AR residues in the prey of raptors

Relatively high concentrations of AR residues have been detected in the livers of mallards (chlorophacinone, 710–2,170 μ g/kg, and brodifacoum, 1,230 μ g/kg), rock doves (chlorophacinone, 550–55,100 μ g/kg), chaffinches (brodifacoum, 120–2,310 μ g/kg), Algerian hedgehogs (brodifacoum, 5–1,533 μ g/kg and bromadiolone, 6–2,548 μ g/kg), European hedgehogs (brodifacoum, 3–1,390 μ g/kg and bromadiolone, 510–2,510 μ g/kg), and a horseshoe whip snake (flocoumafen, 540 μ g/kg) (Table 5). Because all of these animals are the prev of raptors, non-target animals (i.e., non-target rodents, birds, hedgehogs, hares and snakes) could also be a source of exposure to ARs.

Some studies have also reported AR residues in other reptiles (geckos) and invertebrates such as ants, cockroaches, beetles, slugs, and snails [10, 23, 38]. In addition, recent studies have shown that ARs can be detected not only in shorebirds and seabirds, but also in marine biota, including fish, crabs, sea urchins, and shellfish [30, 38]. These papers suggest exposure pathways for ARs from marine biota to shorebirds and/or seabirds, and from shorebirds and seabirds to raptors. In the case of Rat Island in Alaska, when gulls died after eating bait containing brodifacoum, their carcasses attracted bald eagles [9]. During the study period, 46 bald

Fig. 3. Proposed pathways by which raptors are exposed to ARs. Primary poisoning occurs in target rodents, non-target mammals, reptiles, invertebrates, marine biota, and birds, including land birds, shorebirds and seabirds. It is possible that AR residues in these animals are transferred to raptors, causing secondary poisoning.

eagle carcasses were collected, and the brodifacoum residues were detected in the livers of all the carcasses tested (18 bald eagles).

In conclusion, primary AR exposure has occurred in non-target mammals, reptiles, invertebrates, marine biota, and birds, including land birds, shorebirds and seabirds. It is possible that AR residues in these animals constitute exposure pathways for raptors, resulting in the secondary exposure (Fig. 3). In some cases, these exposure pathways are presumed to cause secondary poisoning in raptors. More studies focusing on the dose-response relations between hepatic AR concentration and both hemorrhage and mortality of various raptor species are necessary to understand incidents of secondary AR poisoning in raptors accurately. Furthermore, toxicokinetics studies of raptors (e.g. AR metabolism, and degree of ARs inhibiting the target molecule) are also necessary to reveal the risk of raptors poisoned by ARs.

CONFLICTS OF INTEREST. The authors declare no conflict of interest.

ACKNOWLEDGMENTS. This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan awarded to M. Ishizuka (No. 16H0177906) and Y. Ikenaka (No. 26304043, 15H0282505, 15K1221305), and S.M.M. Nakayama (No. 16K16197, 17KK0009), and the foundation of JSPS Core to Core Program (AA Science Platforms) and Bilateral Joint Research Project (PG36150002 and PG36150003), as well as Ministry of Environment, Japan awarded to S.M.M. Nakayama (4RF-1802). We also acknowledge financial support from The Soroptimist Japan Foundation, The Nakajima Foundation, The Sumitomo foundation, The Nihon Seimei Foundation and The Japan Prize Foundation. This research was supported by JST/JICA, SATREPS (Science and Technology Research Partnership for Sustainable Development). The data analyses were partially supported by Mr. Takahiro Ichise, Ms. Mio Yagihashi and Ms. Nagisa Hirano.

REFERENCES

- 1. Albert, C. A., Wilson, L. K., Mineau, P., Trudeau, S. and Elliott, J. E. 2010. Anticoagulant rodenticides in three owl species from Western Canada, 1988-2003. Arch. Environ. Contam. Toxicol. 58: 451–459. [Medline] [CrossRef]
- 2. Borrell, B. 2011. Where eagles die. NATNEWS 2011: 10.1038/news.2011.24.
- 3. Carl, D. M. and Michael, N. K. 1995. Are red-tailed hawks and great horned owls diurnal-nocturnal dietary counterparts? *Wilson Bull.* **107**: 615–628.
- 4. Chiba, Y. and Chiba, H. 2014. Ogasawara Buzzard (Buteo buteo toyoshimai) utilizes small islands of the Bonin (Ogasawara) Islands during the rodenticides application season. *Tokyo Metrop. Univ. Institutional Repos.*: 67–79 (The title in Japanese is translated into English by the authors).
- 5. Christensen, T. K., Lassen, P. and Elmeros, M. 2012. High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. *Arch. Environ. Contam. Toxicol.* **63**: 437–444. [Medline] [CrossRef]

- Dennis, G. C. and Gartrell, B. D. 2015. Nontarget mortality of New Zealand lesser short-tailed bats (*Mystacina tuberculata*) caused by diphacinone. J. Wildl. Dis. 51: 177–186. [Medline] [CrossRef]
- Dowding, C. V., Shore, R. F., Worgan, A., Baker, P. J. and Harris, S. 2010. Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (*Erinaceus europaeus*). *Environ. Pollut.* 158: 161–166. [Medline] [CrossRef]
- Eason, C. T., Murphy, E. C., Wright, G. R. G. and Spurr, E. B. 2002. Assessment of risks of brodifacoum to non-target birds and mammals in New Zealand. *Ecotoxicology* 11: 35–48. [Medline] [CrossRef]
- 9. Ebbert, S. and Burek-Huntington, K. 2010. Anticoagulant residual concentration and poisoning in birds following a large-scale aerial broadcast of 25-ppm brodifacoum bait for rat eradication on Rat Island, Alaska. Proc. 24th Vertebr. Pest Conf. Publ. Univ. Calif., Davis: 153–160.
- Elliott, J. E., Hindmarch, S., Albert, C. A., Emery, J., Mineau, P. and Maisonneuve, F. 2014. Exposure pathways of anticoagulant rodenticides to nontarget wildlife. *Environ. Monit. Assess.* 186: 895–906. [Medline] [CrossRef]
- 11. Elmeros, M., Christensen, T. K. and Lassen, P. 2011. Concentrations of anticoagulant rodenticides in stoats *Mustela erminea* and weasels *Mustela nivalis* from Denmark. *Sci. Total Environ.* **409**: 2373–2378. [Medline] [CrossRef]
- 12. Erickson, W. and Urban, D. 2004. Potential Risks of Nine Rodenticides to Birds and Non Target Mammals: A Comparative Approach. United States Environ. Prot. Agency, Washington, D.C.
- Fournier-Chambrillon, C., Berny, P. J., Coiffier, O., Barbedienne, P., Dassé, B., Delas, G., Galineau, H., Mazet, A., Pouzenc, P., Rosoux, R. and Fournier, P. 2004. Evidence of secondary poisoning of free-ranging riparian mustelids by anticoagulant rodenticides in France: implications for conservation of European mink (*Mustela lutreola*). J. Wildl. Dis. 40: 688–695. [Medline] [CrossRef]
- 14. Gillies, C. A. and Pierce, R. J. 1999. Secondary poisoning of mammalian predators during possum and rodent control operations at Trounson Kauri Park, Northland, New Zealand. N. Z. J. Ecol. 23: 183–192.
- Gombobaatar, S., Sumiya, D., Shagdarsuren, O., Potapov, E. R. and Fox, N. 2004. Saker falcon (*Falco cherrug milvipes* Jerdon) mortality in central Mongolia and population threats. *Mong. J. Biol. Sci.* 2: 13–21.
- Hashimoto, T. 2009. Eradication and Ecosystem Impact of rats in the Ogasawara Islands. pp. 153–159. In: Restoring the Oceanic Island Ecosystem, Springer, Basel.
- 17. Haw, J. M., Clout, M. N. and Powlesland, R. G. 2001. Diet of moreporks (*Ninox novaeseelandiae*) in Pureora Forest determined from prey remains in regurgitated pellets. *N. Z. J. Ecol.* **25**: 61–67.
- Howald, G. R., Mineau, P., Elliott, J. E. and Cheng, K. M. 1999. Brodifacoum poisoning of avian scavengers during rat control on a seabird colony. *Ecotoxicology* 8: 431–447. [CrossRef]
- 19. Hughes, J., Sharp, E., Taylor, M. J., Melton, L. and Hartley, G. 2013. Monitoring agricultural rodenticide use and secondary exposure of raptors in Scotland. *Ecotoxicology* 22: 974–984. [Medline] [CrossRef]
- Jackson, W. R. and Ashton, A. D. 1992. A review of available anticoagulants and their use in the United States. Proc. Fifteenth Vertebr. Pest Conf.:156–160.
- Jacob, J. and Buckle, A. 2018. Use of anticoagulant rodenticides in different applications around the world. pp. 11–43. *In*: Anticoagulant Rodenticides and Wildlife. Emerging Topics in Ecotoxicology (Principles, Approaches and Perspectives) (van den Brink, N., Elliott, J., Shore, R. and Rattner, B. eds.), Springer, Cham.
- 22. Johnsen, T. V., Systad, G. H., Jacobsen, K. O., Nygard, T. and Bustnes, J. O. 2007. The occurrence of reindeer calves in the diet of nesting Golden Eagles in Finnmark, northern Norway. *Ornis Fenn.* 84: 112–118.
- Johnston, J. J., Pitt, W. C., Sugihara, R. T., Eisemann, J. D., Primus, T. M., Holmes, M. J., Crocker, J. and Hart, A. 2005. Probabilistic risk assessment for snails, slugs, and endangered honeycreepers in diphacinone rodenticide baited areas on Hawaii, U.S.A. *Environ. Toxicol. Chem.* 24: 1557–1567. [Medline] [CrossRef]
- 24. Korpimaki, E. 1985. Diet of the Kestrel Falco tinnunculus in the breeding season. Ornis Fenn. 62: 130-137.
- Lambert, O., Pouliquen, H., Larhantec, M., Thorin, C. and L'Hostis, M. 2007. Exposure of raptors and waterbirds to anticoagulant rodenticides (difenacoum, bromadiolone, coumateralyl, coumafen, brodifacoum): epidemiological survey in Loire Atlantique (France). *Bull. Environ. Contam. Toxicol.* 79: 91–94. [Medline] [CrossRef]
- 26. Langford, K. H., Reid, M. and Thomas, K. V. 2013. The occurrence of second generation anticoagulant rodenticides in non-target raptor species in Norway. *Sci. Total Environ.* **450-451**: 205–208. [Medline] [CrossRef]
- 27. Livezey, K. C. 2007. Barred owl habitat and prey: a review and synthesis of the literature. J. Raptor Res. 41: 177-201. [CrossRef]
- López-Perea, J. J., Camarero, P. R., Molina-López, R. A., Parpal, L., Obón, E., Solá, J. and Mateo, R. 2015. Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. *Sci. Total Environ.* 511: 259–267. [Medline] [CrossRef]
- 29. Lovett, R. A. 2012. Killing rats is killing birds. NATNEWS 2012: 10.1038/nature.2012.11824.
- Masuda, B. M., Fisher, P. and Beaven, B. 2015. Residue profiles of brodifacoum in coastal marine species following an island rodent eradication. *Ecotoxicol. Environ. Saf.* 113: 1–8. [Medline] [CrossRef]
- 31. McDonald, R. A., Harris, S., Turnbull, G., Brown, P. and Fletcher, M. 1998. Anticoagulant rodenticides in stoats (*Mustela erminea*) and weasels (*Mustela nivalis*) in England. *Environ. Pollut.* **103**: 17–23. [CrossRef]
- 32. McEwan, L. C. and Hirth, D. H. 1980. Food habitats of bald eagles in north-central Florida. Condor 82: 229-231. [CrossRef]
- Ministry of the Environment, Government of Japan 2018. Third revision to the 4th Version of the Japanese Red Lists. https://www.env.go.jp/press/ files/jp/109278.pdf (in Japanese) [accessed on November 30, 2018].
- 34. Mougeot, F., Garcia, J. T. and Viñuela, J. 2011. Breeding biology, behaviour, diet and conservation of the red kite (*Milvus milvus*), with particular emphasis on Mediterranean populations. Ecol. Conserv. Eur. Dwell. For. raptors owls.:190–204. http://www.eeza.csic.es/Documentos/ Publicaciones/2011-Red kite book chapter.pdf [accessed on November 30, 2018].
- Murphy, E. C., Clapperton, B. K., Bradfield, P. M. F. and Speed, H. J. 1998. Brodifacoum residues in target and non-target animals following largescale poison operations in New Zealand podocarp-hardwood forests. New Zeal. J. Zool. (Lond.) 25: 307–314.
- 36. Novgorod, N., ЦеНТр, К.И.В, НОВгОрОд, H. 2010. The Imperial Eagle is a Vanishing Species in the Tyva Republic, Russia. *Rap. Res. Raptors Conserv.* **20**: 177–185.
- 37. Obuch, J. and Karaska, D. 2010. The Eurasian eagle-owl (*Bubo bubo*) diet in the Orava Region (N Slovakia). *Slovak Raptor J.* 4: 83–98. [CrossRef]
- Pitt, W. C., Berentsen, A. R., Shiels, A. B., Volker, S. F., Eisemann, J. D., Wegmann, A. S. and Howald, G. R. 2015. Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (*Rattus rattus*) eradication on Palmyra Atoll, tropical Pacific. *Biol. Conserv.* 185: 36–46. [CrossRef]
- 39. Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. and Johnston, J. J. 2014. Toxicokinetics and coagulopathy threshold of the rodenticide

diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33: 74-81. [Medline] [CrossRef]

- Rattner, B. A., Horak, K. E., Warner, S. E., Day, D. D., Meteyer, C. U., Volker, S. F., Eisemann, J. D. and Johnston, J. J. 2011. Acute toxicity, histopathology, and coagulopathy in American kestrels (*Falco sparverius*) following administration of the rodenticide diphacinone. *Environ. Toxicol. Chem.* 30: 1213–1222. [Medline] [CrossRef]
- 41. Rattner, B. A., Lazarus, R. S., Elliott, J. E., Shore, R. F. and van den Brink, N. 2014. Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. *Environ. Sci. Technol.* **48**: 8433–8445. [Medline] [CrossRef]
- 42. Riley, S. P. D., Bromley, C., Poppenga, R. H., Uzal, F. A., Whited, L. and Sauvajot, R. M. 2007. Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. *J. Wildl. Manage.* **71**: 1874–1884. [CrossRef]
- Ruiz-Suárez, N., Henríquez-Hernández, L. A., Valerón, P. F., Boada, L. D., Zumbado, M., Camacho, M., Almeida-González, M. and Luzardo, O. P. 2014. Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). *Sci. Total Environ.* 485-486: 371–376. [Medline] [CrossRef]
- 44. Sánchez-Barbudo, I. S., Camarero, P. R. and Mateo, R. 2012. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. *Sci. Total Environ.* **420**: 280–288. [Medline] [CrossRef]
- Serieys, L. E. K., Armenta, T. C., Moriarty, J. G., Boydston, E. E., Lyren, L. M., Poppenga, R. H., Crooks, K. R., Wayne, R. K. and Riley, S. P. D. 2015. Anticoagulant rodenticides in urban bobcats: exposure, risk factors and potential effects based on a 16-year study. *Ecotoxicology* 24: 844–862. [Medline] [CrossRef]
- Shore, R. F., Birks, J. D. S., Afsar, A., Wienburg, C. L. and Kitchener, A. C. 2003. Spatial and temporal analysis of second-generation anticoagulant rodenticide residues in polecats (*Mustela putorius*) from throughout their range in Britain, 1992-1999. *Environ. Pollut.* 122: 183–193. [Medline] [CrossRef]
- 47. Shore, R. F., Birks, J. D. S. and Freestone, P. 1999. Exposure of non-target vertebrates to second-generation rodenticides in Britain, with particular reference to the polecat *Mustela putorius*. N. Z. J. Ecol. 23: 199–206.
- 48. Stansley, W., Cummings, M., Vudathala, D. and Murphy, L. A. 2014. Anticoagulant rodenticides in red-tailed hawks, Buteo jamaicensis, and great horned owls, Bubo virginianus, from New Jersey, U.S.A., 2008–2010. *Bull. Environ. Contam. Toxicol.* **92**: 6–9. [Medline] [CrossRef]
- 49. Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 1999. Poisoning of wildlife with anticoagulant rodenticides in New York. J. Wildl. Dis. 35: 187–193. [Medline] [CrossRef]
- Stone, W. B., Okoniewski, J. C. and Stedelin, J. R. 2003. Anticoagulant rodenticides and raptors: recent findings from New York, 1998-2001. *Bull. Environ. Contam. Toxicol.* **70**: 34–40. [Medline] [CrossRef]
 The IUCN Red List of Threatened SpeciesTM, 2017. *Aquila adalberti*, Spanish Imperial Eagle. Available from https://www.iucnredlist.org/
- The IUCN Red List of Threatened SpeciesTM, 2017. Aquila adalberti, Spanish Imperial Eagle. Available from https://www.iucnredlist.org/ species/22696042/110743671 [accessed on November 30, 2018].
- The IUCN Red List of Threatened SpeciesTM, 2017. Aquila heliaca, Eastern Imperial Eagle. https://www.iucnredlist.org/ species/22696048/117070289 [accessed on November 30, 2018].
- The IUCN Red List of Threatened SpeciesTM, 2017. Falco cherrug, Saker Falcon. https://www.iucnredlist.org/species/22696495/110525916 [accessed on November 30, 2018].
- The IUCN Red List of Threatened SpeciesTM, 2017. *Milvus milvus*, Red Kite. https://www.iucnredlist.org/species/22695072/131877336 [accessed on November 30, 2018].
- Thomas, P. J., Mineau, P., Shore, R. F., Champoux, L., Martin, P. A., Wilson, L. K., Fitzgerald, G. and Elliott, J. E. 2011. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. *Environ. Int.* 37: 914–920. [Medline] [CrossRef]
- Tome, R., Catry, P., Bloise, C. and Korpimaki, E. 2008. Breeding density and success, and diet composition of Little Owls *Athene noctua* in steppelike habitats in Portugal. *Ornis Fenn.* 85: 22–32.
- Vandenbroucke, V., Bousquet-Melou, A., De Backer, P. and Croubels, S. 2008. Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J. Vet. Pharmacol. Ther. 31: 437–445. [Medline] [CrossRef]
- Walker, L. A., Llewellyn, N. R., Pereira, M. G., Potter, E. D., Sainsbury, A. W. and Shore, R. F. 2013. Anticoagulant rodenticides in predatory birds 2011: a Predatory Bird Monitoring Scheme (PBMS) report.:1–29. http://nora.nerc.ac.uk/id/eprint/500093/ [accessed on November 30, 2018].
- Walker, L. A., Llewellyn, N. R., Pereira, M. G., Potter, E. D., Sainsbury, A. W. and Shore, R. F. 2015. Anticoagulant rodenticides in sparrowhawks: a Predatory Bird Monitoring Scheme (PBMS) report.:1–29. http://nora.nerc.ac.uk/id/eprint/511023/ [accessed on November 30, 2018].
- 60. Walker, L. A., Shore, R. F., Turk, A., Pereira, M. G. and Best, J. 2008. The Predatory Bird Monitoring Scheme: identifying chemical risks to top predators in Britain. *Ambio* **37**: 466–471. [Medline] [CrossRef]
- 61. Walker, L. A., Turk, A., Long, S. M., Wienburg, C. L., Best, J. and Shore, R. F. 2008. Second generation anticoagulant rodenticides in tawny owls (*Strix aluco*) from Great Britain. *Sci. Total Environ.* **392**: 93–98. [Medline] [CrossRef]
- 62. Watanabe, K. P., Saengtienchai, A., Tanaka, K. D., Ikenaka, Y. and Ishizuka, M. 2010. Comparison of warfarin sensitivity between rat and bird species. *Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.* **152**: 114–119.
- Zawadzka, D. and Zawadzki, J. 2001. Breeding Populations and Diets of the Sparrowhawk Accipiter nisus and the Hobby Falco subbuteo in the Wigry National Park (Ne Poland) Breeding populations and diets of the Sparrowhawk Accipiter nisus and the Hobby Falco subbuteo in the Wigry National Pa. Acta Ornithol. 36: 25–31. [CrossRef]