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Background. Mechanical ventilation could lead to ventilator-induced lung injury (VILI), but its underlying pathogenesis remains
largely unknown. In this study, we aimed to determine the genes which were highly correlated with VILI as well as their
expressions and interactions by analyzing the differentially expressed genes (DEGs) between the VILI samples and controls.
Methods. GSE11434 was downloaded from the gene expression omnibus (GEO) database, and DEGs were identified with
GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were
conducted using DAVID. Next, we used the STRING tool to construct protein-protein interaction (PPI) network of the DEGs.
Then, the hub genes and related modules were identified with the Cytoscape plugins: cytoHubba and MCODE. qRT-PCR was
further used to validate the results in the GSE11434 dataset. We also applied gene set enrichment analysis (GSEA) to discern the
gene sets that had a significant difference between the VILI group and the control. Hub genes were also subjected to analyses by
CyTargetLinker and NetworkAnalyst to predict associated miRNAs and transcription factors (TFs). Besides, we used
CIBERSORT to detect the contributions of different types of immune cells in lung tissues of mice in the VILI group. By using
DrugBank, small molecular compounds that could potentially interact with hub genes were identified. Results. A total of 141
DEGs between the VILI group and the control were identified in GSE11434. Then, seven hub genes were identified and were
validated by using qRT-PCR. Those seven hub genes were largely enriched in TLR and JAK-STAT signaling pathways. GSEA
showed that VILI-associated genes were also enriched in NOD, antigen presentation, and chemokine pathways. We predicted
the miRNAs and TFs associated with hub genes and constructed miRNA-TF-gene regulatory network. An analysis with
CIBERSORT showed that the proportion of M0 macrophages and activated mast cells was higher in the VILI group than in the
control. Small molecules, like nadroparin and siltuximab, could act as potential drugs for VILI. Conclusion. In sum, a number of
hub genes associated with VILI were identified and could provide novel insights into the pathogenesis of VILI and potential
targets for its treatment.

1. Introduction

Mechanical ventilation is widely used in surgery and inten-
sive care and offers a substantial advantage in managing
patients’ breathing during general anesthesia. It is also
regarded as one of the most important means to treat patients
who are undergoing respiratory failure as well as acute or
chronic lung injury [1]. However, mechanical ventilation is
a double-edged sword during respiratory support in some

cases [2]. For example, improper use of mechanical ventila-
tion may aggravate the original pathological damage or lead
to direct lung injury, known as ventilator-induced lung
injury (VILI) [3]. Patients with no original acute lung injury
may develop acute lung injury after being subjected to
mechanical ventilation for more than 48 hours [4]. Nearly
half of the patients who had received mechanical ventilation
for more than two weeks got pulmonary complications asso-
ciated with mechanical ventilation. For this reason, it is of
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great pertinence to elucidate the pathogenesis of VILI and
take protective or therapeutic measures against it. A lot of
efforts have been made to reduce VILI occurrences during
perioperative anesthesia and in critical care units.

At present, the primary measure taken for VILI preven-
tion is the lung protective ventilation approach in which a
small tidal volume is used, but its efficacy is highly limited
[5]. The pathogenesis of VILI is still unclear, and effective
interventions have yet to be investigated [6]. Therefore, it is
vital to identify the involved key genes to better understand
the molecular mechanism of VILI pathogenesis for an early,
effective intervention.

As a powerful analytic tool, bioinformatics analysis has
gradually been used in predicting the molecular mechanisms
of VILI pathogenesis. For instance, Tamás et al. conducted
the gene expression analysis in a mouse overventilation
model and validated upregulated expressions of five genes
(Areg, Akap12, Nur77, Cyr61, and Il11) [7]. Similarly, Ma
et al. analyzed genes affected by VILI and validated the
expression levels of randomly selected genes [8]. Despite
those reports, the VILI-correlated hub genes have not yet
been identified. In this study, analyses of hub genes that could
be associated with VILI were performed based on extensive
gene expression data of a mouse VILI model published
online, to study their potential and specific roles in VILI.

2. Materials and Methods

2.1. Gene Chip Analysis and Identification of DEGs. The pro-
cedures of analysis in this study can be seen in Figure 1. GEO
is a database for storing and distributing the sequencing data
[9]. In this study, we downloaded the GSE11434 dataset from
GEO, based on the GPL1261 [10, 11]. GSE11434 was used to
identify the hub genes associated with VILI. GSE11434 con-
sisted of ten microarray chips and was divided into two
groups: the VILI and control groups, with five samples in

each group. The criteria of adj. p < 0:05 and ∣log2 FC ∣ >1
were applied for screening DEGs.

2.2. GO and KEGG Enrichment Analysis. GO defines and
standardizes terms for describing genes and their products,
which contain three aspects [12]: cellular component (CC),
molecular function (MF), and biological process (BP). CC
is used to describe the area where the gene products are
located in cells and could be a cellular substructure, an organ-
elle (such as cytoplasm and nucleus), or a gene product set
(such as a major histocompatibility complex). MF describes
the function of gene products, such as carbohydrate binding
and ATP-dependent hydrolase activity. BP specifies a more
complex and advanced form of function systematically
formed by a particular set of molecular process, such as mito-
sis and purine metabolism. DAVID (Ver. 6.8) was used to
conduct the GO and KEGG enrichment analysis of DEGs
[13]. The Benjamini-Hochberg corrected p value (p < 0:05)
was set as the threshold for statistically significant
enrichment.

2.3. Protein-Protein Interaction (PPI) Network Construction
and Hub Gene Identification. PPI represents the process of
forming a protein complex by noncovalent bonding between
proteins [14]. The gene set data were imported into the
STRING database to analyze their interaction. A confidence
score ≥ 0:4 was considered as statistically significant. A PPI
network graph was retrieved based on this standard.

Cytoscape (Ver. 3.7.1) is open-sourced software for bio-
informatics analysis and is commonly used to visualize the
molecular interaction network [15]. NetworkAnalyzer, a
Cytoscape plugin, was used to perform topological analysis.
The results exported from the STRING database were
imported into Cytoscape to identify the top 10 DEGs by
applying five algorithms in cytoHubba, and the overlapping
genes of them were considered as hub genes [16]. The
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MCODE was used to screen out the statistically significant
modules which were visualized by using Cytoscape [17].

2.4. Analysis of miRNA and TFs Related to VILI. CyTarge-
tLinker is a plugin for Cytoscape that can extend the biolog-
ical regulatory interactive network [18] and can be used to
analyze the interactive relationship between various miRNA
targets. In this study, we downloaded the murine gene data-
sets and selected miRTarBase, MicroCosm, and TargetScan
databases to predict the regulatory relationship between
hub genes and miRNAs. NetworkAnalyst was used to predict
the TFs that could regulate VILI-associated genes [19]. Hub
genes were selected in the above cases of prediction. The
miRNA-TF-hub gene network was constructed using
Cytoscape.

2.5. Gene Set Enrichment Analysis (GSEA). GSEA uses a pre-
defined gene set that can sort genes according to the degree of
differential expression between samples from different
groups and can subsequently validate whether the preset
gene set is enriched at the top or bottom of the sorting list
[20]. We downloaded the GSEA software from its official
website and run it in a Java environment following instruc-
tions from a previous literature. Later, a curated KEGG gene
set was downloaded from the MSigDB database, and then, an
enrichment analysis was conducted according to the
weighted enrichment statistic method in GSEA. The random
number was set to 1000 to calculate the normalized enrich-
ment score (NES) and false discovery rate (FDR). In GSEA,
gene sets were considered significantly enriched when meet-
ing the condition of NES ≧ 1:0, NOM p < 0:05, and FDR ≦
0:25.

2.6. Immune Cell Composition Analysis. CIBERSORT is an
algorithm that could be applied to estimate cell composition
in complex tissues based on standardized gene expression
data [21]. In this study, we used CIBERSORT to assess the
relative proportion of 22 immune cells in each lung tissue.
The mRNA expression profiling data of lung tissues from
the VILI and control groups were extracted. Then, these data
were calibrated using the Limma package in R. Subsequently,
the LM22 signature matrix was applied in 1000 arrays to pre-
dict the proportion of immune cells. The samples were
screened at the significance level of p < 0:05. The histogram
of the proportion of each type of immune cell, the heat
map of immune cell expression, the violin plots, and the cor-
relation chart of immune cell proportion in lung tissues were
plotted accordingly.

2.7. Identification of Potential Drugs. DrugBank is a database
that integrates detailed data of drugs and comprehensive
information of the drug target [22]. The identified hub genes
were analyzed in the DrugBank database to determine poten-
tial molecules associated with VILI.

2.8. Animal Preparation and Experimental Protocol. Ten
healthy specific pathogen-free male ICR mice (20-25 g) were
procured from Shanghai JSJ-Lab and were separated in two
groups: the VILI group (in which mice received mechanical
ventilation) and the control group (in which mice breathed

without any mechanical assistance). Mice were abstained
from food 4 hours prior to anesthetization by intraperitoneal
injection of 7.5% pentobarbital sodium solution (75mg/kg).
After the mice forming the VILI group were deeply anesthe-
tized, they then received mechanical ventilation. Mice of the
mechanical ventilation group were ventilated with tidal vol-
ume of 30ml/kg, 65 breaths/min, and fraction of inspired
oxygen of 0.21. Mice from the control group were allowed
to breathe spontaneously. After 4 h of mechanical ventilation,
the mice were euthanized, and then, lung tissues were
harvested.

2.9. RNA Extraction and Quantitative Real-Time Reverse
Transcription PCR (qRT-PCR). The total RNA was extracted
from mice lung tissues using TRIzol reagent (Takara, Japan).
cDNA synthesis was performed using the PrimeScript RT
Reagent kit (Takara, Japan). qRT-PCR was operated with
the SYBR Green method (Qiagen, Germany) on the Quant-
Studio 7 flex real-time PCR system. The cDNA was used as
templates to perform qRT-PCR for 40 cycles under the fol-
lowing conditions: an initial denaturation at 95°C for 20 s,
followed by denaturation at 95°C for 15 seconds, and anneal-
ing at 60°C for 1 minute. The primers for cDNA sequences
used in qRT-PCR are listed in Supplemental Table (available
here). The mRNA expression levels of target gene were nor-
malized to that the housekeeping gene GAPDH. The ΔΔCt
method was used to calculate expression fold change of target
genes.

2.10. Statistical Analysis. The histograms of gene expression
were plotted using GraphPad (Ver. 8.0). The gene expres-
sions were expressed in the form of mean ± standard
deviation (SD). The comparison of differences between the
VILI group and control was performed by independent sam-
ples t-test. p < 0:5 was deemed as denoting statistical
significance.

3. Results

3.1. Identification and Enrichment of DEGs between the VILI
and Control Groups. To identify VILI-associated DEGs, we
downloaded the GSE11434 expression profiles from GEO.
A total of 141 DEGs were evaluated with GEO2R by follow-
ing the criteria of adj. p < 0:05 and ∣log2 fold change ∣ ≥1.
Among them, 108 genes were upregulated and 33 were
downregulated (Figure 2(a)).

To determine the specific functions of DEGs, GO annota-
tion and KEGG pathway analyses were conducted with
DAVID. In terms of BP, these DEGs were mainly involved
in positive regulation of transcription from RNA polymerase
II promoter as well as responses to lipopolysaccharide and
cAMP (Figure 2(b)). In terms of CC, they were mostly
enriched in the cytoplasm, nucleus, and nucleoplasm
(Figure 2(c)). And primary enrichments in MF were mainly
associated with TF activity, sequence-specific DNA binding,
and protein binding (Figure 2(d)). p values were ranked in
ascending order based on the results of pathway enrichment
analysis. The top 20 enriched pathways, including MAPK,
JAK-STAT, and TLR signaling, are shown in Figure 2(e).
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3.2. PPI Network and Module Analysis of DEGs. To deter-
mine the interactive relationship between VILI-associated
DEGs, an interaction network of DEG-encoded proteins
was constructed. A total of 141 DEGs were mapped into
the STRING database to retrieve a PPI network graph. As
shown in Figure 3(a), the network included 133 nodes (target
proteins) and three hundred and forty-eight edges (PPI).
Topological analysis of the constructed PPI network was
conducted using NetworkAnalyzer and revealed that the net-
work topological parameters followed a power law distribu-
tion (Figures 3(b)–3(e)). The most significant module was
screened out from the PPI network using MCODE, and 14
genes were identified (Figure 3(f)). We conducted functional
enrichment analysis for these genes and found that they were
mainly enriched in TNF and JAK-STAT signaling pathways
(Tables 1 and 2).

3.3. The Identification and Validation of Hub Genes. To
determine the VILI-associated hub genes, cytoHubba was
used throughout the PPI network construction. Five algo-
rithms (Degree, EPC, MCC, MNC, and Stress) present in
cytoHubba were utilized to evaluate hub genes. The top 10
genes identified by each algorithm were intersected to obtain
hub genes, which included Fos Proto-Oncogene (FOS), MYC

Proto-Oncogene (MYC), Signal Transducer and Activator of
Transcription 3 (STAT3), Early Growth Response 1 (EGR1),
Activating Transcription Factor 3 (ATF3), Interleukin-6 (IL-
6), and Interleukin-1 Beta (IL-1B) (Figure 4(a)). Notably, all
those hub genes were contained in the most highly connected
module mentioned above. In comparison with the control,
the expression levels of all seven hub genes were upregulated
in the VILI group (Figure 4(b)). We found out that the func-
tions of these hub genes were mainly about inducing inflam-
mation and TLR signaling pathway regulation. Then, we
performed qRT-PCR experiment for further validation. The
results showed that the hub genes were all overexpressed in
VILI tissues, which is consistent with the prediction results
(Figure 4(c)). GO and KEGG enrichment analyses of hub
genes were then conducted. It turned out that hub genes were
largely enriched in TLR and JAK-STAT inflammatory signal-
ing pathways (Tables 3 and 4).

3.4. GSEA. GSEA was performed to determine the gene sets
that had significant difference between the VILI and control
groups. The gene sets positively correlated with the VILI
group were mainly involved in the TLR and JAK-STAT path-
ways, which was consistent with the results obtained in GO
and KEGG enrichment analysis (Figure 5). It was revealed

Inflammatory bowel disease (IBD)
Insulin resistance

Toll−like receptor signaling pathway
NF−kappa B signaling pathway

Hematopoietic cell lineage
Antigen processing and presentation

Protein processing in endoplasmic reticulum
Transcriptional misregulation in cancer

Hepatitis B
Jak−STAT signaling pathway

Measles
FoxO signaling pathway

Osteoclast differentiation
Estrogen signaling pathway

Legionellosis
Influenza A

TNF signaling pathway
Pathways in cancer
HTLV−I infection

MAPK signaling pathway

0.04 0.06 0.08 0.10

2

3

4

5

6

negLog10_p value

Count

4
6
8

10
12
14

(e)

Figure 2: DEGs and enrichment analysis in the VILI and control groups. (a) Volcano plot of all DEGs in GSE11434. Red dots indicate
upregulated genes and green dots indicate downregulated genes. (b) Top 15 terms in BP. (c) Top 15 terms in CC. (d) Top 15 terms in MF.
(e) Top 15 KEGG pathway analysis.
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that they were also enriched in NOD, antigen presentation,
and chemokine pathways.

3.5. miRNA-TF-Hub Gene Regulatory Network. miRNA
could function as a regulator in lung injuries. Thus, miRNAs
that could interact with the screened hub genes were pre-
dicted using CyTargetLinker. And 72 miRNA-target interac-
tions were found in TargetScan, and 207 were found in
MicroCosm (Figure 6(a)). The overlap threshold was set to
2 for the analysis, and the results showed that interactions
occurred between 18 miRNAs and 5 target genes. TFs play
important roles in controlling gene expressions. Therefore,
we predicted TFs that could regulate the hub genes using

NetworkAnalyst and these TFs were incorporated with the
predicted miRNA to construct the miRNA-TF-gene regula-
tory network (Figure 6(b)). Overall, the regulatory network
could help to clarify the roles of miRNA and TFs in the devel-
opment of VILI.

3.6. Analysis of Immune Cell Composition. To understand the
involvement of immune cells in VILI, we used CIBERSORT
to detect the contributions of different types of immune cell
in the lung tissues of mice in the VILI group. We evaluated
immune cell composition in samples from both VILI and
control groups (Figure 7(a)). Accordingly, these samples
were divided into two main clusters (Figure 7(b)). The three

Table 1: GO analysis of the most significant clustering module in PPI networks.

Category Term p value

GOTERM_BP_DIRECT GO:0006351~transcription, DNA-templated 1:19E − 04
GOTERM_BP_DIRECT GO:0045893~positive regulation of transcription, DNA-templated 7:52E − 04
GOTERM_BP_DIRECT GO:0006357~regulation of transcription from RNA polymerase II promoter 7:63E − 04
GOTERM_BP_DIRECT GO:0006954~inflammatory response 0.013427

GOTERM_BP_DIRECT GO:0043066~negative regulation of apoptotic process 0.014684

GOTERM_BP_DIRECT GO:0035914~skeletal muscle cell differentiation 0.024883

GOTERM_BP_DIRECT GO:0051091~positive regulation of sequence-specific DNA binding transcription factor activity 0.048278

GOTERM_BP_DIRECT GO:0006355~regulation of transcription, DNA-templated 0.048792

GOTERM_CC_DIRECT GO:0005634~nucleus 3:27E − 06
GOTERM_CC_DIRECT GO:0005654~nucleoplasm 0.039133

GOTERM_MF_DIRECT GO:0003700~transcription factor activity, sequence-specific DNA binding 1:82E − 06
GOTERM_MF_DIRECT GO:0003677~DNA binding 8:51E − 05
GOTERM_MF_DIRECT GO:0000978~RNA polymerase II core promoter proximal region sequence-specific DNA binding 0.001059

GOTERM_MF_DIRECT GO:0043565~sequence-specific DNA binding 0.002782

GOTERM_MF_DIRECT
GO:0001077~transcriptional activator activity, RNA polymerase II core promoter proximal region

sequence-specific binding
0.009683

GOTERM_MF_DIRECT
GO:0000982~transcription factor activity, RNA polymerase II core promoter proximal region

sequence-specific binding
0.014036

GOTERM_MF_DIRECT GO:0046983~protein dimerization activity 0.015108

Table 2: KEGG analysis of the most significant clustering module in PPI networks.

Category Term p value

KEGG_PATHWAY ssc04668:TNF signaling pathway 1:84E − 08
KEGG_PATHWAY ssc05166:HTLV-I infection 2:59E − 06
KEGG_PATHWAY ssc05202:transcriptional misregulation in cancer 1:31E − 04
KEGG_PATHWAY ssc05200:pathways in cancer 4:31E − 04
KEGG_PATHWAY ssc04380:osteoclast differentiation 0.001668

KEGG_PATHWAY ssc04630:JAK-STAT signaling pathway 0.001932

KEGG_PATHWAY ssc05161:hepatitis B 0.0024

KEGG_PATHWAY ssc04917:prolactin signaling pathway 0.006385

KEGG_PATHWAY ssc04931:insulin resistance 0.017635

KEGG_PATHWAY ssc05169:Epstein-Barr virus infection 0.018235

KEGG_PATHWAY ssc05152:tuberculosis 0.040023

KEGG_PATHWAY ssc05168:herpes simplex infection 0.043435
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most relevant immune cells included eosinophils and T fol-
licular helper cells, activated neutrophils and memory CD4
T cells, and naive CD8 T cells and B cells, all with an R value
of 0.49 (Figure 7(c)). It was revealed that the proportion of
M0 macrophages and activated mast cells was higher in the

VILI group than in the control (Figure 7(d)). The proportion
of other immune cells does not show any statistically signifi-
cant difference between samples from the VILI and control
groups. Together, it indicated that immune cells, particularly
macrophages, were involved in the early stage of VILI.
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Figure 4: Hub genes in the VILI group. (a) Intersecting genes selected as hub genes by using 5 algorithms in cytoHubba. (b) The expression
levels of seven hub genes in the lung samples from the VILI and control groups in GSE11434 were as follows: FOS, STAT3, MYC, ATF3,
EGR1, IL-6, and IL-1B. (c) qRT-PCR analysis of hub genes in lung samples of the VILI and control groups.

Table 3: GO enrichment analysis of hub genes.

Category Term p value

GOTERM_BP_DIRECT GO:0035914~skeletal muscle cell differentiation 2:15E − 04
GOTERM_BP_DIRECT GO:0045944~positive regulation of transcription from RNA polymerase II promoter 0.002266

GOTERM_BP_DIRECT GO:0006351~transcription, DNA-templated 0.002534

GOTERM_BP_DIRECT GO:0070102~interleukin-6-mediated signaling pathway 0.00354

GOTERM_BP_DIRECT GO:0043066~negative regulation of apoptotic process 0.006244

GOTERM_BP_DIRECT GO:0050679~positive regulation of epithelial cell proliferation 0.018091

GOTERM_BP_DIRECT GO:0006355~regulation of transcription, DNA-templated 0.034263

GOTERM_BP_DIRECT GO:0042493~response to drug 0.034428

GOTERM_BP_DIRECT GO:0042593~glucose homeostasis 0.042752

GOTERM_CC_DIRECT GO:0005654~nucleoplasm 0.016377

GOTERM_CC_DIRECT GO:0005634~nucleus 0.02582

GOTERM_MF_DIRECT GO:0005125~cytokine activity 0.001928

GOTERM_MF_DIRECT
GO:0001077~transcriptional activator activity, RNA polymerase II core promoter proximal region

sequence-specific binding
0.004063

GOTERM_MF_DIRECT GO:0000978~RNA polymerase II core promoter proximal region sequence-specific DNA binding 0.008486

GOTERM_MF_DIRECT
GO:0000982~transcription factor activity, RNA polymerase II core promoter proximal region

sequence-specific binding
0.011174

GOTERM_MF_DIRECT GO:0046983~protein dimerization activity 0.017511

GOTERM_MF_DIRECT GO:0003700~transcription factor activity, sequence-specific DNA binding 0.022809

GOTERM_MF_DIRECT GO:0008134~transcription factor binding 0.039418

GOTERM_MF_DIRECT GO:0003677~DNA binding 0.042522
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3.7. Drug Prediction for Hub Genes. DrugBank is a database
that provides detailed drug data and information about com-
prehensive drug targets. To predict possible drugs that may
be developed for the treatment of VILI, the DrugBank data-
base was used to identify small molecules that would poten-
tially interact with the hub genes. As shown in Table 5, the
most significant molecules included nadroparin, siltuximab,
ginseng, donepezil, minocycline, and gallium nitrate.

4. Discussion

It has been known that mechanical ventilation could lead to
VILI, though the exact pathological process of VILI is still
far from clear [6]. Efforts for VILI interventions yield few
positive results, and there is no specific treatment for it except
preventive measures like low tidal volume ventilation. A bet-
ter understanding of the underlying molecular mechanism of
VILI development, therefore, may help to shed light on the
VILI pathogenesis. It is noteworthy that novel tools have
been widely used in several health applications. Novel bioin-
formatics analysis has been applied in analyzing the roles
played by mRNA, lncRNA, and miRNA in the VILI develop-
ment [7, 23, 24]. Xu et al. identified several critical lncRNAs
which may help to get a better picture of the VILI pathogen-
esis [23]. Vaporidi et al. found several differentially regulated
miRNAs during the pathological progress of VILI [24]. How-
ever, there have been few studies to investigate VILI-
associated hub genes using bioinformatics approaches.
Besides, miRNA-gene regulatory network has rarely been
used in the studies of VILI.

In this study, we acquired the GSE11434 dataset, contain-
ing genetic data on the tissues of mice with VILI induced by
high-volume ventilation and tissues of control mice, for bio-
informatics analysis. A total of 141 DEGs, including 108
upregulated and 33 downregulated genes, were identified.
Then, PPI analysis and GSEA were performed to explore
their biological significance as regards VILI.

Go enrichment analysis of these DEGs in this study
reveals that they are largely enriched in RNA polymerase II
promoter and responses to lipopolysaccharide and cAMP.
And the roles played by the cAMP signaling pathway include
inflammatory response and immune mediator induction
[25]. Those results indicate that abnormal inflammatory
responses may be involved in the pathological process of
VILI.

The PPI network analysis in this study provides some
insights for studying the VILI pathogenesis. We constructed
a network consisting of DEG-coded proteins. The distribu-
tion of degrees, clustering coefficient, distribution of the
shortest path, and closeness centrality all demonstrated high
connectivity between these proteins. Our network topology
analysis confirmed that the network was biologically scale-
free. We further applied the MCODE plugin in the PPI net-
work and found that a module consisting of 14 nodes could
be the key regulatory network for VILI. The enrichment anal-
ysis of this module showed that those genes were largely
enriched in inflammatory response, DNA binding, TNF,
and JAK-STAT signaling pathways. This finding was consis-
tent with the results in previous studies which revealed that
the DNA-binding activity of NF-?B in VILI cases increased

Table 4: KEGG enrichment analysis of hub genes.

Category Term p value

KEGG_PATHWAY bta05161:hepatitis B 4:74E − 06
KEGG_PATHWAY bta05166:HTLV-I infection 4:92E − 05
KEGG_PATHWAY bta04620:toll-like receptor signaling pathway 8:79E − 05
KEGG_PATHWAY bta05142:Chagas disease (American trypanosomiasis) 1:12E − 04
KEGG_PATHWAY bta05162:measles 2:07E − 04
KEGG_PATHWAY bta04630:JAK-STAT signaling pathway 2:59E − 04
KEGG_PATHWAY bta05020:prion diseases 3:61E − 04
KEGG_PATHWAY bta05168:herpes simplex infection 5:10E − 04
KEGG_PATHWAY bta04623:cytosolic DNA-sensing pathway 0.001314

KEGG_PATHWAY bta05321:inflammatory bowel disease (IBD) 0.001727

KEGG_PATHWAY bta05133:pertussis 0.002086

KEGG_PATHWAY bta05132:Salmonella infection 0.002419

KEGG_PATHWAY bta05323:rheumatoid arthritis 0.003158

KEGG_PATHWAY bta04668:TNF signaling pathway 0.004063

KEGG_PATHWAY bta05200:pathways in cancer 0.00434

KEGG_PATHWAY bta04380:osteoclast differentiation 0.006194

KEGG_PATHWAY bta05164:influenza A 0.010163

KEGG_PATHWAY bta05152:tuberculosis 0.011088

KEGG_PATHWAY bta04060:cytokine-cytokine receptor interaction 0.015837

KEGG_PATHWAY bta04010:MAPK signaling pathway 0.021328
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Figure 5: GSEA of six primary pathways in which VILI was significantly enriched.
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[26]. TNF has been reported to be involved in early inflam-
matory response and stretch-induced pulmonary edema
[27, 28]. Subsequently, we used the cytoHubba plugin to fur-
ther screen out hub genes from the PPI network, which
included FOS, STAT3, MYC, ATF3, EGR1, IL-6, and IL-1B.
Strikingly, all hub genes were contained in the above-
obtained module.

STAT3, an important member of the STAT family, is
involved in the transcription activation of the JAK-STAT sig-
naling pathway. Hoegl et al. discovered that IL-22 activates
STAT3 signaling and reduces SOCS3 expression, thus allevi-
ating lung injury in VILI cases [29]. In contrast, in our study,
the expression of STAT3 is increased in the VILI group, com-
pared with the control. This indicted that STAT3 may have
dual effects on the inflammatory process. Wolfson et al.
found that STAT3 upregulates HMGB1 expression, thereby
exacerbating systemic inflammatory responses in VILI cases
[30]. The specific roles of FOS and MYC in VILI have not
been systematically studied. FOS can respond to mechanical
stimuli and promote immune activation in the lung alveoli
[31]. It binds with AP-1 sites to play a role in the proinflam-
matory signaling pathways in acute lung injuries [32]. Similar
to FOS, MYC is transcribed under mechanical stimuli [33].

ATF3 is a transcription factor belonging to the CREB/
ATF family. Shan et al. found that ATF3 could protect
against lung injury by reducing barrier disruption and
inflammatory cell recruitment [34]. Our analysis showed that
the ATF3 expression in the VILI group was significantly
upregulated compared with the control. Its specific patho-
physiological mechanism is unclear and needs to be further

studied. EGR1 is a transcription factor in the zinc finger
protein family and can be activated by various environ-
mental signals [35]. Copland et al. found that the expres-
sion of EGR1 could increase even under low-volume
mechanical ventilation, suggesting its role in the upstream
regulation [36].

IL-6 is a pleiotropic cytokine that is involved in regulat-
ing leukocyte function and apoptosis and thus exhibits proin-
flammatory and anti-inflammatory effects [37]. Ko et al.
reported that NF-κB-IL-6 signaling pathways contribute to
the VILI development by inducing inflammation [38].
Experimental lung injury can be attenuated by an IL-1β
antagonist [39]. This indicates that the inflammatory
response may not only be a downstream reaction but also
involved in the progression of lung injury. Enrichment anal-
ysis of those hub genes identified in this study showed that
they were largely enriched in TLR and JAK-STAT inflamma-
tory signaling pathways, a finding that is consistent with the
results from previous studies that inflammation is an essen-
tial factor in the VILI development.

GSEA could be used to obtain relevant information when
large-scale genes were at a small fold change. The GSEA in
this study revealed that gene expressions in the VILI samples
showed a significant correlation with TLR and JAK-STAT
pathways, compared with those in the control samples. In
combination with the abovementioned enrichment analysis,
we speculate that TLR and JAK-STAT may play vital roles
in inflammation observed in VILI cases. Moreover, the anti-
gen presentation pathway was also where enrichment
occurred. It could be inferred that the immune system might
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Figure 6: miRNA-TF-hub gene regulatory network. (a) miRNAs related to hub genes predicted by CyTargetLinker. Red edges mean
predicted by MicroCosm and velvet edges mean predicted by TargetScan. (b) TFs related to the hub genes were predicted by
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also be involved in the VILI development. Indeed, a previous
study has already raised concerns about involvement of the
immune system in VILI [40].

We used CIBERSORT to analyze the immune cell com-
position in VILI samples and found that the proportion of
M0 macrophages and activated mast cells was significantly
higher in the VILI group than in the control. Macrophage
is known to play a considerable role in the innate immune
system. A previous study has found that mechanical ventila-
tion may induce macrophages to switch to the M1 phenotype
[41]. That indicates that macrophages could mainly remain
as M0 phenotype in the early stage of VILI.

In addition, hub genes were mapped into the DrugBank
database to predict small molecular drugs. It is still unclear
whether these compounds can contribute therapeutic effects

on VILI, so further investigation is required as to whether
these molecules can be used to treat VILI in the future.

There are still some limitations in this study. First,
changes in gene mutations (such as SNPs), protein expres-
sion levels, or cellular metabolism may also play important
roles in the occurrence and development of VILI. Limited
by a lack of relevant data, we are currently unable to carry
out such detailed analysis. Second, our study constructed a
PPI network based on transcriptomics data rather than pro-
teomics data. Proteomic analysis of VILI will be conducted in
our further studies. Lastly, our study included only a small
number of samples, and thus, investigations with a larger
sample size shall be further conducted in our future studies.

To summarize, this study systematically analyzed the
transcriptomic characteristics of lung tissues from the VILI
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Figure 7: Landscape of immune cell composition in lung samples from the VILI and control groups. (a) Histogram of the immune cell
composition of samples from the VILI and control groups. (b) Heat map of immune cell types in lung samples from the VILI and control
groups. (c) Correlation matrix of immune cell types in lung samples of the VILI and control groups. (d) Violin plot of immune cell types
in lung samples of the VILI and control groups.

Table 5: Potential drugs that target hub genes derived from DrugBank.

Gene Drug Accession number Groups Interaction type

FOS Nadroparin DB08813 Approved, investigational Inhibitor

MYC Nadroparin DB08813 Approved, investigational Inhibitor

IL-6 Siltuximab DB09036 Approved, investigational Antagonist

IL-6 Ginseng DB01404 Approved, investigational, nutraceutical Antagonist

IL-1B Donepezil DB00843 Approved Inhibitor

IL-1B Minocycline DB01017 Approved, investigational Modulator

IL-1B Gallium nitrate DB05260 Approved, investigational Antagonist
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and control groups to identify DEGs and hub genes. These
hub genes, including FOS, STAT3, MYC, ATF3, EGR1, IL-
6, and IL-1B, play vital roles in the VILI pathogenesis and
thus provide potential therapeutic targets for future VILI
treatment.

5. Conclusion

In a word, we identified a series of hub genes from the DEGs
between the VILI group and the control group, which may
provide novel insights into the pathogenesis of VILI and gene
targets for its treatment.
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