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Whole metagenome sequencing 
reveals links between mosquito 
microbiota and insecticide 
resistance in malaria vectors
Nsa Dada   1,2, Mili Sheth3, Kelly Liebman1,5, Jesus Pinto4 & Audrey Lenhart1

In light of the declining global malaria burden attained largely due to insecticides, a deeper 
understanding of the factors driving insecticide resistance is needed to mitigate its growing 
threat to malaria vector control programs. Following evidence of microbiota-mediated insecticide 
resistance in agricultural pests, we undertook a comparative study of the microbiota in mosquitoes 
of differing insecticide resistance status. The microbiota of wild-caught Anopheles albimanus, an 
important Latin American malaria vector, that were resistant (FEN_Res) or susceptible (FEN_Sus) to 
the organophosphate (OP) insecticide fenitrothion were characterized and compared using whole 
metagenome sequencing. Results showed differing composition of the microbiota and its functions 
between FEN_Res and FEN_Sus, with significant enrichment of OP-degrading bacteria and enzymes 
in FEN_Res compared to FEN_Sus. Lower bacterial diversity was observed in FEN_Res compared to 
FEN_Sus, suggesting the enrichment of bacterial taxa with a competitive advantage in response to 
insecticide selection pressure. We report and characterize for the first time whole metagenomes of An. 
albimanus, revealing associations between the microbiota and phenotypic resistance to the insecticide 
fenitrothion. This study lays the groundwork for further investigation of the role of the mosquito 
microbiota in insecticide resistance.

Insecticide resistance is a rapidly emerging threat to global malaria control efforts1,2, particularly in sub-Saharan 
Africa, where the greatest burden of disease lies3. In Latin America, regional successes in malaria control have 
led to a shift in focus from malaria control to malaria elimination. Vector control remains the cornerstone of 
malaria control and elimination programs, with a greater emphasis now being placed on understanding the role 
that insecticide resistance may play in compromising these elimination efforts4,5. Malaria vector control relies 
primarily on the use of indoor residual spraying (IRS) and long lasting insecticidal nets (LLINs) to reduce vec-
tor populations and protect people from potentially infectious mosquito bites1,6. These approaches both utilize 
chemical insecticides that can select for insecticide resistance in the vector populations they target7,8. Thus, the 
mechanisms leading to the evolution of insecticide resistance in malaria vectors are under extensive study, par-
ticularly given the limited number of insecticides approved for public health use9. To date, four key mechanisms 
of insecticide resistance have been described in malaria vectors: (i) target site insensitivity, where changes to the 
insecticide target molecules render them unsuitable for binding9; (ii) metabolic resistance, where heightened 
enzymatic activity leads to increased levels of insecticide detoxification9; (iii) behavioral changes resulting in the 
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evasion of contact with insecticide treated surfaces10,11; and (iv) cuticle modification, which prevents or reduces 
the cuticular penetration of insecticides12.

Anopheles albimanus, the main coastal malaria vector in Latin America, has been reported to show resistance 
to multiple classes of insecticides, including organophosphates (OPs)7,13,14, one of the recommended classes of 
insecticides for IRS6. Two mechanisms have so far been documented for OP resistance in An. albimanus: a met-
abolic resistance mechanism involving elevated levels of nonspecific esterases, and a target site resistance mech-
anism involving acetylcholinesterase (AChE) insensitivity14–18. However, the mode of selection and underlying 
factors driving resistance to OPs and other classes of insecticides in An. albimanus remain largely unexplored.

Microbes colonize a wide variety of environments including the tissues of insects, where they undertake var-
ious metabolic functions, including the degradation of pesticides19,20. Microbes have been linked to insecticide 
resistance in agricultural pests21,22, but their role in conferring resistance in mosquitoes is unknown. The advent 
of new and affordable molecular tools has led to a plethora of microbiome studies, including studies of mosquito 
microbiota. Many of these studies have focused on characterizing the microbiota of medically important mos-
quito genera23–28, as well as identifying their role in mosquito behavior, biology, and pathogen transmission29,30, 
with a few studies suggesting their potential role in insecticide resistance31–34. As with most studies on insecticide 
resistance in malaria vectors9, studies of the microbiota of malaria vectors have mainly focused on sub- Saharan 
African and Southeast Asian mosquitoes35, with few such studies on Latin American vectors, particularly An. 
albimanus36,37. The studies of An. albimanus microbiota have largely focused on the effect of the microbiota on 
malaria parasite development, and have identified a limited number of bacterial species using culture dependent 
methods.

Based on the documented links between insecticide resistance and the presence of pesticide-degrading (par-
ticularly, OP-degrading) bacteria in agricultural pests21,22, as well as the identification of OP resistance in An. 
albimanus17, we hypothesized that bacteria could be contributing to insecticide resistance through increased 
degradation of insecticides in resistant mosquito populations. To test this, our objective was to characterize and 
compare the microbiota of An. albimanus with differing fenitrothion resistance phenotypes14. Specifically, bac-
terial compositions between fenitrothion resistant (FEN_Res) and susceptible (FEN_Sus) An. albimanus were 
compared using whole metagenome sequencing (WMS), a next generation sequencing (NGS) technique that cap-
tures both cultivable and non-cultivable bacteria as well as their putative functions. The findings presented here 
show differences between the microbiota of FEN_Res and FEN_Sus, as well as associations between the mosquito 
microbiota and xenobiotic degradation.

Results
Descriptive statistics.  Female An. albimanus with differing fenitrothion resistance profiles were pooled 
(FEN_Res, 30/pool; FEN_Sus, 10/pool) and underwent WMS on the Illumina® HiSeq2500 platform. A total 
of 83,947,332 (FEN_Res) and 60,444,900 (FEN_Sus) raw sequencing reads were generated, with 91% and 84% 
of these reads passing quality control, respectively. In both samples, read lengths ranged from 60–232 bp after 
quality trimming, with 63% (FEN_Res) and 68% (FEN_Sus) of total reads aligning to bacterial proteins after host 
(An. albimanus) genome removal. Out of the reads that aligned to bacterial proteins, 0.9% and 0.8% aligned to 
bacterial xenobiotic degradation pathways in FEN_Res and FEN_Sus, respectively.

Differential bacterial composition between fenitrothion resistant and susceptible An. albi-
manus, with significant enrichment of Klebsiella pneumoniae, an OP-degrading bacterial spe-
cies, in resistant An. albimanus.  Based on the alignment of sequencing reads to the National Center for 
Biotechnology Information (NCBI) bacterial non-redundant (NR) protein database and subsequent annotation 
using the NCBI taxonomy tree, a total of 103 bacterial species and an uncultured β-proteobacterium (CBNPD1 
BAC clone 578) were identified in FEN_Res and FEN_Sus. This comprised four phyla, six classes, 12 orders, 13 
families, and 37 genera (Fig. 1 and Supplementary Table 1). Thirty-two out of these 37 genera were found in both 
FEN_Res and FEN_Sus, two (Bacillus and Halomonas) were unique to FEN_Res, and three (Stenotrophomonas, 
Microbacterium, and Lelliottia) were only identified in FEN_Sus (Table 1). The uncultured β-proteobacterium was 
found in both FEN_Res and FEN_Sus. Proteobacteria was the most abundant bacterial phylum, comprising 99% 
of reads in each sample. Likewise, Gammaproteobacteria, comprising 99% of reads, was the most predominant 
bacterial class. At the order level, Enterobacteriales and Pseudomonadales comprised over 98% of reads in each 
sample, and Enterobacteriaceae and Moraxellaceae comprised 99% of reads per sample at the family level. At the 
genus level, Klebsiella, Enterobacter, Acinetobacter, Escherichia, and Salmonella constituted over 93% of reads in 
each sample, and are considered as the predominant bacterial genera in this study (Fig. 1). The most predominant 
bacterial species was Klebsiella pneumoniae, comprising 74% and 49% of reads in FEN_Res and FEN_Sus, respec-
tively (Supplementary Table 1).

There were significant differences in the relative abundance of identified bacterial taxa between FEN_Res and 
FEN_Sus, with lower Simpson’s reciprocal index (a measure of taxonomic richness and evenness) in FEN_Res 
(1.4) compared to FEN_Sus (2.5). Out of the four bacterial phyla identified in both samples, the relative abun-
dances of Firmicutes and Actinobacteria was significantly (p < 0.0001) higher in FEN_Res compared to FEN_Sus, 
with a corresponding lower (p < 0.0001) relative abundance of Proteobacteria in FEN_Res. There was no signifi-
cant difference in the relative abundance (Diff) of Bacteroidetes between both samples (p = 0.43) (Supplementary 
Table 1). However, since Proteobacteria was the predominant bacterial phylum in both samples (Supplementary 
Table 1), bacteria belonging to this phylum showed differential compositions between FEN_Res and FEN_Sus 
at lower taxonomic levels (Supplementary Table 3). The relative abundances of eighteen of the 32 bacterial 
genera as well as the uncultured β-proteobacterium identified in both samples were significantly (p < 0.001) 
higher in FEN_Res compared to FEN_Sus (Table 1). These enriched bacterial genera comprised three of the 
predominant genera; Klebsiella, Escherichia and Salmonella, with Klebsiella being the most enriched (Diff 25.2%, 
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p < 0.0001) in FEN_Res overall (Fig. 2). There was a significantly reduced relative abundance of the remaining 
14 genera in FEN_Res (Table 1), with Enterobacter showing the greatest reduction (Diff −21.5%, p < 0.0001) 
(Fig. 2). At the species level, 29 bacterial species were significantly enriched (p < 0.01) in FEN_Res compared to 
FEN_Sus (Supplementary Table 3), with Klebsiella pneumoniae being the most enriched (Diff 24.3%, p < 0.0001). 
Conversely, the relative abundance of 34 bacterial species was significantly reduced in FEN_Res compared to 
FEN_Sus (p < 0.001), with Enterobacter cloacae showing the greatest reduction (Diff −13.3%, p < 0.0001) 
(Supplementary Table 3). Out of the remaining 40 bacterial species, seven were unique to FEN_Res, while 33 
were only identified in FEN_Sus (Supplementary Table 1).

Differential abundance of bacterial xenobiotic-degrading enzymes between fenitrothion 
resistant and susceptible An. albimanus, with significant enrichment of OP-degrading car-
boxylesterases and phosphomonoesterases in resistant An. albimanus.  A total of 88 bacterial 
xenobiotic-degrading enzymes were identified in FEN_Res and FEN_Sus based on the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) annotations of aligned sequencing reads. This comprised all six major classes of 
enzymes: oxidoreductases, transferases, hydrolases, isomerases, lyases, and ligases, with oxidoreductases, trans-
ferases and hydrolases constituting over 80% of identified enzymes in each sample. Within each enzyme class, 
the most abundant enzymes in both samples were consistent: fumarate reductase (oxidoreductase); glutathione 
S-transferase and acetyl-CoA C-acetyltransferase (transferase); carboxymethylenebutenolidase (hydrolase); 
muconate cycloisomerase (isomerase) 4-carboxymuconolactone decarboxylase (lyase); guanosine monophos-
phate synthase (ligase); and enoyl-CoA isomerase (isomerase) (Supplementary Table 2).

The relative abundance of hydrolases (Diff 2.55%), isomerases (Diff 1.15%), and lyases (Diff 0.39%) was higher 
in FEN_Res compared to FEN_Sus. This corresponded to a reduced relative abundance of oxidoreductases (Diff 
−3.12%), ligases (Diff −0.44%), transferases (Diff −0.34%) and isomerases (Diff −0.22%) in FEN_Res (Fig. 3). 
Hydrolases, the most enriched enzyme class, comprised of two significantly (p < 0.0001) enriched carboxy-
lesterases; carboxymethylenebutenolidase (Diff 1.31%) and gluconolactonase (Diff 0.99%), and two significantly 
(p < 0.0001) enriched phosphomonoesterases; alkaline phosphatase (Diff 0.43%) and acid phosphatase (Diff 
0.36%) in FEN_Res compared to FEN_Sus, with the carboxylesterases being the most enriched overall (Fig. 4 
and Supplementary Table 2). With the exception of ligase, six other enzymes in the remaining classes were also 

Figure 1.  Differential bacterial composition between fenitrothion resistant and susceptible An. albimanus. 
Based on the alignment of sequencing reads (FEN_Res, n = 83,947,332; FEN_Sus, n = 60,444,900) to the 
NCBI-NR protein database, 37 bacterial genera and one uncultured β-proteobacterium* were identified in 
fenitrothion resistant and susceptible An. albimanus samples. Five genera; Klebsiella, Enterobacter, Acinetobacter, 
Escherichia and Salmonella comprised over 93% of identified genera in both samples and are considered as the 
predominant genera in this study. Plot (a) shows the proportions of each predominant genera as well as the 
proportions of unclassified reads in fenitrothion resistant and susceptible samples. Thirty two bacterial genera 
comprising the remaining proportion (1.8%) of the microbiota are grouped as ‘other genera’ and expanded in 
plot (b). Bacterial genera that are unique to either resistant or susceptible An. albimanus are presented in bold 
typeface. There were differential abundances of predominant (a) and other (b) genera between FEN_Res and 
FEN_Sus, with significant (p < 0.001) enrichment of Klebsiella in FEN_Res.
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significantly (p < 0.0001) enriched in FEN_Res compared to FEN_Sus: transferases (acetyl-CoA acyltransferase, 
Diff 0.48% and glutathione S-transferase, Diff 0.58%); lyase (4-carboxymuconolactone decarboxylase, Diff 0.47%); 
oxidoreductase (p-hydroxybenzoate 3-monooxygenase, Diff 0.48%); and isomerases (3-hydroxybutyryl-CoA epi-
merase, Diff 0.35%, and enoyl-CoA isomerase, Diff 0.80%) (Fig. 4 and Supplementary Table 2).

S/N Bacterial genera
FEN_Res Rel. 
abundance (%)

FEN_Sus Rel. 
abundance (%)

Diff. Rel 
abundance 
(%)

95% 
lower CI

95% 
upper 
CI p-values

Corrected 
p-values

1 Klebsiella†,‡ 77.571 52.424 25.148 25.129 25.167 <1E-301 <1E-301

2 Bacillus† 0.456 — 0.456 0.454 0.458 <1E-301 <1E-301

3 Escherichia†,‡ 2.239 1.846 0.393 0.387 0.398 <1E-301 <1E-301

4 Pantoea†,‡ 0.196 0.100 0.096 0.094 0.097 <1E-301 <1E-301

5 Raoultella† 0.103 0.076 0.028 0.026 0.029 <1E-301 <1E-301

6 Salmonella† 0.738 0.718 0.020 0.016 0.023 1.70E-28 3.82E-28

7 Rahnella† 0.065 0.046 0.018 0.018 0.019 1.54E-301 6.04E-301

8 Pluralibacter♦ 0.044 0.032 0.012 0.011 0.012 3.40E-173 1.23E-172

9 Halomonas±,c 0.011 — 0.011 0.011 0.012 <1E-301 <1E-301

10 Edwardsiella† 0.035 0.024 0.011 0.010 0.012 7.82E-208 2.94E-207

11 Pseudomonas†,‡ 0.037 0.028 0.009 0.008 0.010 1.37E-124 4.44E-124

12 Providencia† 0.027 0.022 0.006 0.005 0.006 3.26E-69 9.28E-69

13 Erwinia†,‡†,‡ 0.031 0.026 0.005 0.005 0.006 3.80E-51 9.65E-51

14 Haemophilus† 0.017 0.012 0.005 0.005 0.006 2.40E-94 7.53E-94

15 Photorhabdus† 0.023 0.018 0.005 0.004 0.006 3.75E-60 9.78E-60

16 Photobacterium♦ 0.016 0.012 0.003 0.003 0.004 6.02E-43 1.49E-42

17 Shigella†,‡ 0.097 0.094 0.003 0.002 0.004 1.10E-06 1.85E-06

18 Staphylococcus† 0.015 0.012 0.003 0.003 0.004 2.53E-36 5.94E-36

19 Kosakonia♦ 0.049 0.046 0.003 0.002 0.004 5.99E-10 1.10E-09

20 *CBNPD1 BAC clone 
578♦ 0.016 0.013 0.003 0.002 0.003 3.61E-24 7.72E-24

21 Vibrio† 0.017 0.016 0.001 0.000 0.001 0.02556166 0.039390101

22 Morganella† 0.015 0.015 −0.001 −0.001 0.000 0.02829376 0.042896987

23 Pectobacterium♦ 0.021 0.022 −0.001 −0.002 −0.001 1.01E-05 1.66E-05

24 Xenorhabdus† 0.017 0.019 −0.002 −0.002 −0.001 2.97E-10 5.58E-10

25 Yokenella±a 0.026 0.028 −0.002 −0.002 −0.001 2.62E-07 4.56E-07

26 Yersinia†,‡ 0.014 0.016 −0.002 −0.003 −0.002 7.66E-18 1.56E-17

27 Cedecea† 0.012 0.014 −0.002 −0.003 −0.002 3.05E-25 6.66E-25

28 Cronobacter† 0.052 0.055 −0.003 −0.004 −0.002 1.03E-10 2.02E-10

29 Kluyvera† 0.036 0.039 −0.003 −0.004 −0.002 1.47E-15 2.95E-15

30 Stenotrophomonas† — 0.016 −0.016 −0.016 −0.015 <1E-301 <1E-301

31 Bradyrhizobium† 0.027 0.044 −0.017 −0.017 −0.016 <1E-301 <1E-301

32 Microbacterium† — 0.017 −0.017 −0.017 −0.016 <1E-301 <1E-301

33 Leclercia♦ 0.013 0.042 −0.029 −0.030 −0.028 <1E-301 <1E-301

34 Lelliottia♦ — 0.039 −0.039 −0.040 −0.038 <1E-301 <1E-301

35 Citrobacter†,‡ 0.227 0.276 −0.049 −0.051 −0.047 <1E-301 <1E-301

36 Serratia†,‡ 0.052 0.115 −0.063 −0.064 −0.061 <1E-301 <1E-301

37 Acinetobacter†,‡ 7.742 11.913 −4.172 −4.184 −4.159 <1E-301 <1E-301

38 Enterobacter†,‡ 5.563 27.091 −21.528 −21.543 −21.513 <1E-301 <1E-301

39 Unclassified Bacteria 4.381509301 4.674589901 −0.2930806

Table 1.  Differential abundance of identified bacterial genera in fenitrothion resistant and susceptible An. 
albimanus. The table shows the relative abundance (%) of bacterial genera identified in each sample, and the 
difference in relative abundance of each genera with 95% confidence intervals, calculated using two-sided 
Fisher’s exact test with Benjamini Hochberg’s false discovery rate p-value corrections. The level of significance 
was set to p < 0.05. Bacterial genera unique to either sample are presented in bold typeface. The relative 
abundance of 21 of these bacterial genera was significantly higher in FEN_Res compared to FEN_Sus, with the 
proportion of Klebsiella showing the greatest enrichment (Diff 25.1%, p < 0.0001). Conversely, the proportion 
of Enterobacter was the most reduced in FEN_Res compared to FEN_Sus (Diff −21.5% p < 0.0001). †Previously 
identified in Anopheles. ‡Previously identified in Latin American Anopheles. *Uncultured β-proteobacteria. 
±Reported in Anopheles for the first time in this study. aOnly reported in Aedes previously. cOnly reported in 
Culex previously. ♦Reported in mosquitoes for the first time in this study.
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The microbial xenobiotic degradation pathways in fenitrothion resistant An. albimanus are 
comprised of fenitrothion-degrading and other OP-degrading bacterial species that were also 
confirmed via in vitro insecticide treatments.  Sequencing reads associated with annotated microbial 
xenobiotic degradation pathways in FEN_Res mapped to 21 bacterial species belonging to 11 genera (Table 2). 
Of these, 13 bacterial species belonged to the predominant genera – Klebsiella, Enterobacter, Acinetobacter, 

Figure 2.  Differential abundance of predominant bacterial genera in fenitrothion resistant and susceptible An. 
albimanus. Plots show the difference in relative abundance (%) of each bacterial genera between fenitrothion 
resistant and susceptible samples (p < 0.0001).

Figure 3.  Relative abundance of bacterial enzyme classes associated with xenobiotic degradation pathways 
in fenitrothion resistant and susceptible An. albimanus. Bar plot shows the relative abundance (%) of reads 
assigned to each enzyme class in FEN_Res (n = 458,614) and FEN_Sus (n = 311,919).

Figure 4.  Putative bacterial enzymes involved in microbial xenobiotic degradation in fenitrothion resistant 
and susceptible An. albimanus. The plot shows the proportion (%) of sequencing reads (FEN_Res, n = 458,614; 
and FEN_Sus, n = 311,919) aligned to bacterial enzymes in the microbial xenobiotic degradation pathway, and 
the difference in relative abundance of identified enzymes between fenitrothion resistant and susceptible An. 
albimanus (Diff.). Only enzymes with Diff. ≥ 0.2% at p < 0.0001 are shown, and significantly enriched enzymes 
in FEN_Res are presented in bold typeface.
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Escherichia, and Salmonella. Bacteria belonging to the genus Bacillus were only identified in FEN_Res (Table 2 
and Supplementary Table 1). With the exception of Pluribacter, each bacterial genus associated with xenobiotic 
degradation in FEN_Res contained bacterial species that have been documented to degrade OP compounds, 
including fenitrothion, as well as other classes of pesticides (Table 2). The presence of B. cereus and A. baumannii, 
two OP-degrading bacteria identified by WMS in this study (Table 2), was confirmed by PCR following in vitro 
insecticide treatments of the microbiota of FEN_Res.

Discussion
Mosquito microbiota has been shown to impact several key host characteristics including growth, nutrition, 
reproduction, parasite interactions, and vector competence33, and the present study provides the first compre-
hensive characterization of mosquito microbiota in relation to insecticide resistance. The findings presented here 
show differential composition of the microbiota and its functions between fenitrothion resistant and suscep-
tible An. albimanus, with significant enrichment of OP degrading bacteria and putative enzymes in FEN_Res 
compared to FEN_Sus. Bacteria belonging to the genera Serratia, Enterobacter, Flavobacterium, Pseudomonas 
and Acinetobacter36,37 have previously been identified in An. albimanus. In the present study, 103 bacterial 
species belonging to 37 bacterial genera (including four of the previously identified genera and unclassified 
Flavobacteriaceae) were identified, providing a comprehensive update to the composition of An. albimanus 
microbiota. Bacteria belonging to the phylum Proteobacteria were predominant in the present study, indicat-
ing that the composition at the phylum level is similar to that of Anopheles described previously from Asia38–

42, Africa43–46 and the Americas36,37,47. The predominant bacterial genera identified in the present study were 
Klebsiella, Enterobacter, Acinetobacter, Escherichia, and Salmonella. These have all been previously identified in 
Anopheles, and all, except Salmonella, have previously been documented in Latin American Anopheles48. The 
majority (29 out of 37) of all bacterial genera identified in the current study have previously been identified in 
Anopheles29,35,48, with 11 of these documented in Latin American Anopheles48. Out of the eight remaining gen-
era, Yokenella and Halomonas have so far been reported in Aedes49 and Culex26 respectively, while Kosakonia, 
Leclercia, Photobacterium, Pluralibacter, Pectobacterium and Lelliottia are documented herein for the first time 
in Anopheles. Two of these newly documented genera have been identified in other insect vectors of human 
disease, Pluralibacter in sandflies (Phlebotomus chinensis, a primary vector of leishmaniasis in China)50 and 
Pectobacterium in triatomine bugs (Rhodnius prolixus, an important vector of Chagas disease in Latin America)51. 
The remaining genera have been identified in insects of agricultural importance: Kosakonia in the coffee berry 

S/N Bacterial species OPs metabolized Other pesticides metabolized Source

1 Acinetobacter baumannii Fenitrothion, Diazinon, Chlorpyrifos, 
Malathion, Methyl parathion Diclofop-methyl 80,91,92

2 Acinetobacter calcoaceticus Chlorpiryfos, Biological phosphorus in 
activated sludge — 93–97

3 Acinetobacter pittii — — —

4 Bacillus anthracis† — — —

5 Bacillus cereus†
Dimethoate, Malathion, Chlorpiryfos, 
Malaoxon, Monocrotophos, Acephate, 
Phosphonates

DDT, Cypermethrin, Fenvalerate 98–105

6 Bacillus thuringiensis† Malathion Fipronil 106–108

7 Citrobacter koseri Glyphosphate, Profenofos — 109,110

8 Enterobacter aerogenes Malathion Bifenthrin, Fenpropathrin, 
Cypermethrin, DDT

103,104,106,111

9 Enterobacter asburiae Acephate, Glyphosphate Cypermethrin, Endosulfan, Quizalofop-
p-ethyl, Clodinafop, Metribuzin

109,118,113

10 Enterobacter cloacae Dimethoate, Glyphosphate DDT, Endosulfan 98,103,114–116

11 Enterobacter hormaechei — — —

12 Escherichia coli Fenitrothion, Phosphonates Cypermethrin, DDT, Aldicarb 103,104,117–119

13 Klebsiella oxytoca Dimethoate, Chlorpiryfos, Phosphonates Endosulfan 120–123

14 Klebsiella pneumoniae Fensulfothion, Tributyl phosphate, 
Methyl-parathion, Phosphonates

DDT, Endosulfan, Triazines, Bromoxynil, 
Imidacloprid

103,114,123–129

15 Klebsiella quasipneumoniae — — —

17 Klebsiella variicola — — —

18 Kluyvera cryocrescens Phosphonates — 123

19 Pluralibacter gergoviae — — —

20 Salmonella enterica Phosphonates — 130

21 Serratia marcescens
Fenitrothion, Chlorpiryfos, Diazinon, 
Coumaphos, Parathion, Isazofos, 
Monocrotophos

— 100,114,131–133

Table 2.  Bacterial species associated with microbial xenobiotic degradation in fenitrothion resistant An. 
albimanus. The table lists identified bacterial species, documented OP compounds, and other pesticides 
metabolized by each associated bacteria. †Only identified in fenitrothion resistant An. albimanus.
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borer (Hypothenemus hampei), Photobacterium in the date palm borer (Oryctes Agamemnon)52, Lelliotia in the 
Asian honeybee (Apis dorsata)53, and Leclercia in several classes of agricultural pests54–57. Bacterial species within 
two of these genera have been shown to degrade xenobiotics, such as caffeine by K. cowanii within the coffee berry 
borer58, and clorpyrifos ethyl, an OP pesticide, by L. adecarboxylata isolated from the fall armyworm (Spodoptera 
frugiperda)55.

The lower bacterial diversity observed in FEN_Res compared to FEN_Sus could be a consequence of insecti-
cide exposure, whereby bacteria with the ability to effectively utilize fenitrothion as a nutrient source dominate 
the microbiota, displacing other bacteria with a resulting decrease in bacterial diversity. Such shifts in microbial 
composition due to insecticide exposure have previously been documented59. For example, the application of 
fenitrothion to soil in an experimental setting resulted in a significant enrichment of fenitrothion degrading 
bacteria in the treated soil, from previously undetectable levels to >80% of identified bacteria21. Furthermore, 
the exposure of the diamondback moth, Plutella xylostella, to two different organophosphate insecticides resulted 
in significant enrichment of Lactobacillales in insecticide treated moths60. In the present study, Klebsiella was 
significantly enriched in FEN_Res compared to FEN_Sus, with a corresponding reduction in the relative abun-
dance of Enterobacter. This was also evident in other genera, as well as at the species level. While this could have 
occurred as a consequence of insecticide exposure, this may not have been the principal factor due to the short 
time of insecticide exposure during the bioassays (30 minutes)14. This posits the presence of other factors such 
as a previous selection for OP-degrading bacteria that might have developed alongside resistance to fenitrothion 
in the mosquitoes. This is exemplified in the diamondback moth, where susceptible and resistant moths from a 
generation with no insecticide exposure showed differential bacterial compositions. The resistant moths from the 
unexposed generation showed significant enrichment of Lactobacillales, a bacterial taxa that was also enriched 
in resistant moths from a different generation that had been exposed to insecticides60. These together suggest 
the enrichment of bacterial taxa with a competitive advantage over other taxa in response to selection pressure. 
This could also explain finding certain bacterial taxa in one sample and not the other, for instance, the identifica-
tion of Bacillus and Halomonas only in FEN_Res, and Stenotrophomonas, Microbacterium, and Lelliottia only in 
FEN_Sus. It is also possible that rather than arising from selective pressures, the mere presence of certain bacteria 
could be mediating insecticide resistance in mosquitoes, and both possibilities merit further exploration.

Other factors such as a mosquito’s physiological status61 and age24, have been shown to affect the composition 
of the mosquito microbiota. We recognize that such factors may also be at play in the present study, particularly 
because wild-caught An. albimanus with unknown age and physiological status were utilized14. Nonetheless, the 
findings in this study showed significant enrichment of bacterial carboxylesterases and phosphomonoesterases 
(Fig. 4) – critical enzyme families involved in bacterial OP-degradation62–64 – in FEN_Res compared to FEN_
Sus, suggesting that the microbiota in FEN_Res may be involved in OP-degradation. The present study, which 
reports the first description of putative microbial enzymes associated with xenobiotic degradation in mosquitoes 
(Supplementary Table 2), detected all major enzyme classes in FEN_Res and FEN_Sus, with oxidoreductases, 
transferases and hydrolases constituting the majority of identified enzymes (Fig. 3). These three classes of enzymes 
catalyze the biodegradation of various xenobiotics65,66 including OPs, whose catabolism is initiated by hydrolysis –  
the first and most critical step in OP degradation, which is primarily catalyzed by hydrolases67. The most abun-
dant enzyme families (fumarate reductase68,69, glutathione S-transferase70–72, acetyl-CoA C-acetyltransferase73,74, 
carboxymethylenebutenolidase75, muconate cycloisomerase76, 4-carboxymuconolactone decarboxylase77, 
guanosine monophosphate synthase78, and enoyl-CoA isomerase79) within these three classes have all been doc-
umented in bacterial xenobiotic degradation. This suggests the potential involvement of An. albimanus micro-
biota in xenobiotic degradation within the mosquito host. Interestingly, hydrolases, the most important class of 
enzymes involved in bacterial degradation of OPs, were the most significantly enriched in FEN_Res compared to 
FEN_Sus (Figs 3 and 4). These enriched hydrolases63,64,67, along with other enriched enzymes such as glutathione 
S-transferase80 have been documented in bacterial degradation of OPs, further suggesting the involvement of 
the microbiota in host xenobiotic degradation. The identification of OP-degrading bacterial species, including 
fenitrothion-degrading species, in association with FEN_Res microbial degradation pathways (Table 2), plus 
the validation via in vitro assays also suggests the involvement of the microbiota in host xenobiotic degradation. 
It should be noted that although microbial xenobiotic degradation has been studied extensively (particularly in 
light of increasing interests in bioremediation), the focus has been on cultivable bacteria, which constitute <1% 
of environmental bacteria59. Thus, the xenobiotic degradation profiles of the majority of known bacteria, as well 
as their corresponding genes and gene products are yet to be characterized. In the present study, all but six of the 
identified bacterial species associated with microbial xenobiotic degradation in FEN_Res (A. pittii, B. anthracis, 
E. hormaechei, K. quasipneumoniae, K. variicola, and P. gergoviae) have been documented in OP-metabolism, as 
well as in the metabolism of other pesticides (Table 2). For these six bacterial species, this may be the first docu-
mentation of their association with xenobiotic degradation.

The findings presented here demonstrate differences between the microbiota of FEN_Res and FEN_Sus, as 
well as associations between the mosquito microbiota and xenobiotic degradation. These initial findings lay the 
groundwork for future research that will characterize and compare the expression levels of specific microbial 
genes involved in insecticide degradation, and further elucidate the role of the mosquito microbiota in conferring 
resistance to insecticides.

Methods
Sample collection and determination of resistance profiles.  Female An. albimanus samples collected 
from La Jota, Tumbes, Peru in 2014, were screened for fenitrothion resistance using the CDC bottle bioassay81. 
Briefly, samples were exposed to bottles coated with one to five times the diagnostic dose (50 µg/bottle) of feni-
trothion for 30 mins. These were subsequently removed and classified as susceptible (FEN_Sus), if they were 
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knocked down at the diagnostic dose, or resistant (FEN_Res), if they survived five times the diagnostic dose. The 
sample collection and bioassay procedures have previously been described in detail14. Immediately following the 
bioassays, samples were stored at −20 °C until processed.

Preparation of genomic DNA.  Pools of 10 (FEN_Sus) and 30 (FEN_Res) whole mosquito samples were 
processed to digest mosquito host DNA using the MolYsis™ Complete 5 kit (Molzym, Bremen, Germany) fol-
lowing manufacturer’s instructions. We processed available samples as pools to reduce the effect of the variation 
found in the microbiota among individual mosquitoes of the same species44. Prior to host DNA removal, each 
pool of mosquitoes was surface sterilized by suspending in 70% ethanol and agitating with a vortex mixer for 
15–20 seconds, then re-suspending in nuclease free water with agitation for another 15–20 seconds, followed by 
a final rinse with nuclease free water. Each pool was subsequently suspended in 50 µL of MolYsis chaotrophic 
buffer, CM, and homogenized to begin the host DNA removal process.

Following the removal of mosquito DNA, genomic DNA was extracted from FEN_Sus using DNeasy Blood 
and Tissue Kit (QIAGEN), and from FEN_Res using MolYsis™ Complete 5 kit, per manufacturers’ instructions. 
In processing FEN_Sus, which had less mosquitoes/pool, the DNeasy blood and Tissue Kit was substituted for 
MolYsis to optimize the yield of metagenomic DNA. Negative controls for the extractions (tubes without mosqui-
toes) were included with each extraction process. For all extractions, DNA was eluted to a final volume of 60 µL 
and stored in −20 °C until library preparation and sequencing. Prior to library preparation and sequencing, each 
extraction product was tested for the presence of the 16S rRNA gene using the HDA1 and HDA2 primers23. Both 
DNA samples from FEN_Res and FEN_Sus were positive, while both extraction controls were negative.

Library preparation and whole metagenome sequencing.  Genomic DNA was sheared to a mean 
size of 600 bp using a Covaris LE220 focused ultrasonicator (Covaris Inc., Woburn, MA). DNA fragments were 
cleaned with Ampure (Beckman Coulter Inc., Indianapolis, IN) and used to prepare dual-indexed sequencing 
libraries using the NEBNext Ultra library prep reagents (New England Biolabs Inc., Ipswich, MA), and barcoding 
indices synthesized at the CDC Biotechnology Core Facility. Libraries were analyzed for size and concentration, 
pooled and denatured for loading onto flowcells for cluster generation. Sequencing was performed on an Illumina 
HiSeq2500 platform using HiSeq Rapid SBS 250 × 250 cycle paired-end sequencing kits. Each library pool was 
loaded onto both lanes of the HiSeq Rapid flowcell, and on completion, sequence reads were filtered for read 
quality, basecalled and demultiplexed using Casava (v1.8.2). There was no significant difference in resulting reads 
from either lane of the flowcell. Thus, only outcomes from one lane of the flowcell are reported.

Sequencing data quality control and removal of mosquito genome.  Demultiplexed reads from 
each sample were examined for quality using FastQC v0.11.582. Adapters and low quality reads were removed 
using Trimmomatic v0.3583. A custom adapter file containing TruSeq universal and index primers, as well as 
each primers’ reverse complement, was used with the ILLUMINACLIP command in Trimmomatic to remove 
adapters. Next, the first 14 and last five bases were removed from each read, and the resulting reads were scanned 
using a sliding window of four nucleotides. Nucleotides within each sliding window were removed until the aver-
age Phred score across the window was >20. Finally, sequences along with their mate-pairs with length less than 
60 bp were removed.

The quality trimmed sequences for each sample were aligned to the host reference genome (An. albimanus 
STECLA strain, AalbS2 assembly84) using the BWA-MEM algorithm of the Burrows-Wheeler aligner (BWA 
v0.77)85 with default settings for paired-end reads (BWA alignments have been deposited in the NCBI Sequence 
Read Archive, SRA; SRR5630719 and SRR5630720). Reads that aligned to An. albimanus genome were removed, 
and resulting non-host reads were checked for quality with FastQC and used in downstream analysis.

Taxonomic and functional annotations.  To assess taxonomic and functional composition, non-host 
reads were aligned to the NCBI-NR database (downloaded June, 2016) using the BLASTx algorithm in 
DIAMOND v0.8.6v86, with the following adjusted parameters –e 0.00001,–top 3, –f 6, and –c 1. Each read pair 
was analyzed separately, then subsequent aligned reads were merged, imported into the MEtaGenome ANalyzer 
(MEGAN) v.6.5.787 using the paired-read mode, and parsed using default parameters of the lowest common 
ancestor (LCA) algorithm. NCBI taxonomy (prot-acc2taxid-August2016.bin) and the Kyoto Encyclopedia of 
Genes and Genomes, KEGG (gi2kegg-Feb2015X.bin) mapping files were used to map aligned reads to the NCBI 
taxonomy tree and KEGG pathways, respectively. One final check for host genome contamination was performed 
at this stage, and reads that mapped to the Eukaryota domain were removed from downstream analysis. To iden-
tify bacteria associated with bacterial xenobiotic degradation pathways, reads that mapped to the KEGG bacterial 
xenobiotic degradation pathways were extracted and processed for taxonomic annotation as described above.

Comparisons and statistical analysis.  A single MEGAN comparison file was generated using both 
FEN_Res and FEN_Sus individual MEGAN files. Simpson’s reciprocal indices were calculated for each sample 
using MEGAN, to determine species diversity (the number of identified bacteria taxa) and evenness (the relative 
abundance of each identified taxa) within each sample. Taxonomic profiles at each level of classification and cor-
responding read abundances were exported from the comparison file into the Statistical Analysis of Metagenomic 
Profiles (STAMP) software v2.1.388. Likewise, functional (KEGG) profiles were exported into STAMP for statis-
tical analysis. For each sample, the relative abundance of reads assigned to each identified taxon/function were 
calculated. The resulting relative abundances were compared between samples using two-sided Fisher’s exact test 
with Benjamini-Hochberg False Discovery Rate (FDR) correction. The level of significance was set to p < 0.05, 
and any taxa/function with < 100 assigned reads in both samples were grouped as unclassified.
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Identification of OP-degrading bacteria in in vitro insecticide treatments of An. albimanus 
microbiota.  The microbiota of mosquitoes that survived 10 times the diagnostic dose of fenitrothion81 
from the same mosquito population were cultured on insecticide treated bacterial media. Three pools of 
three female mosquitoes each were surface sterilized as described above and homogenized in nuclease free 
ultra-purified water. One hundred microliters of each homogenate was spread on Luria-Bertani (LB) agar 
plates that were surface-treated with either 1 mL of the diagnostic dose (50 µg/mL) or five times the diagnos-
tic dose of fenitrothion and incubated overnight at 37 ± 0.5 °C. Untreated LB agar plates and plates treated 
with 1 mL of absolute ethanol (solvent) were included as controls. Following incubation, bacterial colonies 
were collected for DNA extraction. Genomic DNA was extracted from bacterial colonies using the Extracta™ 
DNA Prep for PCR kit (Quanta BioSciences, USA) following manufacturer’s instructions. Using PCR, bacte-
rial genomic DNA was screened for two bacterial species/groups known to degrade organophosphate insecti-
cides including fenitrothion – A. baumannii, and B. cereus – that were also associated with putative microbial 
xenobiotic degradation pathways in FEN_Res. Following a previously described method89 with slight modifica-
tions, the PCR for A. baumannii identification was conducted using A. baumannii specific primers P-Ab-ITSF 
(CATTATCACGGTAATTAGTG) and P-Ab-ITSB (AGAGCACTGTGCACTTAAG), along with internal con-
trol primers P-rA1 (CCTGAATCTTCTGGTAAAAC) and P-rA2 (GTTTCTGGGCTGCCAAACATTAC). 
The specific primer pair (P-Ab-ITSF and P-Ab-ITSB) amplifies a 208 bp fragment of the ITS region in A. bau-
mannii, while the internal control primers (P-rA1 and P-rA2) target a 425 bp region of the recA gene in all 
Acinetobacter species. To screen for B. cereus, the BCFomp1 (ATCGCCTCGTTGGATGACGA) and BCRomp1 
(CTGCATATCCTACCGCAGCTA) primer set89 which targets a 575 bp region of the motB gene in B. cereus was 
used. PCR was performed in a total reaction volume of 20 µL (A. baumannii) and 25 µL (B. cereus), each contain-
ing 60–160ng/µL DNA template, 1 µM of each respective primer, 12.5 µL of 2 × KAPA HiFi HotStart PCR mix 
(Roche, Switzerland), and PCR grade water to final volume. Reactions were conducted using a T100™ Thermal 
Cycler (Bio-Rad, USA) following the previously described conditions89,90.

Data Accessibility.  The WMS reads obtained from this study (SRP108310) have been deposited in NCBI 
under the BioProject PRJNA388280.
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