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Abstract: Biodiversity is adversely affected by the growing levels of synthetic chemicals released
into the environment due to agricultural activities. This has been the driving force for embracing
sustainable agriculture. Plant secondary metabolites offer promising alternatives for protecting plants
against microbes, feeding herbivores, and weeds. Terpenes are the largest among PSMs and have
been extensively studied for their potential as antimicrobial, insecticidal, and weed control agents.
They also attract natural enemies of pests and beneficial insects, such as pollinators and dispersers.
However, most of these research findings are shelved and fail to pass beyond the laboratory and
greenhouse stages. This review provides an overview of terpenes, types, biosynthesis, and their roles
in protecting plants against microbial pathogens, insect pests, and weeds to rekindle the debate on
using terpenes for the development of environmentally friendly biopesticides and herbicides.

Keywords: terpenes; biosynthesis; phytoalexin; insecticidal; allelopathy

1. Introduction

Plants and a multitude of pathogenic microbes are in a constant battle for supremacy.
While pathogens adopt novel means to maintain their nutrition and shelter sources in
plants, the former undergoes immunity evolution to keep off the latter by eliciting defense
molecules. Despite the absence of motile defensive cells and adaptive immunity, plants
possess a robust immune system with a mirage of defense molecules to enhance their
physical and chemical immunity against environmental stresses [1]. Plants produce two
types of metabolites; primary metabolites are involved in cellular survival and propagation,
and secondary metabolites play a crucial role in defense against pathogens and pests. Plants
synthesize over 300,000 secondary metabolites, and muting or silencing their synthesis
severely impairs their effectiveness to withstand biotic stresses [2].

PSMs are categorized as phenolics, terpenoids, and alkaloids, among others. They
play several roles in plant defense against fungi, viruses, bacteria, and feeding herbi-
vores [3]. Some PSMs perform allelopathic activities, while others serve as signal trans-
ducers for chemical communication with symbiotic insects, such as pollinators and seed
dispersers [4]. The utilization of PSMs for pharmacological purposes spanned several
thousands of years. However, analysis of PSMs for specific functional annotation came into
lamplight only a couple of hundred years ago, with morphine from Papaver somniferum
(opium poppy) among the earliest studied. Several PSMs have recently been investigated
for pesticides/insecticidal and herbicidal activities. Approximately 40% of commercial
medicines are synthesized using PSMs as the active ingredients [5,6]. For example, Taxol®,
an anticancer drug, and artemisinin, an antimalarial drug, are synthesized from terpenes [7].
Diterpenes and phenylpropanoids secretion, for instance, confer phytoalexin properties
against pathogenic microbes [8]. Antifeedant metabolite synthesis also enhances plant
resistance to herbivores. For example, alkaloids deter Empoasca fabae and Leptinotarsa decem-
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lineata [9], and phenolic compounds repel Rhopalosiphum padi and Galerucella lineola from
feeding on wheat plants and also delay maturation and lower fecundity in Aphis gossypii
on cotton plants [10].

Terpenes are the largest and most diverse PSMs in nature [11,12] and are the informa-
tive and defensive vehicles used by plants for antagonistic and mutualistic interactions.
The production of terpenes by plants to counter biotic (pathogenic microbes, herbivore
pests, and weeds) and abiotic (water, temperature, light, and salt) stresses is widely stud-
ied [8,13–15]. While phytoanticipins terpenes are constitutively secreted in the absence of
pathogen effectors, phytoalexins are elicited in response to inducible pathogenic microbes
or feeding herbivores [7]. Terpene research as an active ingredient in pesticide development
has seen a global resurgence due to its low risk to the environment and human health. For
example, a consistent but deliberate policy in the European Union reduced the number
of permissible synthetic compounds from 1000 in 1993 to 250 in 2011. The shift from
risk to a hazard-based assessment of the effect of synthetic pesticides on humans and the
environment accounted for this reduction. Costs for outdooring a new synthetic active
product hiked amidst overwhelming cases of pesticide resistance, as Sparks and Nauen,
2015 reported that over 580 species of arthropods globally developed resistance to synthetic
pesticides [16,17].

The crucial role of PSMs and terpenes makes them a critical topic of concern to
plant protectionists. This write-up reviews established knowledge of terpenes, types, the
chemistry of their biosynthesis, and function in protecting plants from pests, diseases, and
weeds. These highlights will reinvigorate the debate on using terpenes as active ingredients
in developing biopesticides.

1.1. General Overview of Terpenes

The term terpene, proposed by Dumas in 1866, originates from the Latin word ‘tur-
pentine’ (Balsamum terebinthinae), a liquid extract from pine trees. Terpenes are the largest
natural products, with significant structural variation, including linear hydrocarbons or car-
bocyclic skeletons. Approximately 55,000 members are known [18,19]. Terpenes undergo
oxygenation, hydrogenation, or dehydrogenation to form terpenoids. Terpenes classifica-
tion is based on Wallach’s, 1887 proposed isoprene units (C5H8), a 5-carbon compound
that forms terpenes backbones [20,21]. The isopentenyl diphosphate (IPP) unit and its
isomer, dimethylallyl diphosphate (DMAPP), are the biosynthesis precursors of terpenes.
Terpenes are abundant in higher plants, citrus, conifers, and eucalyptus and are widely
distributed in the leaves, flowers, stems, and roots of these plants. The development of
chromatographic and spectroscopic methodologies in 1945 propelled the explosive dis-
covery of terpenoids and terpene-derived products. Terpenoidal molecules are antifungal,
antimicrobial, antiviral, and antiparasitic. They deter feeding herbivores and are used as
insecticides to store agricultural products [18]. However, their full potential has not yet
been attained.

1.2. Classification of Terpenes

The isoprene unit that defines terpene consists of a head and a tail. According to
Ingold, terpenoids bond by head-tail linkage of isoprene units. Tetraterpenes, such as
carotenoids, deviate from this rule by centrally forming a tail–tail (4-4) bond [18,19]. Some
terpenes have high vapor content and are therefore classified as volatile (VTs), e.g., hemiter-
penes, monoterpenes, and sesquiterpenes. Others are semi-volatile or non-volatile, such as
diterpenes. The number of isoprene units on a terpene backbone generally accounts for
their volatility. Fewer isoprene units are highly volatile terpenes [22].

Hemiterpenes are the simplest, with a single isoprene unit. The oxygen-containing
derivatives of the isoprene unit form other hemiterpenes (Figure 1a). Hemiterpenes are
being investigated as potential sources of biofuel [18].



Int. J. Mol. Sci. 2021, 22, 5710 3 of 22Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Structural forms of volatile terpenes (structures were drawn and analyzed with ChemDraw software, version 
20.0.0.41). (a) Hemiterpenes; (b) Monoterpenes; (c) Sesquiterpenes. 

Figure 1. Structural forms of volatile terpenes (structures were drawn and analyzed with ChemDraw software, version
20.0.0.41). (a) Hemiterpenes; (b) Monoterpenes; (c) Sesquiterpenes.

Monoterpenes are highly diverse and occur in monocotyledonous and dicotyledonous
angiosperms, fungi, bacteria, and gymnosperms. They have two isoprenoid units [23].
They are odoriferous compounds that partly account for the scent of many flowers and
fruits. Approximately 18 rice monoterpenoids play varying roles, including defense against
pathogens and pests [24]. Monoterpenes include acyclic, monocyclic, and bicyclic forms
(Figure 1b). They are components of essential oil compounds that give plants aroma
and flavor and are vital for a range of active ingredients for agricultural, pharmaceutical,
cosmetic, and food applications. Pinenes, carveol, camphor, menthol, and limonene, for
example, are active ingredients in a variety of industrial applications [25].
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Sesquiterpene is an abundant natural compound with 3-isoprene [26]. They share ring
classification with monoterpenes, an exception being a few tricyclic terpenes (Figure 1c).
This terpene diversity arises from the arrangement of the 15-carbon skeletons, the layering
of the functional groups, and the substituents on their backbone [27]. Some members are
hydrocarbons (humulene, farnesene), aldehydes (farnesal and lepidozenal), oxygenated
hydroxyl or carbonyl derivatives, and esters (torilin and ejaponines). Some are also al-
cohols, such as δ-elemanol and β-germacrenol [28]. They are antimicrobial, antifungal,
antitumor, and anti-inflammatory agents. They have wide plant defense applications
against herbivores and are active constituents in the perfumery industry [29]. However,
these potentials have largely remained unexplored in the biotechnology industry.

Diterpenes are non-volatile C20 hydrocarbons derived from four isoprene units and
are structurally diverse [18,30]. They include linear, bicyclic, tetracyclic, pentacyclic, or
macrocyclic forms (Figure 2a). Diterpenes are characterized by ployoxygenated keto and
hydroxyl groups [26]. Diterpenes from various sources have exhibited inhibitory effects
against pathogenic microbes, herbivore pests, and weeds. These promising biological
activities place them among the essential agricultural secondary metabolites with potential
in the production of biopestides [31]. Rice plants produce several phytoalexins and allelo-
chemical diterpenes for protection against pathogens, pests, and weeds. The accumulation
of these compounds, on the other hand, is low and can be increased by genetic alteration
or the recruitment of exogenous elicitors.

Triterpenes are derivatives of the C30 precursor, squalene, with over 20,000 known
members. Most are members of the plant kingdom. However, bacteria and sea cucum-
bers produce defense-related triterpene glycosides [14]. Two sesquiterpene molecules
form triterpenes by linking in a head–head fashion [32]. Cyclic triterpenes (1–5 rings)
are the most significant members. They are primarily alcohols, aldehydes, or carboxylic
acids [27]. A cyclopentane perhydrophenanthrene ring system defines sterols and phytos-
terols as triterpenes [32]. Glycosylated triterpenes, such as saponins, protect plants against
pathogenic microbes and insect pests. Some simple triterpenes are signaling molecules that
are also constituent ingredients in the food, health, and biotechnology industries. [14]. The
structures of triterpenes are shown in Figure 2b.

Tetraterpenes (carotenoids) are 8-isoprene units consisting of C40 and C40H64 molec-
ular formulas [33]. Carotenoids are the most studied tetraterpenes, with more than 750
members [34]. Terrestrial plants, algae, and cyanobacteria all produce tetraterpenes. Their
biological roles include light trapping, antioxidative function, and plant protection against
free radicals. They are also involved in plant hormone synthesis and form the structural
components of cell membranes. They are active ingredients in the pharmaceutical and food
industries [35,36]. The structures of the tetraterpenes are shown in Figure 2c.
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2. Biosynthesis of Terpenes

Despite being widely accepted as the basic unit of terpenes, terpenes synthesis is not
initiated via the isoprene unit. Two distinct molecules with a similar structural arrange-
ment as the isoprene unit (isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP)) are the precursors for the synthesis of terpenes. These molecules are the prod-
ucts of two independent pathways. The mevalonate pathway (MVA), discovered in the
1950s by Lynen, Bloch, and Cornforth, occurs in animals, fungi, cytosols of plants, archaea,
and a few bacteria. Furthermore, the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway,
discovered by Lichtenthaler, Rohmer, Arigoni, and Seto in the 1990s/2000s, occurs in the
plastids of plants, green algae, and most bacteria. Both IPP and DMAPP subsequently
undergo rearrangements, repetition, and cyclization reactions to yield various terpene
classes [37–39]. Despite variations in the start-up molecules in the two pathways, the same
IPP and DMAPP are formed (Figure 3).

IPP and DMAPP undergo a condensation reaction, catalyzed by geranyl pyrophos-
phate synthase (GPPS) and farnesyl pyrophosphate synthase (FPPS) to produce GPP
(C10_monoterpene) and FPP (C15_Sesquiterpenes). Geranylgeranyl pyrophosphate syn-
thase (GGPPS) and farnesyl geranyl pyrophosphate synthase (FGPPS) catalyze a similar
enzymatic reaction to produce GGPP (C20_diterpenes) and FGPP (C25_sesterpenes). The
terpene synthase family further catalyzes GPP, FPP, GGPP, and FGPP precursors cyclization,
rearrangement reactions to form various terpenoid classes (Figure 4) [40–45].

2.1. Terpene Synthases (TPSs), Classes, and Terpenes Encoded

The structural diversity of terpenes is due to the broad terpene synthases superfamily
(TPSs). Over a hundred TPS genes and prenyltransferases are known [46,47]. Some of the
enzymes involved in the post-cyclization alteration of terpenes include methyltransferases,
P450s, and NAD+-dependent dehydrogenases [48].

TPS of gymnosperm origin is different from angiosperms. The entire TPS length,
according to the Pfam database, includes N-terminal and C-terminal domains. While the N-
terminal has a single motif, the C-terminal has two aspartate-rich motifs [49]. DDxxD and
NSE/DTE motifs on the C-terminal domain are responsible for divalent ion(s) coordination
and stabilization of water molecules on the active site [49]. The length of TPS varies
depending on the terpene class. Generally, monoterpenes synthases are 600–650 amino
acid residues long. Sesquiterpenes are 550–580 amino acid residues long, and about 380–
440 amino acid lengths are found in diterpenes. TPSs were initially grouped into six
subfamilies based on their amino acids full-length or whether they are angiosperms- or
gymnosperms-based. TPS sub-families arising from gymnosperm and angiosperm clads
are both species-specific and non-species-specific. For example, in Arabidopsis, 10 genes
encoding the synthesis of sesquiterpenes and the putative diterpene synthases are close
relatives compared to those in other angiosperms. Among the two TPSs families (Class
I and II), the subfamilies including TPSa, TPSb, TPSc, TPSd, TPSe, and TPSf are known.
However, TPSf and TPSe were recently merged as TPSe/f because they originate from the
same ancestral clad, and also, TPSf is a derivative of TPSe. Moreover, TPSg and TPSh from
Angiosperms and Selaginella moellendorffii have recently been discovered [50–52].

The advent of the next-generation sequencing tool paved the way for the transcrip-
tional studies of many plant genomes, including rice, maize, Arabidopsis, and tomato,
resulting in the revelation of enormous functionally elucidated terpene synthase families.
The Arabidopsis genome encodes 32 full-length TPSs. Twenty-two of which belong to the
TPSa subfamily, and 6 are members of the TPSb subfamily. One each belongs to TPSc and
TPSg subfamilies, respectively. The remaining two are from the TPSg subfamily. A total of
34 and 24 TPS subfamilies have been identified in Oryza sativa and Sorghum bicolor, respec-
tively. Furthermore, Solanum Lycopersicum (tomato), Populus trichocarpa (black cottonwood),
and S. moellendorffii genomes contain 44, 32, and 14 TPSs, respectively [52–54].
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TPSa members have no conserved arginine/tryptophan motif RRX8W. They encode
only sesquiterpene synthases in dicot and monocot plants. Contrary to TPSa, TPSb and
TPSg are angiosperm-specific subfamilies. TPSb has a conserved R(R)X8W motif and is
responsible for launching isomeric cyclization reactions. The TPSg subfamily lacks the
R(R)X8W motif in its coding protein and plays a role in the biosynthesis of acyclic monoter-
penes that comprise volatile organic compounds (VOCs) [53,55,56]. Some members of
the TPSg subfamily produce acyclic sesqui- and diterpene products aside from monoter-
penes [52]. The subfamily TPSc, identified with the DXDD motif instead of DDXXD, is
primarily present in terrestrial plants. TPSd is gymnosperm-specific and encodes mono-,
sesqui-, and di-terpene synthases. Furthermore, TPSe/f subfamily members are mainly
found in vascular plants, encoding kaurene synthases, and copalyl diphosphate synthases.
They function in the biosynthesis of gibberellin. The TPSh subfamily is the sole precursor
to S. moellendorffii, capable of encoding DXDD and DDXXD motifs [52].

2.2. Elicitor-Induced Terpenes Biosynthesis

Elicitors are molecules that trigger responses in plants. They are chemically diverse
and act in a broad-spectrum manner [57]. Their renaissance has heightened the study of
plant immunity. They are a possible remedy for biopesticides when recruited as external
stimuli to induce transient accumulation of defense molecules in plants. Both biotic and
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abiotic elicitors induce terpene biosynthesis. Biotic elicitors are molecules derived from
living organisms such as fungi, bacterial, and cell wall fragments of plants. Abiotic elicitors
are physical and chemical-related stresses with derivatives such as organic or inorganic
compounds, salt, and heat stresses [58,59]. While plants produce enough terpenes for
their protection, inducing up-regulated production will meet commercial quantities for
biopesticide development [58,60].

The advent of sophisticated whole-genome sequencing tools, such as Next-generation
Sequencing (NGS) technologies, has demystified the identification of induced gene stud-
ies [61]. According to Ma et al., several genes play a role in terpenes biosynthesis [62], and
elicitor molecules can induce the high expression of the genes [63]. Elicitors can activate
the methylerythritol phosphate (MEP) pathway to synthesize terpenes. Gene expression
analysis of rice-cell suspension-culture treated with chitin induced early expression of MEP
pathway genes for phytoalexins biosynthesis. In a related report, an HR-inducing elicitor
protein, Mohrip1, isolated from Magnaporthe oryzae, was implicated by RNAseq and qPCR
to induce high expression of oryzalexin genes that eventually compromised M. oryzae
virulence [63]. Farag et al. also demonstrated that salicylic acid could enhance diterpenes
biosynthesis in Sarcophyton ehrenbergi [64]. In the last couple of years, transient expression
of N. benthamiana to reconstitute a partial or complete pathway for the synthesis of natu-
ral products has been reported [65–67]. This genetic modification has a significant effect
on terpene production in higher titers. For example, momilactone diterpenoids induce
allelopathy in rice plants. The momilactone gene transiently expressed in N. benthamiana
successfully exhibited allelopathic activities. Re-routing the diterpene biosynthesis site
from the chloroplast to the cytosol was the technique. The reconstituted momilactone
biosynthetic pathway synthesized momilactone by over 10-fold. Purified momilactone B
from the N. benthamiana stifled Arabidopsis thaliana germination [68]. Gao and team also
revealed that an endophytic fungal elicitor obtained from Fusarium sp. E5 induced the
accumulation of isoeuphpekinensin and euphol in Euphorbia pekinensis suspension cultures
by 5.81% and 3.56%, respectively [69].

A couple of research reports have also indicated that Taxus cuspidate accumulates fol-
lowing methyl jasmonate (MeJA), hydrogen peroxide, salicylic acid (SA), and fungal elicitor
(F3) treatment. These elicitors simultaneously enhanced the activity of 10-deacetylbaccatin
III-10-O-acetyltransferase (10-DBAT) and cytochrome P450 monooxygenase concentration
for high taxol synthesis [70,71]. These shreds of evidenceindicate that elicitors are vital
players in terpene synthesis that could meet commercial quantities.

3. Role of Terpenes in Plant Protection

The field of plant protection involves safeguarding plants against pests, diseases, and
weeds. Biological control of pests dates to several years ago. The BIOCAT database reveals
various insects and their natural enemies applicable in agriculture [72].

3.1. Role of Terpenes in Insect Modulation

Host identification of feeding insects largely depends on either visualization, olfactory
cues, or both for chemotactic and landing efficiency. The embodiments of olfactory cues are
mostly C5, C10, and C15 isoprene chain terpenes produced in the host plants’ glandular tri-
chomes or epidermis for insect defense. These compounds confer antixenosis, a mechanism
that disrupts arthropods’ mode of life or indirectly attracts their natural enemies [73].

Besides gibberellins and brassinosteroids having primary roles in growth and de-
velopment, most terpenes are defense compounds. Terpenes can be alarm substances,
defensive emissions, trail markers, and deterrent antifeedant substances. Terpenes contain
over 25,000 VOCs with varying concentrations and toxicity levels used for defense against
insects and pathogenic microbes. Plants elicit VOCs under stress conditions. For example,
the monoterpene-derived compound, cyclopentanoid (iridoid) is incredibly bitter and a
robust defensive agent against insect pests. Iridoid glycosides covalently bond to nucle-
ophiles to form amino acids, proteins, and nucleic acids. This bond causes the denaturation
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of proteins, amino acids, and nucleic acids. This phenomenon reduces plant nutrients,
depriving the insects of proteins and nucleic acids. Iridoids can also inhibit the synthesis of
prostaglandins and leukotrienes in insects, thereby stifling their growth and development.
Under in vitro conditions, iridoid prolongs the larval stage and reduces insects’ growth
and survival rates [74–76].

Flowers and leaves elicit neurotoxin-modulating monoterpene esters called pyrethroids.
This terpene harms wasps, bees, beetles, and moths. Studies have shown that pyrethroid is
harmless to the environment and, therefore, used as active ingredients in most commercial
insecticides. Methylcyclopentanoid monoterpenes produced by Teucrium marum (cat thyme
or kitty crack) is a repellent to ants and cockroaches. α-pinene, β-pinene, limonene, and
myrcene accumulate in the spindle twigs of conifers are toxic to beetles and most pests
of conifers [77–79]. Essential oils from Gaultheria (Ericaceae) and Eucalyptus (Myrtaceae)
also repel several insects, including the housefly, drugstore beetle, and rice and bean
weevils [80]. Moreover, momilactone A, a rice diterpenoid, also prevented white-backed
planthopper infestation [81,82].

A sesquiterpene (E)-β-caryophyllene accumulated following herbivore’s attack on
maize plants. Although (E)-β-caryophyllene was not directly involved in the defense
against the herbivores, it attracted natural enemies to fight them. (E)-β-caryophyllene was
synthesized as a decoy to attract entomopathogenic nematodes to fight off the attack from
Diabrotica virgifera virgifera (corn rootworm) [83]. (E)-β-caryophyllene, in a related study,
attracted Cotesia sesamiae (larval parasitoid) of Chilo partellus (spotted stalk borer). These
lepidopteran stem borers are a threat to cereal production as studies showed they could
reduce about 80% yield [84]. OsTPS3 and OsTPS13 genes encode (E)-beta-caryophyllene
synthase and (E, E)-farnesol synthase, respectively, in rice plants. OsTPS3 protein under
in vitro conditions catalyzed the synthesis of (E)-beta-caryophyllene, alpha-humulene,
and beta-elements in rice plants. The transgenic lines of OsTPS3 in Oryza sativa induced
high production of (E)-beta-caryophyllene upon methyl jasmonate (MeJA) treatment. This
consequently attracted parasitoid wasps of Anagrus nilaparvatae (Hymenoptera: Mymari-
dae), implicating OsTPS3 in signaling volatile sesquiterpenes [85]. Furthermore, the over-
expression of FPS2 in Arabidopsis with chloroplast as a target stimulated the production
of E-β-farnesene and other sesquiterpenes that subsequently induced resistance against
aphids [86].

The tea green leafhopper is a harmful pest of Camellia sinensis (Green tea). β-1,3-glucan
laminarin induced elicitation of volatile compounds that reduced the green leafhopper
population by attracting the egg parasitoid wasp [87].

Terpene-based biopesticides have been in use for some time now. Some apply ac-
tive ingredients from orange or citrus oils, essential oils obtained from the Chenopodium
ambrosioides variety, and neem extracts [88]. An essential oil recently purified from the
floral whorls of Cannabis sativa L by gas chromatography and gas chromatography-mass
spectrometry methods proved effective against some insects. Aphids and mosquito larvae
were all killed. A total of 66% of tobacco cutworms and 80% and 33% of houseflies and
adult mosquitoes, respectively, failed to survive. The oil composition included 45.4% beta-
caryophyllene, 25.0% myrcene, and 17.9% α-pinene-.. There were also 8.3% humulene, 5.2%
β-pinene, 5.1% ocimene, and 3.0% of farnesene. Intriguingly, only 3% of beneficial insects,
such as ladybug larvae, were killed at the highest concentration [88]. Such a selective
modulation nature makes a good starting material in isolation or combination for pesticide
development. Figure 5a and Table 1 illustrate the role of terpenes in defense against insects.
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Figure 5. Terpenes’ role in plant protection. Four critical functions of terpenes in plant protection: (a) insecticidal role of
terpenes, (b) antimicrobial activities of terpenes against rice blast disease and Fusarium head blight, and (c) allelopathy
of root exudates of plants. Momilactone B inhibits the growth and development of Monochoria vaginalis. (d) Terpenes
indirectly attract natural enemies of pests, e.g., (E)-β-caryophyllene attracts entomopathogenic nematodes on corn root
borer. (Structures were drawn and analyzed with ChemDraw software, version 20.0.0.41, and uploaded on BioRender.com
to create the illustration).

3.2. Antimicrobial (Phytoalexin) Activities of Terpenes

There is a substantial amount of literature on phytoalexin terpene research. Phy-
toalexin camalexin synthesis in Arabidopsis defends against Pletosphaerella cucumerina, Botry-
tis cinerea, and Alternaria brassicicola [89,90].
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Terpenes are a vital member of the VOCs group of weapons often unleashed by plants
to defend against various fungi, bacteria, and viruses. (E)-β-caryophyllene is a widespread
VOC in the plant kingdom and is produced from the floral whorls. This terpene critically
inhibited a rod-shaped Gram-negative bacterium, Pseudomonas syringae, on Solanaceae and
Arabidopsis thaliana plants. In the flowers of Arabidopsis thaliana, bacterial growth expo-
nentially increased when the production of (E)-β-caryophyllene was muted and critically
inhibited and triggered defense signaling pathways when it was restored [91]. Capsidiol
is another sesquiterpene consisting of toxic compounds with a significant phytoalexin
property. Capsidiol inhibited Phytophthora capsici and Botrytis cinerea virulence in Nicotiana
plumbaginifolia. Recent molecular evidence in NbEAS or NbEAH-silenced N. benthami-
ana suggests a compromised defense function against P. infestans [92] and Potato Virus
X (PVX) [13]. Song et al. also revealed that capsidiol inhibited A. alternata under in vitro
conditions. They argued that the ERF2-like transcriptional factor is responsible for the
biosynthesis of capsidiol, and its role as a phytoalexin is independent of ethylene and JA
signaling pathways [93].

Diterpenes also play a role in the plant’s immune response against microbial pathogens,
particularly M. oryzae. For example, the rice plant produces four major labdane-related
diterpenoids that function as phytoalexins. They are momilactone A and B, phytocassanes
A–F, oryzalexin A–F, and oryzalexin S [94,95]. The identification of these diterpenes was
based on their defense activities against rice blast fungi, M. oryzae, leaf blight pathogen, and
Xanthomonas oryzae pv oryzae (Xoo) [96]. Diterpene (11E,13E)-labda-11,13-diene-8alpha,15-
diol, designated WAF-1, was implicated in immune defense signaling against tobacco
mosaic virus (TMV) in Nicotiana tabacum. WAF-1 induced salicylic acid protein kinase by
activating pathogenesis and wound healing-related genes. The endogenous level of WAF-1
in TMV tobacco leaves increased due to the hypersensitive response (HR) [91,92].

Oryzalexin diterpenoids isolated from rice leaves induced strong resistance to bac-
terial leaf spot disease. Notable among them are oryzalide-related diterpenes: oryzalic
acid A, oryzalide, ent-15,16-epoxy-3β-palmitoyloxy-kauran-2-one, ent-15,16-epoxy-3α-
palmitoyloxy-kauran-2-one, ent-15,16-epoxy-3β-hydroxy-kauran-2-one, ent-15,16-epoxy-
2,3-dihydroxy-kaurane, and oryzadione ent-15,16-epoxy-kauran-3-one [24]. Following M.
oryzae infection of rice plants, 9β-pimara-7,15-diene-3β,6β,19-triol, phytocassane F, and
stemar-13-en-2α-ol accumulation increased in the leaves. Among these three compounds,
phytocassane F showed stronger inhibition of the fungal mycelial growth [97]. Triterpenes
are weak phytoalexin compounds. However, quinoa, a rice husk triterpene, exhibited effec-
tive molluscicidal and antimicrobial activities [98]. Phytocassanes A–D were also reported
to inhibit M. oryzae and R. solani in rice plants and subsequently hindered the growth of M.
oryzae under in vitro conditions. A related study confirmed their accumulation in abun-
dance within necrosis sites of the M. oryzae infections [99]. Two labdane-related diterpenes,
sclareol and cis-abienol, isolated from tobacco, exogenously inhibited bacteria wilt diseases
in tobacco, tomato, and Arabidopsis plants. Microarray analysis implicated genes encod-
ing mitogen-activated protein kinase (MAPK) cascade components, ATP-binding cassette
(ABC) transporters, and biosynthesis and signaling defense-related molecules [100]. These
events showed that host immune factors were responsible for inhibiting wilt disease.

Epoxydolabranol, a carbotricyclic tetradecahydrophenanthrene diterpene elicited in
maize roots, effectively inhibited the pathogenesis of Fusarium graminearum and Fusarium
verticillioides simultaneously [101]. Another maize terpenoid, zealexins, is an effective
antimicrobial agent. Zealexin A1 resisted the growth of A. flavus, F. graminearum, and R.
microspores. Zealexins A3 and A4 also exhibited inhibitory effects against A. flavus and
F. graminearum [37,102,103]. The Antimicrobial properties of terpenes are illustrated in
Figure 5b and Table 2.
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3.3. Allelopathic Activities of Terpenes in Agriculture

Agronomic weeds cause the loss of estimated annual revenue of about $95 billion
globally. Weeds have severe effects on crop growth, pest buildup, and nutrient depletion.
For example, Echinochloa crus-galli is a devastating weed that depletes about 80% of soil
nitrogen. It is also a favorable host for mosaic virus diseases. It grows up to 60 inches tall,
producing about 40,000 seeds annually. These features make this grass a good competitor
in the rice field, reducing yield to about 50% with only 25 members per m2 [104–108].
However, synthetic herbicides are an unfavorable antidote to weed control due to their
adverse effect on the environment and biodiversity. Exploiting the allelopathic potential of
plants, which has been in use since ancient times, remains promising in inhibiting several
weeds. Some higher plants are functionally annotated to possess allelopathic effects.
Medicago sativa L, buckwheat, hairy vetch, and velvet bean, among others, are described as
paddy field natural herbicides due to their allelopathy effect [109,110]. Allelochemicals are
toxic organic root exudates that can negatively impact the physiological performance of
neighboring plants. These chemicals stifle respiration and germination, ion uptake, and
photosynthesis of weeds. Stomatal opening, transpiration, enzyme actives, and hormonal
levels are also negatively impacted by allelochemicals. Allelopathic activities could also
hinder cell division and differentiation, gene expression and signal transduction, and
truncate cell membrane permeability [111].

Monoterpenes, sesquiterpenes, and momilactone diterpenes are allelopathic terpenes.
Studies have shown that monoterpenes, citronellal, linalool, and cineole prolong the weed
germination time and also reduce their development, e.g., Cassia occidentalis. Citronellal
and linalool at 110 M and 55 M concentrations, respectively, completely stifled weed
germination [112]. A related study on Raphanus sativus L. and Lepidium sativum, geraniol,
carvone, borneol, and citronellol conferred significant inhibitory effects on seed sprouting
and radical elongation of the two species of plants [113,114]. Nishida et al. also reported
that 1,8-cineole, camphor, camphene beta-pinene, and alpha-pinene monoterpenes stifled
plant cell proliferation and meristematic DNA synthesis.

Some sesquiterpenes also exhibit allelopathy. Arbuscular A, achillin, viscidulin C,
caryophyllene, bisabolone, and chamazulene play inhibitory functions. β-caryophyllene
extract from the roots and pines of Pinus halepensis inhibited herbaceous plant growth [115].

Several studies on allelopathy elicitation and its effects have been reported. In the
USA and Egypt, 557 out of 17,000 and 45 out of 1000 rice accessions, respectively, evaluated,
conferred inhibitory effects on weed growth. Momilactone diterpenoids were confirmed as
the inhibitors. For example, Lepidium sativum (barnyard grass) and Cyperus difformis L (rice
sedge) were inhibited by constitutively synthesized momilactone B in rice roots [116,117].
Arabidopsis germination was also hampered by Momilactone A and B at concentrations
higher than 30 and 10 µM and IC50 742 and 48.4 µM, respectively. At 4, 20, 20 ppm, momi-
lactone B completely stifled the sprouting of Leptochloa chinenesis, Amaranthus retroflexus,
and Cyperus difform, respectively [68,118]. At varying concentrations of momilactone B,
the growth and development of several monocots and dicots plants, including Lepidium
sativum (cress), Brassica rapa cv, Chinese cabbage, Lactusa sativa cv, Santanasu (lettuce),
Echinochloa colonum crabgrass, and Phleum pretense (timothy), among others, were also
inhibited [119,120]. Momilactone inhibitory function in barnyard grass is linked to miRNA
expression changes, which act as a hormonal signal transducer, DNA repairs by nucleotide
excision, and the peroxisome proliferator-activated receptor pathway (PPAR pathway), and
the p53 signaling pathway [120]. In another study, when momilactone A or B were sprayed
on Arabidopsis, cruciferin 2 and 3 and cruciferina proteins responsible for providing the
primary nitrogen for seed germination were highly expressed. Momilactone inhibiting
cruciferins and cruciferina degradation might have consequently inhibited the germina-
tion of the Arabidopsis seeds. Moreover, the accumulation of amyrin synthase LUP2,
β-glucosidase, a subtilisin-like serine protease, and malate synthase after momilactone
treatment resulted in inhibited germination of Arabidopsis [118]. Allelopathy is illustrated
in Figure 5c and Table 3.
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Table 1. Insecticidal Activities of Terpenes.

Name of Terpene Plant Activity Reference

Eucalyptol Oak Attracts cockchafer larva [121]

Rhizathalene A Arabidopsis Resistance of the roots to the herbivore
dark-winged fungus gnat (Bradysia spp) [122]

Eugenol, caryophyllene oxide, α-pinene,
α-humulene, and α-phellandrene Cinnamon and clove Secret toxic terpenes to deter the adult pest of

Sitophilus granaries (grain weevil) [123]

β-Pinene Citrus paradisix,
Poncirus trifoliata

Attracts entomopathogenic nematodes, e.g.,
Steinernema diaprepesi [124]

S-methyl methionine Lecythidaceae Deters oviposition sites-seeking beetle [125]

1,8-cineole Brassica
Tropical orchids

Attracts egg-laying parasitoids to the caterpillars
of feeding herbivores.

Furthermore, attracts and reward pollinators
[126]

β-trans-ocimene, (+)-R-limonene Lavender Deters pests, e.g., aphids [127]

β-costic acid Zea mays Inhibits the growth of Diabrotica balteata
(cucumber beetle) [128]

β-ocimene Tomato and tobacco Defense against pests, e.g., Macrosiphum
euphorbiae (potato aphid) [129]

Decanal Zea mays Enhanced resistance against Ostrinia nubilalis [130]

Table 2. Antimicrobial (Phytoalexin) Activities of Terpenes.

Name of Terpene Plant Activity Reference

α-Terpinene Terpinen-4-ol α-Thujene Oryza sativa Antibacterial activity on Xoo [131,132]

Linalool Oryza sativa Antibacterial activity on Xoo [133]

epoxydolabranol Zea mays Defense against F. verticillioides and F. graminearum [101]

Kauralexin A3 and B3 Zea mays Antifungal activity against R. microsporus and C.
graminicola [134]

9β-Pimara-7,15-diene-3β,6β,19-triol Rice leaves Weak antimicrobial [99]

Marneral A. thaliana Pathogenesis activities [135]

Cucurbitadieno Cucumis sativus Pathogenesis and insecticidal activities [136]

Oryzalexin A–F Oryza sativa
Leersia perrier

Antimicrobial (Inhibits spore germination and the
growth of the germ tube of O. oryzae) [24,99,136]

Phytocassane A–F Oryza sativa Antifungal activities M. oryzae and R. Solani [99]

Oryzalexin S Oryza sativa Antifungal activity [137]

Momilactone A, momilactone B, Oryza sativa Antimicrobial activities [138]

Tirucalla-7, 24-dien-3b-ol A. thaliana Pathogenesis-related activities [139]
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Table 3. Allelopathic Activities of Terpenes in Agriculture.

Name of Terpene Plant Activity Reference

Momilactone A Oryza sativa, Arabidopsis,
alfalfa, lettuce, cress, timothy,

barnyard grass, E. colonum,
crabgrass

Momilactones are generally not toxic to rice
plants but mainly inhibit germination and
growth of other seeds, e.g., barnyard grass
Enhances plants to outcompete other field

crops by roots exudates serving as
inhabitants, especially Momilactones A and B

[120,140–142]

Momilactone B

Momilactone C

Momilactone D

Momilactone E

Carvone, Betulin Amaranthus retroflexu, Sinapis
arvensis

Exhibits high inhibition against common
weeds at a lower concentration [143]

Limonene and (+)-citronellal Transgenic Arabidopsis thaliana Exhibits vigorous antimicrotubule activity in
transgenic Arabidopsis thaliana [144]

Lanast-7,9(11)-dien-3α, 15α-
diol-3α-D-glucofuranoside Oryza sativa Growth inhibition [145]

4. Other Applications of Terpenes

Apart from the role of plant protection, terpenes also offer a wide range of prospects
in the pharmaceutical, food, cosmetic, and flavoring industries.

In the petrochemical industries, volatile terpenes are being explored as emerging
alternatives for energy production. Leveraging plant-derived terpenes as an alternative
energy source is a sustainable way of alleviating the over-dependence on fossil fuels and
their accompanying adverse impact on atmospheric CO2 and climate change [146]. Hellier
et al. reported that terpenes could be a fuel source in isolation or a blend of 65% in
gasoline or diesel machines. Harvey et al. also suggested that hydrogenated valencene,
premnaspirodiene, and caryophyllene could be used to generate high-density fuels using
heterogeneous acid catalysts, Nafion SAC-13 [147–149].

Terpenes are used as flavoring and fragrance compounds in the food and toiletries
industries, contributing over 5.3 billion USD annually in the United States, with a 3.7%
increase in annual demand [150]. For example, (-)-Menthol (1-menthol) extracted from Men-
tha arvensis (Wild mint) is a flavoring ingredient in pharmaceuticals, cigarettes, cosmetics,
chewing gums, and toothpaste manufacturing [150,151]. Menthone and its stereoisomers
(menthone and isomenthone), extracted from Pelargonium geranium, are added to beverages
to enhance their cooling, misty, and sweet scent (Geraniums) [152]. The flavor and fragrant
properties of linalool make it a valuable ingredient in food and drinks, perfumes, and
cosmetic products [150].

Isoprenoid resources remain unexhausted natural products, as many research investi-
gations are still unearthing their beneficial values as antidotes to human problems. There
has been a consistent molecular and pharmacological analysis of terpenes for potential
anti-inflammatory, anti-tumor, anti-oxidative, antiaggregatory, and anti-coagulative effects.
Some terpenoids exhibited highly extreme activity against malaria and cancer. For example,
the anticancer property of Taxol®, a drug obtained from diterpenoids, and artemisinin
obtained from a sesquiterpene, lactone, are among the vital pharmacological products
from terpenes that are still effective to date. Terpenes confer anticancer activity by induc-
ing apoptosis or necrosis to inhibit tumor cell proliferation in isolation or a blend with
chemotherapy substances, e.g., β-Caryophyllene Eugenol, Menthol, limonene, and Ingenol
3-angelate (the diterpene), among others [32,153,154].

Despite the massive application of terpenes, a few factors, however, impede the
realization of their full potential as the much-desired alternatives to synthetic compounds.
The commercial quantity of natural plant-derived terpenes is minute and primarily does
not meet commercial quantities. Microbes remain an excellent alternative as bio-factories
for their engineering. However, the higher titers of some terpenes pose another survival
limitation for the microbes. That notwithstanding, the prospects of sophisticated omic
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tools, such as DNA and RNA sequencing tools, Proteomics, CRISPR/Cas9, genome editing,
and metabolic profiling tools, can be employed to engineer microbes that tolerate higher
concentrations of these terpenes to meet commercial quantities.

5. Conclusions

Plants are not motile; hence, they cannot escape from their enemies. However, nature
duly compensated for their immobility with the ability to produce several secondary
metabolites, including terpenes that enhance their defense against microbial pathogens,
insect pests, and weeds. The high incidence of pests and diseases resistance to synthetic
pesticides calls for swift attention switch to terpenes and other plant-derived metabolites
that offer limitless potentials with fewer or unknown hazards to human health and the
environment.
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IPP Isopentenyl diphosphate
DMAPP Dimethylallyl diphosphate
MVA Mevalonate pathway
MEP 2C-methyl-D-erythritol-4-phosphate
GPP Geranyl pyrophosphate
FGPP Farnesyl geranyl pyrophosphate
GGPP Geranylgeranyl pyrophosphate
GPPS Geranyl pyrophosphate synthase
FPPS Farnesyl pyrophosphate synthase
TPS terpenes synthase
NGS Next-Generation Sequencing
IPPC International Plant Protection Convention
Xoo Xanthomonas oryzae pv. oryzae
EOs Essential oils
PPAR pathway Peroxisome proliferator-activated receptor pathway
DXP 1-deoxy-d-xylulose 5-phosphate
CDP-ME 4-diphosphocytidyl-2-C-methyl-d-erythritol
CDP-MEP 4-diphosphocytidyl-2-C-methyl-D-erythritol-2-phosphate
MEcPP 2-C-methyl-D-erythritol-2,4-cyclodiphosphate
HMBPP 4-hydroxy-3-methyl-butenyl 1-diphosphate
CTP cytidine 5’-triphosphate
IDI isopentenyl-pyrophosphate delta isomerase
HMG-CoA 3-Hydroxy-3-methylglutaryl-coenzyme A
CTP Cytidine triphosphate
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