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Abstract

Background: DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide
profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now
efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies
make it possible to find the functional relationship between cancer-specific methylation patterns and their
clinicopathological parameters.

Methodology/Principal Findings: Cancer methylome system (CMS) is a web-based database application designed for the
visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were
obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22
normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely
mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and
endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic
level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover
genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the
detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of
biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries
utilizing the framework.

Conclusions/Significance: CMS provides visualization and analytic functions for cancer methylome datasets. A
comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological
and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible
at: http://cbbiweb.uthscsa.edu/KMethylomes/.
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Introduction

DNA methylation of promoter CpG islands is associated with

gene suppression in tumor samples comparing to normal

counterpart, and its unique genome-wide profiles have been

linked to tumor progression and can be used to predict patient

survival [1]. Global hypomethylation was detected in breast and

colon tumors comparing with corresponding normal tissues [2,3].

More specifically, in breast cancer, it has been shown that gene

body hypomethylation is associated with gene silencing, while

hypermethylation of regions close to a transcription start site (TSS)

tends to cause a similar effect [4]. In addition, interplay between

DNA methylation and transcription factors (TFs) are important for

regulating human cell phenotypes. With the advancement of

sequencing technology, large-scale analysis of genome-wide

methylation becomes feasible. Several experimental methods have

been developed to capture methylated DNAs, including MeDIP

[5], MBD [6], MethylC [7], and RRBS [8]. Coupled with high-

throughput sequencing technologies, these methods can now

efficiently determine genome-wide methylation profiles in cells.
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Moreover, various computational and statistical methods have

been proposed for the analysis of differentially methylated regions

(DMR). These experimental and computational technologies

make it possible to find the functional relationship between

cancer-specific methylation patterns and gene suppression, and

their association with clinicopathological parameters, leading to

the identification of candidate biomarkers for diagnosis and

prognosis [9].

Here we describe a novel cancer methylome system which

systematically collects, organizes, visualizes and analyzes a large set

of DNA methylation data by sequencing from human endometrial

and breast cancers. The datasets are obtained by using MBDCap-

seq protocol, a technique used to capture methylated DNAs by

using a methyl-CpG binding domain (MBD) protein column

followed by next-generation sequencing [10]. The low cost and

unbiased display of methylation profiles of both CpG and non-

CpG island regions make it suitable for genome-wide methylation

profile analysis. 191 patient samples (169 tumor and 21 normal

specimen) and 41 breast cancer cell-lines were processed with the

MBDCap-seq protocol, generating a total of about 6.6 billion

uniquely mapped sequence reads. Datasets were pre-processed

and stored in a MySQL database. CMS offers user-friendly tools

for rapid identification of differentially methylated regions (DMRs)

among different groups of samples (e.g., normal versus tumor),

regardless of their gene proximity. Methylation intensities were

generated for both genome-wide (resolution in 100 bp) and gene

(for every RefSeq annotated gene) levels. Moreover, gene

ontology, biological pathways, and other molecular signature gene

set databases have been integrated into CMS, enabling compar-

ison (via methylation) of functional and biological correlated genes

across different cancer types, and examining systemic alteration at

biological pathway, function and interaction network levels. Users

can upload their methylation profiles (generated from next-

generation sequencing technologies in 100 bp resolution) or gene

set to observe differential methylation by comparing with our

unique collection of tumors. Also, users can download methylation

intensities from a region of interest or entire genome for further

analysis (by click the link in ‘‘Resources’’ page of the website). With

CMS, biologists can access any gene of interest, examine and

discover epigenetically significant phenomenon, such as (but not

limited to) methylation difference between tumor types, genes with

correlated methylation profiles and concordance, differentially

methylated genes within a pathway, comparison of DNA

methylation and histone modification marks.

Results

CMS integrates database (from genome-wide methylation

sequencing data of human cancers), web interface technology,

and powerful statistical and analytical functions together, enabling

genome-wide methylation profiles visualization and meaningful

biological phenomenon discovery of human cancers (Figure S1 in

File S1).

Genome-wide MBDCap-sequencing of endometrial and
breast cancer

A total of 232 clinical samples and cell lines derived from

human breast and endometrial cancer cohorts were processed and

deposited into the database. Among them, 77 are breast tumors,

10 normal breast samples, 41 breast cancer cell lines (ICBP [11]),

92 endometrial tumors (71 non-recurrent samples and 21

recurrent samples) and 12 normal endometrial samples.

MBDCap-sequencing technology was used to detect the methyl-

ated regions. Methylated fragments, bound to a methyl-CpG

binding domain protein, were eluted for sequencing with the

Illumina/Solexa Genome Analyzer II. Approximately 12.7 billion

sequence reads were generated and 52% reads were mapped to

unique genome locations. Genome-wide sequencing of DNA

methylation of this large set of clinical samples and cell lines made

this a unique study of tumor methylome profiles (Figure S1 in File

S1). Data from more than 1000 clinical samples, including

ovarian, oral, colorectal, hepatocellular carcinoma, lung, and

prostate cancers, will eventually be deposited into this database.

Design of web interface and database
The web interface was developed in Java using the SideCache

[12] framework, supported by a publically available JavaScript

graphics library (http://www.walterzorn.de/) for graphic and

image rendering. CMB website is deployed in an Apache Tomcat

web server (http://tomcat.apache.org/), and supported by a

MySQL database of methylation data (Figure S1 in File S1).

The function and analytic methods imbedded in the framework

were written in R script. In addition, a web Service API was also

implemented to allow integration with other genome websites.

This web interface was fully tested in Firefox, and is well

compatible with Safari and Chrome. It is also compatible with IE

with one disabled function (see Visualization of methylation

datasets section).

Visualization of methylation datasets
CMS can be visualized in two distinct modes: genomic view and

gene centric view.

Genomic View. The genomic view is for the genome-wide

visualization and analysis of methylation intensity (Figure 1).

Different types of data tracks were implemented for the genomic

visualization functions (Figure 1A, B): Genomic coordinate track

(the genomic location of the visualized region, including chromo-

some, region start and end positions); GC content track (the GC

percentage at the genomic position, calculated in 100 bp

resolution); h3k4me1 histone modification track of GM12878

cell-line (obtained from UCSC genome build hg19, wgEncodeB-

roadHistoneGm12878H3k4me1StdSig.bigWig table, liftover to

hg18); sequence conservation tracks from UCSC (obtained from

UCSC genome build hg18); CpG island track (obtained from

UCSC genome build hg18, http://genome.ucsc.edu); Gene

annotation track (including gene start and end positions, gene

symbol and accession number); and methylation intensity track(s)

(the methylation intensity is represented by color depth, dark red

corresponds to high methylation value, white means low or no

methylation value, in 100 bp resolution). Detailed annotation is

shown in floating-tip view when a user moves mouse over GC

content, CpG island and gene annotation tracks. A single-click in

the methylation profiles track(s) can generate a popup dialog with

methylation intensity (reads number for that particular position,

this function is disabled in IE). The methylation intensity track is

flexible with several options (selected from ‘‘Tracks’’ drop-down

button in the toolbar). Generally there are two kinds of

methylation intensity tracks that users can choose to display –

individual or summary tracks. An individual track shows the genome-

wide methylation intensity at 100 bp bin size of each tumor/

normal sample selected. Users can choose to display one tumor

only (e.g., breast or endometrial), or all tumors together. Summary

track (Figure 1C, see Embedded statistical methods section below)

contains global statistics of mean, frequency and difference from

all tumors.

A collection of well-designed functional tool-bars is included in

this webpage. Users can navigate around the genome by zooming

in and out, moving left or right along the genomic direction, or

A System of Human Cancers Methylation
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moving to neighboring genes. Users can search gene/region of

interest by directly typing gene symbols or region coordinates.

DMR analysis (see Embedded statistical methods section below)

was implemented in the genomic viewer. In DMR function, users

can select candidate samples by marking the check-boxes in the

methylation intensity track(s), and then fill in the necessary

parameters (see Materials and Methods). Default values are

preselected. The DMR will output a file in a tab-delimited text

format (see Materials and Methods). All the output files will be

generated on-demand and efficiently, but may be limited by the

download speed of the user’s network.

Links to UCSC genome browser were generated (Figure 1D, see

Visualization of DNA methylation and histone modification data

section for example of use). A list of genes included in the current

genomic region is shown at the bottom-left of the genomic view

webpage, and links are created to access the gene centric view for

the particular genes (Figure 1E).

Gene Centric View. An alternative way to visualize meth-

ylation data is the Gene-centric view which shows the methylation

heatmap of selected gene sets (Figure 2).

In this webpage, users can type a gene symbol and visualize the

methylation status of the given gene across all tumor samples,

along with the top 40 most correlated genes with similar

methylation patterns calculated by Pearson correlation (see

Materials and Methods). Alternatively, four layers of options are

available to enable selections of specific biological function,

interaction network, and correlated gene sets (Figure 2). There

are eight primary classes of gene sets (some of them may include

subsets). These are predefined in the first layer, including

Correlated genes (see Materials and Methods), Chromosomal,

Gene Ontology, Perturbation sets, Biological Pathways, micro-

RNAs, Transcription Factors, and Cancer gene neighborhood.

The primary gene set names and their sources are listed in Table 1

[13–19]. Methylation status of a chosen gene set can be visualized

for all tumors within CMS, or any tumor types of user’s selection.

Large gene sets may slow down the methylation heatmap

rendering time, thus it is preferable to choose smaller gene sets

to start the process. The "Filter Search" option allows a user to

find all gene sets (except those among the ‘‘Correlated Genes’’),

which contain the words in the search field.

In the heatmap panel, the methylation intensities were pre-

calculated by averaging the normalized (linear normalization, see

Materials and Methods) reads number within +/2 2-kb of a

transcription start site (TSS) and were stored in the MySQL

database. Different from the genomic view, the gene centric viewer

is organized as follows: tumor or normal samples are placed in

columns, and genes are rows, similar to common microarray

format. The heatmap color scale of gene centric view is the same

Figure 1. Genomic view of CMS. This webpage is designed for the genome-wide visualization and analysis of methylation intensity (A, B, C).
Methylation intensity is pre-calculated for a 100 bp bin size and is shown using a red gradient heatmap. A variety of genomic annotations and
functional toolbars give users more options in browsing the webpage. Statistical methods were imbedded, including DMR analysis (A) and statistical
calculation (C). Links to UCSC genome browser (D) and to gene view (E) are available for further analysis.
doi:10.1371/journal.pone.0060980.g001

A System of Human Cancers Methylation
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as that of genomic view. Promoter regions with or without CpG

island(s) are annotated with a white/green box on the side of gene

symbol. The heatmap panel makes it possible to visualize

different/similar/special methylation profiles (See Discovery by

use of CMS section) between different tumor types, or among the

genes within similar biologically significant categories.

Clicking on the gene symbol on the left side of the heatmap

panel will bring the user back to the genomic viewer centered on

Figure 2. Gene centric view of CMS. This webpage is designed for visualization and analysis of methylation intensity at the gene level. In the
toolbar, four layers of options are available to enable specific selections gene sets. Methylation intensities for promoter regions of genes (+/2 2 kb
around TSS region) were pre-calculated and were shown using a red gradient heatmap. A white/green box on the side of gene symbol shows the
promoter regions of this particular gene with or without CpG island(s). Clicking on the gene symbol on the left side of the heatmap panel will bring
the user back to the genomic viewer centered on the selected gene, allowing visualization of detail methylation patterns.
doi:10.1371/journal.pone.0060980.g002

Table 1. Eight classes of gene set names and their sources.

Gene Set Name Description Source Ref

Chromosomal Genes with a given chromosomal location MSigDB [13]

Gene Ontology Gene sets derived from gene ontology terms
in all three GO categories

MSigDB [13]

Perturbation sets Gene sets obtained from chemical and genetic
perturbation

MSigDB [13]

Biological Pathways Genes derived from various pathway systems MSigDB,WikiPathways, Reactome,
KEGG, NCI Nature, BioCarta and
HumanCyc

[13–19]

microRNAs Genes that regulated by miRNAs MSigDB [13]

Transcription Factors Genes that regulated by transcription factors MSigDB [13], Version 7.4, http://
www.gene-regulation.com/

Cancer gene neighborhood Genes that associated with 380 cancer genes. MSigDB [13]

Correlated genes Genes that are correlated based on methylation
status of the CMB 191 tumors

Pearson Correlation, top 40
or .0.4.

doi:10.1371/journal.pone.0060980.t001
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the selected gene, allowing visualization of detail methylation

patterns in the promoter, exon, intron and its neighboring regions.

Input and output
In genomic view, users who wish to visualize and analyze their

own data can enable a custom track. The data submitted by users

are private, session-based (not stored after the end of session), and

not viewable by others. One the other hand, for a region of interest

(less than 1 Mbp, shown in the bottom-right of the web page of

genomic view), users can download the reads information (in BED

format) for further analysis.

In gene centric view, we also provided a file upload option to

allow users to upload their customized gene sets (official gene

symbols only). The custom gene set will be shown as ‘‘User Input’’

in the drop-down button of the Gene Set layer. Users can also

download the methylation intensity of the current heatmap panel

by clicking the button in the bottom-right of the webpage.

Embedded statistical methods
Hypermethylation of the CpG islands of the gene promoter is

one of the most frequent alterations leading to cancer, and an

important epigenetic mechanism for gene silencing. To enable the

detection of the differential methylation regions between two

sample groups, the DMR identification function was embedded in

the framework. In CMS, individual methylome tracks (including

user uploaded custom-track) or summary tracks can be assigned to

one of two groups, defined as ‘‘treated’’ and ‘‘control’’ (see

Visualization of methylation datasets section). A DMR detection

algorithm, based on t-test, Wilcoxon test or Pearson correlation

can be selected to assess the significance of differential methylation

up to 1 mega base-pairs. The description of the DMR algorithm is

provided in the Materials and Methods.

In addition to the DMR function, we also designed summary

tracks to visualize the averaged methylation intensities and to

reveal intrinsic characteristics of each tumor group. Three types of

summary tracks are displayed together as shown in Figure 1C,

they are: (a) Mean track, which provides average methylation

status over a particular group of samples. Currently the summary

statistics are evaluated over i) all samples, ii) normals, tumors and

cell lines of breast, and iii) endometrial non-recurrent tumors,

recurrent tumors, and normal of endometrial; (b) Methylation

frequency track (see Materials and Methods). Mean and frequency

tracks provide insight to whether the methylation change is from

majority samples or minority samples with large methylation

intensity; (c) Difference track, which visualizes differential meth-

ylation by mean/frequency difference between groups of samples

at each bin size, such as tumor vs normal-mean for breast, and

non-recurrent/recurrent vs normal-freq for endometrial.

Tumor specific methylation profiles
The tumorigenesis mechanisms are different among cancers,

therefore it is important to find genetic/epigenetic differences for

further analysis. Here we used the HOXB2 (human homeobox

B2) gene, a member of the Antphomeobox family that encodes a

nuclear protein with a homeobox DNA-binding domain, and a

known gene associated with tumor growth and invasiveness

[20,21] as an example to illustrate how CMS is able to determine

tumor specific methylation profiles for breast and endometrial

cancers.

In genomic view, users can type HOXB2 in the navigation box,

and choose ‘‘All Tumors’’ in the Tracks drop-down box, then click

the ‘‘Refresh View’’ button. For a better view of the methylation

profiles, users can click the ‘‘zoom in’’ button four times. Clearly

hypermethylation was found between breast tumors and normal

(Figure 3A), including four regions (p-value,0.01) calculated by

the DMR function using default parameters. However, hypo-

methylation was found between endometrial tumors and normal

tissues (Figure 3B), including one region with p-value,1024 (Table

S1 in File S1). Additionally, users can browse the summary track

by selecting ‘‘All summaries’’ in the tracks drop-down box. The

mean track, representing hundreds of individual tracks, simplifies

the visualization of differentially methylated regions giving a more

intuitive result. Besides genes that are hypermethylated only in

breast tumors (compare with breast normals), users can also find

genes that are hypermethylated only in endometrial tumors

(compare with endometrial normals) (such as CCDC81, Figure S2

in File S1), and in both tumors (such as SOX11, Figure S3 in File

S1).

Similar methylation profiles among biologically related
genes

Homeodomain genes encode transcription factors that affect

differentiation and proliferation during development. In the

human genome, four clusters of homeodomain genes (HOXA,

HOXB, HOXC and HOXD) are distributed on chromosomes

7p15, 17q21, 12q13 and 2q31, respectively. Non-clustered

homeodomain genes are distributed throughout the genome.

One direct question is ‘‘what are the other genes that display the

same methylation pattern as that of HOXB2, perhaps sharing the

same methylation mechanism?’’ Continuing with the previous

process at the genomic view, users can click the gene link in the

left-bottom to get the gene centric view. The top 40 correlated

genes of HOXB2 are shown in Figure 4. Most of them have a

similar methylation profile as HOXB2, which is hypermethylated

in breast tumors (Figure 4, blue dash box), and is either

hypomethylated or shows no difference in endometrial tumors

compare to normal tissues (Figure 4, green dash box).

In the 40 correlated genes, three of them belong to HOXB gene

family (HOXB2, HOXB4 and HOXB7), three genes contain

homeodomain (DLX1, LHX4, and VAX2) and two of them

belong to HIST gene family (HIST1H3I and HIST1H4L). A

similar methylation profile of the genes within the same gene

family defines the methylation concordance, which may lead to

synchronized gene silencing. Moreover, users can also find the

genomic neighbors of HOXB2 by choosing ‘‘Chromosomal’’ gene

set in layer one, ‘‘chr17’’ in layer two, ‘‘q’’ arm in layer three and

‘‘chr17q21’’ in layer four. This cytoband covers 287 genes, and

harbors the HOXB gene cluster including three genes (HOXB2,

HOXB4 and HOXB7) overlapped with the 40 HOXB2

correlated genes. Notice that the three genes are both in the

same gene family and the same genomic location, which may

indicate significant biological concordance for those genes. Users

may find missing values for several genes in ‘‘Chromosomal’’ gene

sets, due to the lack of transcript annotation within NCBI

Reference Sequence (RefSeq) release contained in UCSC genome

browser or obsolete gene symbols. This phenomenon also happens

for the other 7 classes of categories.

Differentially methylated gene sets within a pathway
To examine the systemic change of biological pathway activity

or functions that related to HOXB2 or other HOX family genes,

we examined the following gene sets to illustrate the functional

discovery by using CMS tools. HOXB13, a HOX family member

resides in the cluster of HOXB2 and shows a similar methylation

pattern as HOXB2. HOXB13, is also a member of ‘‘androgen-

mediated pathway’’, as shown in Figure 5. It shows a distinct

hypermethylation pattern among breast tumors, but not breast

cancer cell-lines and endometrial cancers. Specifically, the distinct

A System of Human Cancers Methylation
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hypermethylation pattern of BRCA1, SNURF, GMTM2,

NROB1, CDK11B, LATS2, HRAS, MAPK3, RPS6KA3 and

EGR1 demarcate the cluster’s methylation status of breast tumor

(not cell-lines), along with HOXB13.

We also compared methylation profiles for Tamoxifen resistant

genes [22], and identified several hypermethylation genes in breast

tumors, such as ACTA1, ISG15, PTK6 and SEPHS2 (Figure 1E).

Most of them didn’t show significant difference in endometrial

samples.

Visualization of DNA methylation together with histone
modification data

A convenient URL link to UCSC opens the current genomic

region in the UCSC genome browser for users who wish to view

other genomic data (bottom-right of the genomic view, Figure 1D).

Alternatively, users can select up to four intensity tracks and view

those tracks together with other default tracks in the UCSC

genome browser.

For example, DLC1 gene was reported to have increased DNA

methylation at its transcription start site (TSS) region, while

decreased histone modification in H3K4me1, H3K4me3 and

H3K27ac at TSS region [4]. Users can type DLC1 in genomic

view webpage, and visualized the TSS region (Chr8:13,033,864-

13,035,942) by clicking the ‘‘zoom in’’ and ‘‘move’’ buttons. We

can get the overall impression that breast tumors are hypermethy-

lated relative to breast normals, while endometrial tumors show no

difference relative to endometrial normals. Users can pick up 4

samples randomly by marking the check box on the right side of

the webpage for breast samples (e.g., brn80, brt22, brt69 and

Figure 3. Discovery of tumor specific methylation profiles. HOXB2 was hypermethylated in breast tumors compared with breast normal (A),
while hypomethylated in endometrial cancer tumors compared with endometrial normal (B).
doi:10.1371/journal.pone.0060980.g003

A System of Human Cancers Methylation
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Figure 4. Discovery of methylation correlated genes. Gene set with similar methylation profiles of HOXB2 were found by choosing the
‘‘Correlated gene’’ gene sets in the gene centric view. Most of the genes are hypermethylated in breast tumors (blue dash box), and with no
significant difference in endometrial samples (green dash box).
doi:10.1371/journal.pone.0060980.g004

Figure 5. Discovery of differentially methylated gene sets within a pathway. The ‘‘Androgen-mediated Signaling’’ gene set which contains
HOX cluster genes were selected as an example. Several genes within the blue dash box are hypermethylated in breast tumors compared to normal
tissues, while others show no significant difference. For endometrial samples, no significant difference is found for any of the gene between tumors
and normals.
doi:10.1371/journal.pone.0060980.g005

A System of Human Cancers Methylation
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brt37), and then click the ‘‘Visualize selected rows in the UCSC

Genome Browser button’’ in the bottom-right of the webpage, to

open a UCSC webpage. To compare with the histone modifica-

tions tracks, users need to select ‘‘full’’ for every custom track and

the Broad Histone tracks. The histone modification tracks

(Figure 6) are in accordance with previous report [4] although

those data may not come from breast cancer. Custom tracks (DNA

methylation) of breast cancers have increased methylation (similar

to previous finding) with an exception (the 3 rd track, brt22),

which shows patient specific patterns (Figure 6A). Not surprisingly,

there was no increased methylation found for endometrial samples

(Figure 6B).

Discussion

In our studies, HOXB2 was used as an example to find out

biologically significant information by use of CMS. This is because

HOXB2 was found as a regulator of tumor growth in breast

cancer [23]. Interestingly, we found HOXB2 was hypermethy-

lated in endometrial normal tissues compared with endometrial

tumors (Figure 3B). In previous study, HOXB2 was reported to be

important in endometrial normal cells [24]. Moreover, HOXB2,

HOXB4 and HOXB7 together showed the key function in lung

cancers [25]. In our study, we also identified that those 3 genes are

correlated in their methylation profiles. This might suggest that

these three genes function together in breast and endometrial

cancers. Furthermore, HOXB13 and BRCA1 are all from

‘‘androgen-mediated pathway’’ (Figure 5), and are all found to

be hypermethylated in breast tumors than normal tissues in our

study. This is also consistent with previous report that HOXB13

acts as repressor of androgen receptor signaling in prostate cancer,

which may affect BRCA1 (cofactor associated with AR) [26].

There have been several epigenetics websites available in

previous published reports. One of the most famous is Roadmap

Epigenomics Project (REP) (http://www.roadmapepigenomics.

org/). This project was composed of a group of various databases,

browser/visualization tools, and bioinformatics tools. Users can

either view many kinds of epigenetic marks in their browser (e.g.

UCSC REP, http://www.epigenomebrowser.org/), or download

the data from one of the data repositories (http://www.ncbi.nlm.

nih.gov/epigenomics). Compared with CMS, REP is more

comprehensive in both data variety and derivative tools. However,

CMS is designed to provide clinical tumor samples, and we have

additional statistical methods specifically for genome-wide analysis

and comparison of those samples (like DMR detection and

correlated genes function).

Conclusion

In this study, we proposed CMS for visualization and analysis of

methylation datasets for cancers. A large number of datasets were

collected and processed into our database. Several statistical tools

were imbedded for data analysis. Visualization was developed

through a Java based web interface. Useful discoveries were made

by the extensive application of this framework. A large dataset, a

variety of tools and extensive application with biological and

translational significance makes this framework powerful and

unique in cancer methylation research.

Materials and Methods

Tissue Specimens, cell line and MBDCap-seq
Tissue specimens were obtained as part of our ongoing work on

characterizing molecular alterations in endometrial and breast

carcinomas.

The ICBP breast cancer cell lines genomic DNA was isolated by

the QIAamp DNA Mini Kit (Qiagen) following the manufacture’s

protocol. Genomic DNA of breast cell lines was procured through

the Integrative Cancer Biology Program (ICBP) of the National

Cancer Institute.

MBDCap libraries for sequencing were prepared following

standard protocols from Illumina (San Diego, CA). MBDCap-seq

libraries were sequenced using the Illumina Genome Analyzer II

(GA II) as per manufacturer’s instructions. Sequencing was

performed up to 36 cycles for mapping to the human genome

Figure 6. Visualization of DNA methylation and histone modification data. The TSS region of DLC1 is used as an example. 4 samples were
randomly selected by marking the check box on the right side of the webpage for breast samples (e.g., brn80, brt22, brt69 and brt37). The ‘‘full’’
option for every custom track and the Broad Histone tracks was selected for the comparison of DNA methylation and histone modification marks.
Similar results were obtained as previous report [4]. An exception (the 3rd track, brt22) was found which shows patient specific patterns (A); and there
was no increased methylation found for endometrial samples (B).
doi:10.1371/journal.pone.0060980.g006
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reference sequence. Image analysis and base calling were

performed with the standard Illumina pipeline.

Data preprocessing
Sequencing reads were mapped by the ELAND algorithm

(Illumina Inc, San Diego, CA). Reads were in 36 base pair lengths,

and uniquely mapped reads were mapped to the human reference

genome (hg18), with up to two mismatches. Genome-wide

methylation status at 100 base-pair resolution was evaluated. In

each 100-bp bin, the methylation intensity was quantified by

accumulating the read numbers in which whole or part of the read

was located within the bin. The 100 bp resolution sequence read

counts were deposited to a MySQL database table for visualization

and analysis at the genomic level, such as the DMR function.

Differentially Methylated Regions (DMRs) algorithm,
parameters, and output file format

Two kinds of normalization methods will be used when DMR

function is called in the genomic view.

Normalization method. The methylation intensity was

normalized based on the unique read numbers for each sample

by either the linear method or quantile method. The following

equation was used for linear normalization:

NRead,i~
URead,i

NU=Nbin

ð1Þ

Where NRead,i is the normalized read number of the ith bin, and

URead,i is the unique mapped read number of the ith bin, NU is the

total unique mapped reads number. Nbin is the total bin number of

human.

In quantile normalization, the distribution of methylation

intensity of the first group is used as the reference, and the

methylation level of the second group is transformed. The

transformation can be formulated as follows:

X2~F{1
1 F2(X1)ð Þ ð2Þ

Where F1 is the distribution of the first group and F2 is the

distribution of the second group.

DMR detection method. Suppose we have two groups A

and B, and the sample number is SA for group A, and SB for group

B. For a given region R (which includes m bins, and start at the sth

bin), the average methylation level is

AR,G~

P
G MR,G

SG

,R~ bs,bsz1,:::,bszm{1ð Þ ð3Þ

for group G M {A, B}. In Equation 3, AR,G is the average

methylation level of group G at region R, MR,G is the methylation

levels of each sample of group G at region R. We then used

statistical methods (see below) to compare if the methylation level

of the region is significantly different between those two groups

P~statisticaltest AR,A,AR,Bð Þ ð4Þ

For each DMR, we defined hyper-methylation as the average

methylation enrichment if the region of group A is higher than

group B, and vice versa (hypo-methylation). Three statistical test

methods were used: Paired t-test, Wilcoxon test, and Pearson

correlation coefficient.

DMR algorithm parameters

(1) Normalization methods: two normalization methods were

included: linear normalization and quantile normalization.

Default method is linear normalization.

(2) Max Reads: the maximum threshold for methylation intensity

(for 100 bp bin size). The methylation levels larger than the

threshold will be removed. Default value is 100.

(3) Min Reads: the minimum threshold for methylation intensity

(for 100 bp bin size). The methylation levels smaller than the

threshold will not be considered for DMR calculation. Default

value is 0.3.

(4) P-value Threshold (significance level): the p-value required for

DMR detection for the statistical methods mentioned below.

We suggested p-value less than 0.05 for t-test or Wilcoxon test,

and less than 0.3 (low correlation coefficient correspond to

high difference) for Pearson correlation coefficient. Default p-

value is 0.01.

(5) Stat Method: the statistical method used for the DMR

detection. Three options were included: t-test, Wilcoxon test

and Pearson correlation coefficient. Default method is t-test.

(6) Region Step: the moving window (region) step. Default step is

500 bp.

(7) Region Length: the window size of the specific region that is

used for the comparison between two groups of samples, this

window size shall be larger than bin size to allow large enough

data points to be tested. The entire genome is scanned by this

window size, with a moving step defined above. Default length

is 1000.

DMR output file format

(1) Chromosome, region start and region end (1–3 columns): the

genomic coordinates of the DMR region.

(2) Type (4 th column): DMR type:

a. Hypermethylation (treated samples have higher methylation

than control samples).

b. Hypomethylation (treated samples have less methylation than

control samples).

(3) P-value (5 th column): Calculated p-values from the statistical

test. Only the DMRs with p-value smaller than the P-value

Threshold defined above will be outputted.

(4) Methylation difference (6 th column): the difference of

averaged methylation intensity between treated and control

samples. Positive value corresponds to DMR Type 1, and

negative value represents DMR Type 2.

(5) Methylation ratio (7 th column): the percentage of methyla-

tion difference between treated and control samples, calcu-

lated by the methylation difference divided by averaged

methylation intensity of control samples.

Frequency track of Methylation Intensity
Two algorithms are provided here for methylation frequency

calculation:

(1) Simple Methylation Frequency: For each bin (bin size of

100 bp), the methylation frequency is the occurrence

frequency of methylation intensity greater than 2 for the

same bin along all samples with a group of interest. Because

most of the methylation intensity is less than 2 (bin size of
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100 bp at CMB database), the high methylation frequency

could be considered an important methylated position.

(2) Segmented Methylation Frequency (segFreq): The aim of the

segmented methylation frequency is to reduce the noise due to

some erroneous read count of certain bins (100 bp). Similar to

Simple Methylation Frequency calculation, except a segmen-

tation algorithm is applied before counting occurrence of

methylation greater than 1.0. The segmentation algorithm is

provided briefly here: i) all methylation data are thresholded

at read count of 1, and converted into binary runs; ii) find all

runs of 1 s; iii) if adjacent runs of 1 s are no farther than

200 bp away (1 bin apart), connect them (remove single bin of

count 0 within a long run of 1 s); and iv) if run-length of 1 s is

1 (single bin) and it is bin count is less than 3, remove the bin.

The simple methylation frequency calculation will be

performed then.

Calculation of correlated genes of gene sets
In the heatmap of gene centric view, each row stands for

methylation pattern of a particular gene. The pattern is consisted

of a group of averaged methylation value around +/22 kb of TSS

region of this particular gene across different tumor samples. We

provide up to 40 of the most correlated genes (Pearson correlation,

at least r$0.4. Correlation of 0.4 is chosen because the probability

of p.0.4 for two normally distributed random variables with

N = 232 is less than 10210).

Other gene sets were selected from various sources (see Table 1).

Methylation statuses of genes with each set can be displayed. No

statistical assessment is performed, other than visualization, for

association of biological functions of gene sets to methylation

patterns.

Supporting Information

Figure S1 The database (from genome-wide methyla-
tion sequencing data of human cancers), web interface

technology and embedded powerful statistical and
analytical functions were integrated as a framework
for the visualization and analysis of methylation profiles
of human cancers.

(PDF)

Figure S2 Extension of CMS applications: Discovery of
tumor specific methylation profiles. CCDC81 has no

significant difference between breast tumors and breast normal

tissues, while it is hyper-methylated in endometrial tumors

compared with endometrial normal tissues.

(PDF)

Figure S3 Extension of CMS applications: Discovery of
tumor specific methylation profiles. SOX11 was hyper-

methylated in breast tumors compared with breast normal tissues,

and was also hyper-methylated in endometrial tumors compared

with endometrial normal tissues.

(PDF)

Table S1 DMR regions of Breast and Endometrial
cancers for HOXB2 gene.

(PDF)
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