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Background and Aims. Recent data suggested a potential role of miR-143 as a biomarker for systemic inflammation and infection.
However, its role in critical illness and sepsis is only poorly understood.Methods. We determined circulating levels of miR-143 in
218 critically ill patients, of which 135 fulfilled sepsis criteria, and compared them to 76 healthy controls. Results were correlated
with clinical records. Results. In the total cohort of critically ill patients from a medical intensive care unit (ICU), miR-143
serum levels tended to be lower compared to healthy control samples, but this difference did not reach statistical significance. In
ICU patients, serum levels of miR-143 were independent of disease etiology, including the presence of sepsis, or severity of
disease. Importantly, low miR-143 serum levels were associated with an unfavorable short- and long-term prognosis in ICU
patients. Our study identified different optimal cut-off values at which low miR-143 serum levels predicted mortality with a high
diagnostic accuracy. In line with this, concentrations of circulating miR-143 correlated with markers of organ failure such as
creatinine, bilirubin, or lactate in our cohort of critically ill patients. Conclusion. Low miR-143 serum levels are indicative for an
unfavorable short- and long-term prognosis in critically ill patients admitted to a medical ICU. Our data suggest a previously
unrecognized role for miR-143 measurements as a novel prognostic marker in critically ill patients.

1. Introduction

In the last decades, intensive research activities have been
made to identify biomarkers for guiding early therapeutic
decisions in critically ill patients during ICU treatment [1].
However, due to a lack in specificity and sensitivity, only very
few conventional—protein-based—biomarkers have been
integrated into daily clinical routine so far. Since the progno-
sis of critically ill patients is still unacceptably severe, innova-
tive biomarkers reflecting novel pathophysiological concepts

are eagerly awaited to improve the therapy of individual crit-
ically ill patients.

MicroRNAs (miRNAs) have been demonstrated to act as
regulators of gene expression [2]. miRNAs play a critical role
in various physiological and pathophysiological processes
including inflammation and bacterial infection [3]. Due to
their high stability, miRNAs have been proposed as diagnos-
tic, prognostic, and predictive biomarkers in several human
diseases [4]. However, the regulation of miRNAs in the
serum of patients with critical illness and sepsis is only poorly

Hindawi
Disease Markers
Volume 2019, Article ID 4850472, 10 pages
https://doi.org/10.1155/2019/4850472

https://orcid.org/0000-0002-2245-6362
https://orcid.org/0000-0003-4078-1668
https://orcid.org/0000-0003-3447-1161
https://orcid.org/0000-0001-6206-0226
https://orcid.org/0000-0002-6288-8821
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4850472


understood [5, 6]. As an example, it was recently shown that
elevated serum levels of miR-150 might indicate an unfavor-
able long-term outcome in critically ill patients during ICU
treatment [7]. Interestingly, this miRNA was shown to be
involved in the regulation of systemic inflammation and bac-
terial infection [8]. Similar to miR-150, alterations in miR-
143 serum levels were recently suggested as a biomarker in
the context of critical illness and sepsis [9]. miR-143 is part
of the miR-143/miR-145 cluster representing a microRNA
cluster involved in the regulation of smooth muscle cell dif-
ferentiation, leading to a phenotypic switch in response to
vascular injury and remodeling [10]. Moreover, alterations
in miR-143 expression were found in patients with inflam-
matory diseases such as inflammatory bowel diseases [11]
or cancer [4, 12, 13]. In patients with sepsis, it was shown
that, along with other miRNAs, miR-143 was upregulated
in the T-cell subpopulation [14]. Based on these observa-
tions, we analyzed the diagnostic and prognostic value of
miR-143 serum levels in a large cohort of critically ill patients
with or without the presence of septic disease who were
treated at our medical ICU, as recently described [15].

2. Materials and Methods

2.1. miRNA Isolation from Serum. 400 μl serum was spiked
with miScript miRNA mimic SV40 (Qiagen; 2μM,
1μl/100μl serum) for sample normalization. 800μl phenol
(QIAzol) and 200μl chloroform were added to the sample
and mixed vigorously for 15 sec followed by an incubation
at room temperature for 10min. Samples were centrifuged
for 15min at 12,000 g until complete phase separation. The
aqueous phase, containing total RNA, was precipitated with
500 μl 100% isopropanol and 2μl glycogen (Fermentas, St.
Leon-Rot, Germany) overnight at -20°C. After centrifugation
at 4°C for 30min (12,000 g), the pellets were washed once
with 70% ethanol. Precipitated RNA was resuspended in
30 μl RNase-free water (Ambion, Austin, TX). To assess the
quality of RNA, the samples were measured with a Nano-
Drop spectrophotometer (NanoDrop), and a small RNA
assay for Agilent’s Bioanalyzer was performed (Agilent Tech-
nologies, Böblingen, Germany).

2.2. Quantitative Real-Time PCR. Quantitative real-time
polymerase chain reaction (PCR) was performed as recently
described [2, 15]. In detail, 5 μl of extracted total RNA was
used to synthesize complementary deoxyribonucleic acid
(cDNA) utilizing a miScript Reverse Transcriptase Kit
(Qiagen) according to the manufacturer’s protocol and was
diluted in suitable amounts of H2O. The rest of the protocol
was conducted via the miScript Reverse Transcription Kit
according to the manufacturer’s protocol (Qiagen). cDNA
samples (2 μl) were used for quantitative real-time PCR in
a total volume of 25μl using the miScript SYBR Green PCR
Kit (Qiagen) and miRNA specific primers (Qiagen, primer
sequences available online) on a qPCR machine (Applied
Biosystems 7300 Sequence Detection System, Applied Biosys-
tems, Foster City, CA). All results are expressed as 2-ΔΔCT
and represent the x-fold increase of gene expression com-

pared to the control group. Data were generated and analyzed
using the SDS 2.3 and RQ manager 1.2 software packages.

2.3. Sampling and Outcome Definitions in Critically Ill
Patients. To obtain serum miR-143 levels at the time point
of admission to the ICU (before any therapeutic interven-
tion), blood was collected using serum monovettes (Sarstedt,
Germany), centrifuged for 8 minutes at 2000 g using a Rotixa
50 centrifuge (Hettich, Germany) following standard pro-
tocols within the Labordiagnostisches Zentrum (LDZ) of
the university clinic (RWTH) Aachen for patient routine
care. No further clearance was performed before RNA iso-
lation. After centrifugation, samples were immediately
placed on ice and frozen at -80°C until RNA isolation.
Interleukin-6 (IL-6), Interleukin-10 (IL-10), TNF, soluble
urokinase plasminogen activator receptor (suPAR), Osteo-
pontin, Glucocorticoid-induced TNF receptor ligand
(GITRL), and A proliferation-inducing ligand (APRIL) were
measured as described previously (e.g., [16–20]). All other
laboratory markers mentioned within this manuscript were
measured as part of clinical routine at the Labordiagnos-
tisches Zentrum (LDZ) of the University Hospital (RWTH)
Aachen. Glomerular filtration rates (GFR) were calculated
on basis of serum cystatin C levels. ICU mortality was
defined as death on ICU; overall mortality included death
at the ICU or during the observation period (after discharge
from the ICU and hospital).

2.4. Study Design and Patient Characteristics. In the present
study, we enrolled 207 patients that were consecutively
admitted to the General Internal Medicine intensive care unit
(ICU) at the University Hospital Aachen (Table 1). The clin-
ical course of patients was observed in a follow-up period of
three years by directly contacting the patients, the patients’
relatives, or their primary care physician. Patients who met
the criteria proposed by the American College of Chest Phy-
sicians and the Society of Critical Care Medicine Consensus
Conference Committee for severe sepsis and septic shock
were categorized as sepsis patients, the others as nonsepsis
patients [16, 21, 22]. As a control population, we analyzed
76 healthy blood donors (47 males, 29 females, median age
33 years, range 18-67) with normal values for blood counts,
C-reactive protein, and liver enzymes.

Patients were included into the study upon providing
a written informed consent, and the ethics committees
approved this consent procedure. The study protocol was
approved by the local ethics committee and conducted in
accordance with the ethical standards laid down in the
Declaration of Helsinki (ethics committee of the University
Hospital Aachen, RWTH University, Aachen, Germany,
reference number EK 150/06).

2.5. Statistical Analysis. Data are displayed as median and
range considering the skewed distribution of most parame-
ters. Differences between two groups were assessed by the
Mann-Whitney U test, and multiple comparisons between
more than two groups have been conducted by the Kruskal-
Wallis-ANOVA and Mann-Whitney U test for post hoc
analysis. Box-plot graphics illustrate comparisons between
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subgroups and display a statistical summary of the median,
quartiles, range, and extreme values. The whiskers extend
from the minimum to the maximum value excluding outside
and far out values which are displayed as separate points. An
outside value (indicated by an open circle) was defined as a
value that is smaller than the lower quartile minus 1.5-times
the interquartile range or larger than the upper quartile plus
1.5-times the interquartile range. A far out value was defined
as a value that is smaller than the lower quartile minus three
times the interquartile range or larger than the upper quartile
plus three times the interquartile range. All values, including
“outliers,” have been included for statistical analyses. Corre-
lations between variables have been analyzed using the
Spearman correlation test, and values of p < 0:05 were con-
sidered statistically significant. The Kaplan-Meier curves
were plotted to display the impact on survival. The receiver
operating characteristic (ROC) curve analysis and the
derived area under the curve (AUC) statistic provide a global
and standardized appreciation of the accuracy of a marker or
a composite score for predicting an event. ROC curves were
generated by plotting sensitivity against 1 − specificity. All
statistical analyses were performed with SPSS version 12.0
(SPSS, Chicago, IL, USA).

3. Results

3.1. miR-143 Serum Levels in Critically Ill Patients and
Healthy Controls. Based on recent data suggesting a role for
miR-143 as a biomarker in the context of critical illness and
sepsis [9], we analyzed serum concentrations of miR-143 in
218 critically ill patients and 76 healthy blood donors as a
control population. In these analyses, we found a trend
towards lower levels of miR-143 in ICU patients compared

to control samples (Figure 1(a)). However, due to the large
variance in the control group, the difference did not reach
statistical significance (p = 0:07). Next, we examined whether
serum levels of miR-143 reflect disease severity and com-
pared miR-143 serum concentrations between patients with
a more severe disease state according to a higher APACHE
II score and those with a less severe state of disease
(Figure 1(b)). Unexpectedly, no difference in miR-143 serum
levels became apparent between both groups. In line with
these results, miR-143 levels did not correlate with APACHE
II, SAPS2, or SOFA scores in our cohort of critically ill
patients (Table 2).

Metabolic comorbidities were shown to influence the
outcome of critically ill patients [23]. Since decreased serum
levels of miR-143 were recently described in patients with
obesity [24], we next analyzed the impact of preexisting type
2 diabetes or obesity in our cohort of critically ill patients,
revealing that miR-143 serum concentrations were indepen-
dent of these comorbidities (Figures 1(c) and 1(d)). In line
with this, miR-143 levels did not correlate with routinely
used markers of metabolic diseases in our cohort of critically
ill patients (Table 2).

3.2. miR-143 Serum Levels Are Unaltered in Patients with
Sepsis. Our cohort of critically ill patients consisted of 135
patients who fulfilled sepsis criteria and 72 patients with
another disease etiology (Table 3). Recently, elevated serum
concentrations of miR-143 were found in Asian patients with
sepsis (n = 103) compared to patients with SIRS (n = 95) or
healthy controls (n = 40). We therefore analyzed miR-143
serum levels in patients with or without septic disease in
our cohort of patients. In our ICU cohort, serum levels of
miR-143 did not differ between these groups (Figure 2(a)).
In line with these results, correlation analyses demonstrated
that miR-143 concentrations did not correlate to routinely
used sepsis markers such as C-reactive protein (CRP), pro-
calcitonin (PCT), or tumor necrosis factor (TNF) (Table 2).
Furthermore, subgroup analyses did not identify an etiology
with a specific regulation of miR-143 (Figure 2(b)).

3.3. miR-143 Serum Levels Predict ICU Survival in Critically
Ill Patients. To test whether circulating miR-143 might be
useful to predict treatment survival in critically ill patients,
we next analyzed serum levels of miR-143 in patients that
succumbed to death during ICU treatment and those who
survived. Interestingly, patients who survived their ICU stay
displayed significantly higher levels compared to those who
died (Figure 3(a)). Similarly, Kaplan-Meier curve analyses
revealed that patients with low miR-143 levels (below
116.16AU) showed a significantly impaired survival proba-
bility at the ICU (Figure 3(b)). To substantiate these find-
ings, we next applied the approach of Ray et al. [25] to
determine an optimal threshold with the highest Youden
index for miR-143 levels predicting the patients’ survival
during ICU treatment. This analysis revealed a relative
miR-143 concentration of 116.16 (AU) for the best sensitiv-
ity and specificity to decide whether a patient will survive
or not. Using this optimal cut-off value, we performed the
Kaplan-Meier curve analysis, showing that patients with

Table 1: Baseline patient characteristics.

Parameter All patients

Number 207

Sex (male/female) 135/72

Age median (range) (years) 63 (18-89)

APACHE II score median (range) 17 (2-43)

SAPS2 score median (range) 43.0 (0-79)

ICU days median (range) 7 (1-83)

Death during ICU (%) 22.2%

Death during ICU or follow-up (%) 42.5%

Body mass index (BMI) 26.78 (16.6-86.5)

Creatinine 1.3 (0-15)

Albumin 27.3 (15.2-52.2)

WBC median (range) (×103/μl) 12.15 (0.1-67.4)

CRP median (range) (mg/dl) 95.5 (<5-230)
Procalcitonin median (range) (μg/l) 0.7 (0-180.6)

Interleukin-6 median (range) (pg/ml) 105 (0-83,000)

Tumor necrosis factor median (pg/ml) 19 (4.9-140)

APACHE:Acute Physiology andChronicHealth Evaluation; CRP: C-reactive
protein; ICU: intensive care unit; SAPS: simplified acute physiology score;
WBC: white blood cell count.
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high miR-143 serum concentrations above the cut-off value
had a more favorable prognosis compared to those with
lower values (Figure 3(c)). Finally, we hypothesized that
low levels of miR-143 could discriminate between critically
ill patients that survive ICU treatment and those that do
not. Therefore, we attempted to compare its predictive accu-
racy with other laboratory parameters routinely accessed in
the context of critical illness. The ROC curve analysis
revealed higher AUC statistics for miR-143 (AUC = 0:628)
compared to CRP (AUC = 0:563), the leukocyte count
(AUC = 0:491), creatinine (AUC = 0:599), or the INR value
(0.604) (Figure 3(d)).

3.4. miR-143 Serum Levels Predict Overall Survival in
Critically Ill Patients. Since many of the patients died after
initially being successfully discharged from the ICU, we sub-
sequently analyzed miR-143 serum levels in patients that
died during long-term follow-up and patients who survived.
Of note, this analysis revealed that survivors demonstrated
significantly higher miR-143 levels than patients who died

during long-term follow-up (Figure 4(a)). Consequently,
the Kaplan-Meier curve analysis revealed that patients with
lower levels of circulating miR-143 displayed an impaired
long-term prognosis compared to patients with higher miR-
143 levels (Figure 4(b)). We again applied the Youden index
to determine the optimal threshold of circulating miR-143 to
predict overall survival in our cohort of critically ill patients,
revealing that a miR-143 value of 45.41 (AU) allows best to
distinguish between patients that survived and those that
died during the long-term follow-up (Figure 4(c)). Similar
to our previous analyses, low miR-143 concentrations were
associated with an impaired prognosis. We finally performed
the ROC curve analysis to compare the predictive value of
circulating miR-143 regarding the patients’ overall survival
with other routine laboratory parameters or prognostic
scores routinely accessed in the context of critical illness.
The ROC curve analysis revealed higher AUC statistics for
miR-143 (AUC = 0:574) compared to CRP (AUC = 0:568),
the leukocyte count (AUC = 0:472), creatinine (AUC = 0:548),
or the INR value (0.525) (Figure 4(d)).
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Figure 1: SerummiR-143 levels of critically ill patients at ICU admission. (a) qPCR was used to determine concentrations of circulating miR-
143 at admission to the ICU. This analysis revealed a trend toward lower miR-143 concentrations in critically ill patients (n = 218) as
compared with healthy controls (n = 76). (b) Serum miR-143 concentrations were independent of the disease severity. (c) Serum
concentrations of miR-143 were similar in patients with or without diabetes mellitus type 2. (d) Serum concentrations of miR-143 were
similar in patients with or without obesity.
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3.5. miR-143 Serum Levels Are Associated with Markers of
Organ Dysfunction in Critically Ill Patients. To identify
mechanisms involved in the regulation of miR-143 in criti-
cally ill patients, we performed correlation analyses between
miR-143 and a broad panel of laboratory markers assessed
in clinical routine. While concentrations of miR-143 did
not correlate with markers of inflammation or bacterial
infection (Table 2), we found a strong correlation between
miR-143 and indicators of organ failure in critical illness.
In detail, serum levels of miR-143 correlated with a
decreased renal function assessed by the glomerular filtra-
tion rate (GFR) of cystatin C (r = 0:289, p = 0:001), elevated
creatinine (r = −0:254, p < 0:001), and urea serum concen-
trations (r = −0:294, p < 0:001). In addition to renal dys-
function, miR-143 concentrations significantly correlated
with markers of liver injury such as aspartate aminotrans-
ferase (AST; r = 0:159, p = 0:026), alanine aminotransferase
(ALT; r = 0:206, p = 0:003), glutamate dehydrogenase
(GLDH; r = 0:150, p = 0:039), and bilirubin (r = 0:185, p =
0:035) (Supplementary Figure 1). Moreover, miR-143
concentrations correlated with elevated lipase and amylase
serum concentrations as indicators for the presence of acute
pancreatitis. In line with this association between miR-143
and organ failure, circulating miR-143 also correlated with
serum levels of lactate (r = −0:173, p = 0:014), cardiac
dysfunction (BNP; r = −0:383, p < 0:001), and the patients’
survival time (r = −0:348, p = 0:006).

4. Discussion

Despite continuous advances in diagnostic modalities, triage,
and therapeutic management, critically ill patients still rep-
resent a major clinical challenge. In this context, besides
specific triage systems, various laboratory markers poten-
tially allowing decisions about patients’ treatment and clin-
ical course were proposed. As such, next to routinely used
markers (e.g., CRP or PCT; [26]), a variety of different
experimental protein-basedmarkers such as A proliferation-
inducing ligand (APRIL), suPAR, and Osteopontin
[17, 27–29] were tested. However, the lack of prognostic
sensitivity or specificity for such protein-based markers as
well as marker-specific confounding parameters (like
sepsis) hampers the translation into routine clinical
algorithms that could be applied to heterogeneous patient
populations [26, 30]. Compared to “conventional” protein-
based markers, circulating miRNAs harbour several
advantages: circulating miRNAs are extraordinarily stable
towards conditions that usually would degrade most
proteins in serum or blood [31]. Moreover, miRNAs are
much less complex than most other biological biomarkers
[32]. Therefore, many authors hypothesized that circulating
miRNAs might perform better in the detection of sepsis or
prognosis prediction in critically ill patients. As an example,
miR-150 levels were found to be downregulated in patients
with urosepsis [33] and predictive for an impaired patients’
survival in a cohort of critically ill patients comprising
various disease etiologies and severities [15]. In the present
study, we demonstrate that miR-143 serum levels appear
rather reduced in patients with critical illness when

Table 2: Correlations of miR-143 serum concentrations with other
laboratory markers. NA: not.

miR-143 at admission vs.
laboratory markers at

admission day
r p

Markers of inflammation

CRP 0.028 0.688

Procalcitonin 0.024 0.771

TNF -0.029 0.840

IL-10 0.153 0.101

IL-6 0.146 0.142

suPAR -0.102 0.229

Osteopontin -0.037 0.783

APRIL 0.038 0.588

GITRL 0.080 0.255

Markers of organ function

Creatinine -0.254 <0.001
GFR cystatin C 0.289 0.001

Urea -0.294 <0.001
AST 0.159 0.026

ALT 0.206 0.003

GLDH 0.150 0.039

Bilirubin total 0.185 0.035

GGT -0.051 0.466

Albumin 0.043 0.965

Lactate -0.173 0.014

BNP -0.383 <0.001
Clinical scoring

Apache II -0.035 0.642

SOFA -0.042 0.612

Other

Fibrinogen -0.127 0.303

INR 0.105 0.137

Survival time -0.348 0.006

Table 3: Disease etiology of the study population.

Sepsis Nonsepsis
n = 128 n = 79

Sepsis critical illness, n (%)

Source of infection

Pulmonary 68 (32.8%)

Abdominal 28 (13.5%)

Urogenital 3 (1.4%)

Other 29 (14.0%)

Nonsepsis critical illness, n (%)

Cardiopulmonary disease 28 (13.5%)

Decompensated liver cirrhosis 11 (5.3%)

Nonsepsis other 40 (19.3%)
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compared to healthy controls and unchanged between
patients with septic disease etiology and patients with SIRS.
Our results are partially in contrast to previously published
results demonstrating elevated levels of miR-143 in patients
with sepsis [9]. On the one hand, this might be related to
differences in the patient cohorts (unselected critically ill
medical patients in our work) or the time point of sampling;
on the other hand, technical aspects (method of sample
collection, data normalization, and analysis) might also
account for diverging findings. In this respect, it is important
to note that in the context of critical illness and sepsis, the
interstudy variances in terms of miRNA regulation patterns
are enormous and the fact that different studies show even
opposing results with respect to the deregulation of miRNA
levels is not uncommon [7, 34, 35]. In an attempt to avoid
these biases, we had implemented strict protocols for sample
collection and handling in the present study sample.
Moreover, in our study, analyses were normalized using
spiked-in RNA, which is regarded as the “gold standard” by
most authors [36–38]. Finally, the cut-offs for Kaplan-Meier
curve analysis were defined using the broadly accepted
Youden index, potentially providing different cut-offs
compared to previously published studies [15, 35, 39, 40].
These principles might help to overcome technical
challenges of miRNA analysis from serum or plasma, giving
rise to the expectation that circulating miRNAs might
become novel, highly attractive biomarkers in the context of
critical illness. Nevertheless, many technical aspects in the
context of RNA isolation from serum remain unsolved. As
an example, hemolysis may occur during sample handling
and bias results. In our analysis, miR-143 concentrations did
neither correlate with sodium nor with LDH serum
concentrations and only very weakly with bilirubin serum
levels, representing markers for hemolysis.

Alterations in miR-143 expression have recently been
described in the context of carcinogenesis and cancer
progression [41]. Several studies have analyzed the role of

circulating miR-143 as a biomarker in malignant diseases.
Just recently, it was demonstrated that patients with acute
myeloid leukemia and esophageal adenocarcinoma, disease
states which are associated with the activation of immune
cells, display decreased serum levels of miR-143 [42, 43],
which is in line with our results. Moreover, miR-143
might be directly involved in systemic inflammation and
defending bacterial infection. As examples, it was demon-
strated that miR-143 inhibits Propionibacterium acnes-
mediated inflammatory response in the skin and that
miR-143 is downregulated in chronic ulcerative colitis,
where it might contribute to inflammation colitis-
associated carcinogenesis [11]. Most importantly, miR-
143 was upregulated in leukocytes after LPS injection in
humans [44]. Interestingly, these observations were not
in line with a similar regulation of circulating miR-143
in our large collective of ICU patients, since miR-143
showed only a nonsignificant trend towards lower levels
in critically ill patients compared to controls. However,
we detected lower levels of miR-143 in patients who suc-
cumbed to death during ICU treatment, when compared
to patients that survived. More importantly, in our ana-
lysis, lower levels of miR-143 were significantly associated
with an unfavorable short- and long-term prognosis and
miR-143 predicted patients’ outcome with a higher accu-
racy than classical markers of organ failure such as
creatinine or INR. It was recently suggested that miR-
143 is involved in metabolic processes such as insulin tol-
erance and type II diabetes mellitus. Moreover, it was
shown that aerobic exercise can prevent type II diabetes
mellitus by downregulating miR-143. However, at least in
our cohort of critically ill patients, no direct correlation
between diabetes and miR-143 serum levels was found.
Notably, since we have not systematically assessed compli-
cations of diabetes in our database, we cannot exclude that
there might be an association between miR-143 levels and
diabetes complications.
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Figure 2: Serum miR-143 concentrations are unaltered in sepsis. (a) miR-143 serum levels were analyzed by qPCR in critically ill patients
with sepsis and patients without septic etiology of critical illness. (b) miR-143 serum did not vary between the different etiologies of septic
or nonseptic disease.
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Our study bears several limitations and potential bias
such as interpretation/selection bias [45] and the lack of
pathophysiological mechanisms explaining the regulation
of miR-143 in critical illness/sepsis. However, we clearly
demonstrate that circulating miR-143 might be indicative
for patient prognosis. miR-143 levels upon admission were
closely associated with ICU and long-term mortality.
Reduced miR-143 concentration indicated an unfavorable
prognosis. Furthermore, it is important to note that
changes in miR-143 serum concentrations have been
described in numerous pathological conditions (see above).
Therefore, the use of a specific marker for the diagnosis of
sepsis seems to be unattractive at present. Nevertheless, our
data suggest that measurements of miR-143 might repre-

sent a novel tool to estimate prognosis of critically ill
patients and should give rise to further research in order
to validate our results in larger and prospective studies on
critically ill patients.

5. Conclusions

(i) miR-143 serum concentrations were not altered in
samples from critically ill patients taken at admission
to the ICU when compared to those from healthy
blood donors as controls

(ii) Low miR-143 serum concentrations were lower in
critically ill patients that succumbed to death
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Figure 3: Low serum levels of miR-143 indicate an unfavorable outcome in critically ill patients treated on a medical ICU. (a) Serum
levels of miR-143 were analyzed by qPCR in critically ill patients that survived their ICU stay or succumbed to death. Patients that
survived had significantly higher miR-143 serum levels on admittance to the ICU than those patients that succumbed to death. (b)
Kaplan-Meier survival curves of ICU patients are displayed, showing that patients with miR-143 levels within the lowest quartile of
all patients displayed the lowest short-term survival at the ICU. (c) The Youden index was used to calculate the optimal threshold to
distinguish between survivors and patients that died during ICU treatment. The Kaplan-Meier survival curve analyses revealed that
patients with miR-143 below this threshold displayed a significantly impaired prognosis. Significances are given in the figure. (d) The
ROC curve analysis comparing the prognostic value of miR-143 with that of other markers routinely accessed in the context of
critical illness.
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compared to survivors and predicted an unfavorable
outcome with higher accuracy

Data Availability

The data used to support the findings of this study are
restricted by the ethics committee of the university clinic
(RWTH) Aachen to protect patient privacy. Data are
available upon meaningful request from med3@ukaachen.de
for researchers who meet the criteria for access to confiden-
tial data.
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Figure 4: Low miR-143 serum concentrations are associated with an impaired long-term prognosis of critically ill patients. (a) Patients that
succumbed to death during long-term follow-up had lower serum miR-143 levels on admittance to the ICU (p = 0:063, U-test) compared to
patients that survived. (b) Kaplan-Meier curve analysis revealing that patients with miR-143 concentrations within the lower quartile had an
increased overall mortality as compared to patients with miR-143 serum concentrations of the highest quartile. (c) The Youden index was
used to calculate the optimal threshold to distinguish between survivors and patients that died during long-term follow-up. The Kaplan-
Meier survival curve analyses revealed that patients with miR-143 below this threshold displayed a significantly impaired prognosis. (d)
ROC curve analysis comparing the prognostic value of miR-143 with that of other markers routinely accessed in the context of critical illness.
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