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Abstract: Background: Congenital coagulation factor X (FX) deficiency is a rare bleeding disorder
with an incidence of one in one million caused by mutations in the FX-coding gene(F10), leading
to abnormal coagulation activity and a tendency for severe hemorrhage. Therefore, identifying
mutations in FX is important for diagnosing congenital FX deficiency. Results: Genetic analysis of
the proband identified two single-base substitutions: c.794T > C: p.Ile265Thr and c.865 + 5G > A:
IVS7 + 5G > A. His FX activity and antigen levels were < 1% and 49.7%, respectively; aPTT and
PT were prolonged to 65.3 and 80.5 s, respectively. Bioinformatics analysis predicted the two novel
variants to be pathogenic. In-vitro expression study of the missense mutation c.794T > C: p.Ile265Thr
showed normal synthesis and secretion. Activation of FXs by RVV, FVII/TF, and FVIII/FIX all
showed no obvious difference between the variant and the reference. However, clotting activity
by PT and aPTT assays and activity of thrombin generation in a TGA assay all indicated reduced
activity of the mutant FX-Ile265Thr compared to FX-WT. Minigene assay showed a normal splicing
mode c.865 + 5G > A: IVS7 + 5G > A, which is inconsistent with clinical phenotype. Conclusions:
The heterozygous variants c.794T > C: p.Ile265Thr or c.865 + 5G > A: IVS7 + 5G > A indicate mild
FX deficiency, but the compound heterozygous mutation of the two causes severe congenital FX
deficiency. Genetic analysis of these two mutations may help characterize the bleeding tendency
and confirm congenital FX deficiency. In-vitro expression and functional study showed that the
low activity of the mutant FX-Ile265Thr is caused by decrease in its enzyme activity rather than
self-activation. The minigene assay help us explore possible mechanisms of the splicing mutation.
However, more in-depth mechanism research is needed in the future.

Keywords: factor X; deficiency; compound heterozygous mutations; coagulation; bleeding

1. Introduction

The coagulation Factor X (FX) is a vitamin K-dependent zymogen of serine protease
synthesized by the liver. It is a disulfide-bonded two-chain glycoprotein consisting of a 17-
kDa light chain and a 45-kDa heavy chain [1]. In the coagulation cascade, both the intrinsic
(FIXa/FVIIIa) and the extrinsic pathway (FVIIa/tissue factor) activate FX to activated FX
(FXa) [2,3]. Prothrombin is then converted to thrombin by the assemble of FXa, activated
factor V (FVa) and Ca2+ to form prothrombinase complex, which is the only physiological
activator of prothrombin in vivo [4]. FX deficiency is one of the most severe coagulation
factor deficiencies, second only to that of hemophilia A and hemophilia B. Most mice
with homozygous knockout of the F10 die from fatal bleeding during the embryonic and
neonatal stages, and the remaining will not survive till weaning [5]. While heterozygotes
are often asymptomatic, homozygotes and compound heterozygotes are prone to severe
bleeding, depending on the degree of reduced FX activity [6–9].
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Congenital FX deficiency is autosomal recessive, and the incidence is about one in
million in general population [10–12]. Most recent data derived from the World Federation
of Hemophilia (WFH) global survey and the Rare Bleeding Disorders Database survey
(RBDD) showed that patients with FX deficiency represent 8% of the total number of
patients suffering from rare bleeding disorders worldwide (2497 vs. 30,166). Since the
first two cases of FX deficiency (Stuart and Prower) caused by congenital variants were
reported, 176 different types of genetic mutations in F10 had been reported around the
world according to the Human Gene Mutation Database (HGMD) professional 2020.3
(https://portal.biobase-international.com (accessed on 30 April 2021). Among all the types
of genetic mutation, missense and nonsense mutations caused by single-base substitutions
were the most prevalent, accounting for 78% (130 cases) of all mutations. Only a few
variants have been reported in the Chinese population, wherein there may be many
unreported variants that deserve notice [13–23]. In this study, we present a compound
heterozygous congenital FX deficiency identified in a patient, along with our exploration
of the functional defect caused by mutation.

2. Materials and Methods
2.1. Nomenclature

Variants found in the patient are reported according to the Human Genome Variation
Society (HGVS) nomenclature, with nucleotide numbering of F10 sequence (reference
NM_000504.3) starting at the ATG translation initiation codon. The A of the initiation
codon ATG in the reference cDNA is numbered +1 and the Met in the corresponding
protein reference is numbered +1. Reference transcript and protein are NM_000504.3 and
NP_000495.1, respectively. The RefSeqGene is LRG_548.

2.2. Patients and Samples

The proband was a 28-year-old Chinese male admitted to hospital for tibia fracture.
Plate fixation was successfully implemented, accompanied by an infusion of prothrombin
complex concentrate (PCC) every day. He had a history of spontaneous gum bleeding and
nose bleeding in childhood but never had major bleeding manifestation. He was diagnosed
with FX deficiency at the age of 10 due to a hematoma in the right groin and started the
administration of PCC irregularly. His parents were not consanguineous. No other family
members have experienced bleeding symptoms. In total, we studied 10 family members of
his. The venous blood samples from the proband and some of his family members were
collected using vacutainer tubes (Zhiyuan, Wuhan, Hubei, China) containing citrate for all
the tests. The sodium citrate samples were then centrifuged at 2200× g for 10 min to obtain
the plasma and peripheral blood leukocytes.

2.3. Routine Coagulation and Coagulation Factor Assays

The plasma-activated partial thromboplastin time (aPTT), prothrombin time (PT),
thromboplastin time (TT), and fibrinogen levels from the blood samples were measured
using Stago STA-R Evolution (Asnières-Sur-Seine, France). The factor X coagulation activity
(FX: C) assay method involved a one-stage prothrombin time (PT) analysis using thrombo-
plastin and factor X-deficient reagents from Diagnostic Stago (Asnières-Sur-Seine, France).
A mixing study was performed to eliminate the presence of inhibitors. FX concentrations
were determined using enzyme-linked immunosorbent assay (ELISA, human coagulation
factor X ELISA kit; ELK Biotechnology, Wuhan, China). Quality controls for all tests were
performed according to the manufacturer’s instructions.

2.4. Gene Analysis

DNA Extraction Genomic DNA was extracted from the peripheral blood leukocytes
of the proband and some of his family members using a DNA Blood Midi Kit (TsingKe,
Beijing, China) and saliva collection bottle (Charmbiotech, Wuhan, China) was used for
DNA collection and extraction of other family members.

https://portal.biobase-international.com
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Sanger sequencing Each exon, intron/exon boundary (~100 bps), and 3′-untranslated
and 5′-flanking regions, including 500 bp nucleotides within the promoter was sequenced.
PCR primers were constructed to amplify the promoter region and all eight exons including
the exon-intron junction areas of the F10 (GenBank accession No. NG_009258.1). The PCR
products were purified from agarose gel, and then sequenced using an ABI 3700 sequencer
(Applied Biosystems, Foster City, CA, USA). All the PCR primers used for sequencing are
listed in Supplementary Table S1.

2.5. Construction of Plasmid Expression Vectors

Modified F10 carrying the variant identified in the proband was generated. For this
purpose, the full-length FX cDNA (1.5 kb) was first cloned into pcDNA3.1 (Thermo Fisher
Scientific KK). Using this FX expression vector as a template, megaprimer PCR with
mutagenic primers that contain base substitution was then carried out. The resulting
vectors expressed the following proteins: wild type FX (FX-WT), FX with a substitution
c.794T > C p.Ile265Thr (FX-Ile265Thr). The empty vector (pcDNA3.1) with no FX cDNA
inserted was used as a mock control. The introduction of correct variant was verified by
DNA sequencing.

2.6. Transfection

FX expression vectors were independently introduced into Hek293T cells using Lipo-
fectamine3000 (Thermo Fisher Scientific KK). The vector expressing FX-WT and the mock
vector were introduced into the cells and used as controls. After transfection and culture for
16 h, 3 times wash with phosphate-buffered saline (PBS) was applied and the medium was
changed to serum-free DMEM for following culture for 24 h. Following this culture period,
both cells and culture media were harvested. Cells were washed with PBS and homoge-
nized in lysis buffer(Radio immunoprecipitation assay lysis buffer). After centrifugation of
12,000 rpm, 4 ◦C, for 15 min, supernatants were collected and used as cell lysate samples.
Harvested culture medium were also centrifuged, and supernatants were used as assay
samples. The collected samples were used to test the activity and concentrations of FX.
SDS-PAGE analysis under non-reducing conditions was used to analyze FX in plasma of the
proband and his parents, as well as in cells and culture medium. the concentrations of FX in
cell lysates and culture medium were determined by Enzyme-linked immunosorbent assay.

2.7. Purification of Recombinant FX-WT and FX-Ile265Thr

The expression and purification of recombinant FX-WT and FX-Ile265Thr were con-
ducted in human embryonic kidney (HEK-293) cells. The expression vectors were con-
structed as described above with 6 more His-tag at the C-terminal of the target protein.
The recombinant FXs were isolated from 500 mL cell culture supernatants by immobilized
metal affinity chromatography (Qiagen).

2.8. Activation of Recombinant FX

Recombinant FX-variant was activated by three different ways and compared di-
rectly with recombinant FX-WT in each case. Each FX (150 nM) in assay buffer (10 mM
HEPES, pH 7.5, 100 mM NaCl, 5 mM CaCl2, 1 mg/mL bovine serum albumin, 1 mg/mL
polyethyleneglycol 8000) was activated by (1) 100 nM RVV, Russell’s Viper Venom (En-
zyme Research Laboratories, Indiana, USA); (2) 60 pM FVIIa(Novo Nordisk, Bagsværd,
Denmark) in the presence of 500 pM lipidated recombinant tissue factor(Bio-Techne, Min-
neapolis, MN, USA) and (3) 5 nM FIXa(Enzyme Research Laboratories, Indiana, USA) in
the presence of 4 units/mL of FVIIIa (Hualan Biological Engineering, Xinxiang, China)
on 20 µM PE:PS:PC vesicles(5:3:2 w/w)(Avanti Polar Lipids, AL, USA). Activation of
FX was monitored by quenching samples over time into assay buffer, with 5 mM EDTA
and measuring the rate of hydrolysis of 100 mM S-2765(Hyphen biomed, Neuville sur
Oise, France) in a multifunctional microplate reader PerkinElmer Enspire(PerkinElmer
chemagen, Aachen, Germany)
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2.9. Clotting Activity

The clotting activities of both recombinant wild-type and the recombinant FX vari-
ant (rFX) were evaluated by both PT and aPTT assays using a Stago STA-R Evolution
(Diagnostica Stago, Asnieres, France) as described. The clotting activities of samples in
both assays were assessed at five different dilutions ranging from 0.2 to 3.2µg/mL FX
(final concentrations).

2.10. Thrombin Generation Assay

The thrombin generation activity of rFX variant and control was conducted in FX-
deficient plasma following manufacturer’s protocol, reagents (Technoclone Herstellung
von Diagnostika und Arzneimitteln GmbH, Vienna, Austria) and relative fluorescence
units was read in a multifunctional microplate reader (PerkinElmer Enspire). The final
concentration of FX in plasma was 8 µg/mL. Five parameters, including lag time, time
to peak (TTP), peak height (Peak, nM), area under the curve, referred to the endogenous
thrombin potential (ETP, nM*min) and the velocity index (VI), defined as VI = [peak
height/(time to peak–lag time)] were used to assess thrombin generation dynamics using
the ceveron α TGA software.

2.11. Minigene Assay

To study the splicing mutation IVS7 + 5G > A in FX, we used reverse transcription
combined with nested PCR to analyze the patient’s periphery FX ectopic transcript. For the
in-vitro splicing study, the minigene pcMINI-FX-WT/Mut was constructed, and modified
pcDNA3.1 with double promoters (CMV promoter and T7 promoter) was used (Thermo
Fisher Scientific KK) as vectors. The pcMINI-FX-WT/Mut contains exon7 and intron/exon
boundaries, as well as exonA and exonB. ExonA and ExonB are sequences with strong
splicing recognition used for splicing study before. We constructed two pairs of nested
primers and use genomic DNA as the template for nested PCR. The nested PCR products
of the second round were used as templates to amplify wild-type and mutant pcMINI
fragments of 960 bp. Vector pcMINI and fragments were digested, recovered, ligated, and
transformed into colonies for PCR identification and sequencing. 48 h after transfection of
wild-type and mutant recombinant minigene into two commonly used mammalian cell
lines for expression studies, MCF-7 and Hek-293T cells, the total RNA of the cells was
extracted. After reverse transcription synthesis of cDNA, we used primers on both sides of
minigene for PCR amplification. Agarose gel was used to detect the size of products. Sanger
sequencing was also performed. All the PCR primers used are listed in Supplementary
Table S1.

2.12. Bioinformatics Analysis

Varcards (http://varcards.biols.ac.cn/ (accessed on 30 April 2021) [24] was used To
predict the pathogenicity of missense mutation c.794T > C in F10, which includes most
commonly used predictive tools, such as SIFT, Polyphen-2, MutationTaster. NNSPLICE
(https://www.frui-tfly.org/seq_tools/splice.html (accessed on 30 April 2021) and Net-
gene2 (http://www.cbs.dtu.dk/sevices/NetGene-2/output.php (accessed on 30 April
2021)) were used to predict the pathogenicity of splicing-site mutation c.865 + 5G > A.
The species conservation of FX amino acid sequence is done in DNAMAN and presented
with a picture in Pymol using the structure (PDB number 1c5m) in Protein Data Bank
(http://www.rcsb.org (accessed on 30 April 2021).

3. Results
3.1. Genetic Analysis

Sanger Sequencing and family analysis showed that the proband carried compound
heterozygous variants: FX:NG_009258.1:g.29627T > C (Genomic description); NM_000504.3:
c.794T > C(Transcript description); NP_000495.1:p.Ile265Thr(Protein description), a mis-
sense mutation, and FX:NM_000504.3 (c.865 + 5G > A: IVS7 + 5G > A), a splicing-site

http://varcards.biols.ac.cn/
https://www.frui-tfly.org/seq_tools/splice.html
http://www.cbs.dtu.dk/sevices/NetGene-2/output.php
http://www.rcsb.org
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mutation. His father and elderly son carried the c.794T > C: p.Ile265Thr variant. His
mother, sister, niece, and twin sons carried the c.865 + 5G > A: IVS7 + 5G > A variant.
Figure 1 shows the family pedigree, and Figure 2 shows the sequencing analysis of the
two variants found in the family. Besides, no other variants were found in F10 except a
synonymous mutation c.792C > T.
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Figure 1. The pedigree of the proband with FX deficiency. The proband is compound heterozygous with c.794T > C
and c.865 + 5G > A. Genetic analysis of the family members showed that his mother, sister, niece and elderly son are
heterozygous for c.865 + 5G > A. His father and twin sons are heterozygous for c.865 + 5G > A.

3.2. Routine Coagulation Test and Coagulation Factors

The demographics and coagulation parameters of the proband and family members
are shown in Table 1. The aPTT and PT of the proband were significantly prolonged to 65.3
and 80.5 s, respectively. For the heterozygous c.794T > C or c.865 + 5G > A alone aPTT and
PT were in normal reference intervals. Other routine coagulation tests and coagulation
factors of the proband, were all in normal ranges. The prolonged aPTT and PT of the
proband were corrected by mixing studies, indicating that there were no coagulation factor
inhibitors or lupus anticoagulants. The FX activity of the proband was severely reduced to
less than 1% (reference interval: 70–120%). The FX activity of heterozygous c.794T > C was
57.2% (the proband’s father) and slightly less than 50% for c.865 + 5G > A (43.2%, 45.3%,
and 42.3% respectively for the proband’s mother, sister, and elderly son). The test of FX
concentration showed a similar trend as the FX activity, (see the detailed results in Table 1).
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Figure 2. Sequencing analysis of the family. The proband has two types of mutation in exon7 and intron7: c.794T > C
and c.865 + 5G > A. The analysis identified heterozygous mutations with c.794T > C in his father and twin sons and with
c.865 + 5G > A in his mother, sister, niece and elderly son. WT = wild type, Mut = mutation.

Table 1. Demographics and coagulation parameters of the proband and family members.

Family
Members Sex Age

(Years)
aPTT

(s)
PT
(s)

FX Activity
%

FX Antigen
%

Proband M 28 65.3 80.5 <1 49.7
Mother F 56 25.3 12.2 50.3 43.2
Father M 58 26.4 11.3 57.2 72.0
Sister F 32 30.0 12.7 40.7 45.3
Wife F 26 24.3 12.3 93.0 112.2
Son1 M 4 29.8 12.4 47.8 42.3

Son2(twin) M 1 month 38.2 12.7 - -
Son3(twin) M 1 month 37.6 13.1 - -

aPTT, activated partial thromboplastin time; PT, prothrombin time; Reference interval (n = 50): aPTT: 28.0–43.5 s;
PT: 11.0–16.0 s; FX (factor X) activity: 70–120%; FX antigen: 80–120%.

3.3. In-Vitro Expression

After the wild-type and mutant plasmids of FX-WT and FX-Ile265Thr were success-
fully constructed and respectively transfected into HEK293 cells, the FX antigen levels in the
culture supernatant and cell lysate of the transfected cells were detected by ELISA. The re-
sults(Figure 3A) showed that the FX: Ag of the mutant in cell lysates and supernatants were
96.27% (0.963 ± 0.089 ng/mL vs. 1.000 ± 0.145 ng/mL) and 97.98% (1.291 ± 0.106 ng/mL
vs. 1.317 ± 0.146 ng/mL) of that of the wild type, respectively, which indicates that FX
synthesis and secretion are normal. Western blot was used to detect the protein in the cell
lysates and culture supernatants, as well as plasmas from the proband and his parents. The
results did not show obvious difference in the molecular weight (Figure 3B). Together it
suggests that the missense mutation Ile265Thr is unlikely to affect the synthesis or secretion
of FX.
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Figure 3. (A). FX antigen levels of the transfected cells in cell lysates and supernatants using
ELISA. Data are derived from four independent measurements (SD). (B). Western Blot for the FX in
transfected cell lysates and supernatants, as well in plasma of the proband and his parents. (-: control
(empty vector); +: pcDNA3.1/FX WT; Mut: pcDNA3.1/FX Mut Thr265; P: Proband; M: Mother;
F: Father).

3.4. Activation of Recombinant FX-WT and FX-Ile265Thr

Chromogenic assays indicated that at the condition of 100 nM RVV, both 150 nM
FX-WT and FX-Ile265Thr were almost completely activated in 5 min while the latter was
activated little less efficiently (final FXa 132 nM vs.148 nM, Figure 4A). FX-WT and FX-
Ile265Thr have indistinguishable reaction kinetics with the chromogenic substrate S-2765
(Figure 4A). Activation of FX-WT and FX-Ile265Thr by the intrinsic way (FIXa/FVIII)
(Figure 4B) and extrinsic way (FVIIa/TF) also showed no obvious difference except FX-
Ile265Thr occurred at about 80% of the FX-WT rate (final FXa 81 nM vs.101 nM, Figure 4C).
These results indicated that there is no obvious difference between the two FXs in the three
activation pathways.

3.5. Clotting Activity of Recombinant FX

Clotting activities of recombinant FX-WT and FX-Ile265Thr were evaluated using both
PT and aPTT assays. In the aPTT assay, the result of the clotting activities indicated that
the recombinant FX-WT exhibits a dose-dependent activity and showed activity in normal
range when FX-WT > 1.6 µg/mL. However, FX-Ile265Thr only showed slightly increased
clotting activity (aPTT shortened 20.7%) when its concentration was rised to 3.2 µg/mL
from 0.2 µg/mL) (Figure 5A). In the PT assay, the clotting activity of the recombinant
FX-WT exhibits a dose-dependent activity as well. However, FX-Ile265Thr only increased
about 12.7% (Figure 5B). These results are in agreement with the clotting data obtained
from the patient’s plasma.
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Figure 4. (A). Activation of recombinant FX-WT and FX- Ile265Thr by RVV. RVV(100 nM) was used to activate 150 nM
FX-WT (l) or FX-Ile265Thr (n) at 37 ◦C. The concentration of FXa was monitored by measuring the rate of chromogenic
substrate hydrolysis as described under “Materials and Methods.” (B). Activation of recombinant FX-WT and FX- Ile265Thr
by extrinsic way. 150 nM FX-WT (l) or FX-Ile265Thr (n) were activated by 60 pM FVIIa in the presence of 500 pM
lipidated tissue factor. (C). Activation of recombinant FX-WT and FX- Ile265Thr by intrinsic way. 150 nM FX-WT (l) or
FX-Ile265Thr (n) were activated by 5 nM FIXa in the presence of 4 units/mL FVIIIa on 20µM PE:PS:PC vesicles(5:3:2 w/w).
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3.6. Thrombin Generation Assay Analysis

According to the TGA results (Figure 6), the endogenous thrombin potential (ETP)
value in the plasma with recombinant FX-Ile265Thr was 399.6 ± 1.2 nM*min, which
is markedly lower compared to that of recombinant FX-WT (1684.2 ± 23.1 nM*min),
indicating a decreased amount of thrombin generation. Both the peak (36.4 ± 1.4 nM vs.
396.2 ± 7.0 nM) and velocity-index levels (198.08 ± 3.51 vs. 5.27 ± 0.59) of the plasma
with FX-Ile265Thr were much lower than those of the recombinant FX-WT, suggesting a
decrease in the maximal concentration and rate of thrombin generation. Consistently, both
the TTP (Time to peak) and lag-time values of the FX-WT were prolonged compared to
those of the FX-Ile265Thr (14.3 ± 0.9 min vs. 7.0 ± 0 min and 7.3 ± 0.5 min vs. 5.0 ± 0 min,
respectively). These results indicated that the proband had a defect in thrombin generation
due to the missense mutation of FX.

3.7. Minigene Assay

For the splicing mutation IVS7 + 5G > A in F10, the minigene pcMINI-FX-WT/Mut was
constructed. The pcMINI-FX-WT/Mut is with intro6(363 bp)-Exon7(118 bp)-intro7(479 bp)
inserted into pcMINI vector. Sequencing of the minigenes is showed in Figure 7A. The
RT-PCR results showed that in 293T and MCF-7 cells, the wild type had a band of the ex-
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pected sizes (band a, 507 bp, Figure 7B), and the mutant type had a band of the same
size. All the bands were sent for sequencing. Expected splicing mode is shown in
Figure 7C. Sequencing results show that band a was a normal splicing band, and its
splicing mode is ExonA-Exon7(118 bp)-ExonB. (Figure 7D). According to the minigene
assay, the splicing mutation does not affect the normal splicing.
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Above is the graph of thrombin generation and below are the parameters of this assay. Data are
derived from three independent measurements (SD).
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Figure 7. (A). Sequencing of the pcMINI-FX-WT and pcMINI-FX-Mut. (B). Agarose Gel Electrophoresis for the PCR
products in 293T and MCF-7 cells (band a). (C). The construction method of the pcMINI-FX-WT/Mut and splicing mode.
Modified pcDNA3.1 with double promoters(CMV promoter and T7 promoter) was used (Thermo Fisher Scientific KK) as
vectors. The pcMINI-FX-WT/Mut contains exon7 and intron/exon boundaries, as well as exonA and exonB. ExonA and
ExonB are sequences with strong splicing recognition used for splicing study before. (D). Sequencing of the PCR products
using designed primers.
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3.8. Bioinformatics Analysis

According to Varcards, the missense mutation c.794T > C: p.Ile265Thr in FX is pre-
dicted to be damaging with a damaging score of 0.83 (SIFT: damaging; Polyphen-2: pos-
sibly damaging; MutationTaster: disease-causing). Ile265 of FX is a highly conserved
amino acid among different species (Figure 8A). It is also high conserved across homo-
logues and is either Ile or Leu in FVII (Factor VII), FIX (Factor IX), PC (Protein C) and
even chymotrypsin (Figure 8B). In the FX protein structure, Ile265 is in a region with a
highly conservative score (Figure 8C). NNSPLICE analysis of the splicing-site mutation
c.865 + 5G > A: IVS7 + 5G > A shows that the original donor site score would decrease
from 0.99 to 0.86 and Netgene2 analysis shows that confidence score would decrease from
1.00 to 0.92, which both predict the mutation to affect the normal splicing.
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4. Discussion

In this article, we analyzed a proband with severe FX deficiency who has experi-
enced abnormal bleeding since childhood. Genetic analysis revealed compound het-
erozygosity of a missense mutation c.794T > C: p.Ile265Thr and a splicing-site mutation
c.865 + 5G > A: IVS7 + 5G > A in the proband. According to the HGMD, the two mutations
found in the present Chinese family are novel mutations never described before. According
to The Genome Aggregation Database (gnomAD, https://gnomad.broadinstitute.org (ac-
cessed on 15 July 2021), a similar variant p.Ile265Ser has been described in one individual
but lacking information.

The aPTT and PT of the proband were significantly prolonged to 65.3 s and 80.5 s,
respectively. The FX activity of the proband was severely reduced to less than 1% and
the FX antigen level was 49.7%. These explains his suffering from abnormal spontaneous
bleeding. Genetic analysis of these two mutations in this Chinese pedigree helps confirm
congenital FX deficiency and guide clinical practice.

Congenital FX deficiency is generally divided into two types: type I (reduction of both
FX activity and antigen) and type II (reduction of FX activity and normal antigen). Here,
the proband has reduced FX activity and FX antigen level, however, not proportional. PCCs
(Prothrombin complex concentrates), pd-FX/FIX (plasma-derived FX/FIX concentrate),
and FFP (Fresh frozen plasma) are the main agents used in the treatment of congenital
FX deficiency. However, FFP can be associated with some complications, particularly in
children and elderly patients with cardiac disease [25]. PCCs containing FX is associated
with the risk of thromboembolic complication due to the high concentrations of FII, FVII,
and FIX in these preparations. In addition to FFP and PCC, which were largely used in
the past, a recently developed freeze-dried human coagulation FIX/FX concentrate with
specified FIX/X content has facilitated prophylaxis. In 2016, a high-purity pd-FX called
Coagadex (Bio Products Laboratory, Elstree, UK) was developed as a therapeutic agent
for congenital FX deficiency and has since been approved for use in the United States
and Europe [10]. While FX replacement with pd-FX is recommended for congenital FX
deficiency patients, the use of pd-FX has not yet been approved in China [25–27]. In this
article, the proband uses PCCs irregularly during daily life while regularly during the
perioperative period.

In our research, in-vitro expression study showed normal intracellular synthesis and
extracellular secretion of FX-Ile265Thr compared to FX-WT. And activation experiments
indicated that in the three pathways, there is no obvious difference between the two FXs
except slightly decrease in activation rate of FX-Ile265Thr. Clotting assay and thrombin
generation assay both demonstrated low activity of FXa-Ile265Thr in clotting and thrombin
generation. All these results suggested that the low activity of the mutant FX-Ile265Thr
is caused by a decrease in enzyme activity rather than self-activation. Ile265 of FX is
conserved among different species and homologues is either Ile or Leu at this position in
FVII (Factor VII), FIX (Factor IX), PC (Protein C), which is in a highly conservative structure.
Ile265 is a large and non-polar hydrophobic amino acid present in β-strand C in serine
protease subdomain 1 [9], and in a hydrophobic environment between Gly259 to Leu266.
The catalytic domain contains the catalytic sites (His236, Asp282, and Ser379), which are
essential to the catalytic ability of FX. The replacement by polar neutral amino acid Thr265
may impair the correct folding of this protein or perturb the catalytic triad. Other mutations
spatially close to Ile265 may help us understand the possible mechanism. The mutation
c.785G > A Gly262Asp was reported by Herrmann et al. [7] and Peyvandi et al. [9] Three
patients homozygous for Gly262Asp were all with the FX: C and FX antigen levels both
less than 1%. Jayandharan et al. reported a 2-year-old male with FX: C < 1%, who was
homozygous for mutation Gly263Arg. At the same position, Gly263Val was reported by
Nagaya et al. in a 27-year-old female. Molecular modeling demonstrated that the amino
acid substitution at this position disrupts the correct folding of FX. In-vitro expression
indicated that Gly263Val protein was secreted less efficiently than the wild-type protein,
although they were synthesized normally in the cell [28].

https://gnomad.broadinstitute.org
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At present, 11 splice-site mutations in the F10 have been reported, but only two have
been studied using in vitro splicing and ectopic transcript analysis [13,29]. To study the
mutation c.865 + 5G > A: IVS7 + 5G > A, we used in vitro splicing and ectopic transcript
analysis. However, due to the low expression of FX in the whole blood, no targeted
band was found by agarose gel electrophoresis after 3 rounds of nested PCR amplifica-
tion (primers are listed in Supplementary Table S1). Minigene assay was used to study
in vitro splicing. However, the minigene vectors in two kinds of mammalian cell lines
showed no difference between FX/WT and FX/Mut (c.865 + 5G > A: IVS7 + 5G > A).
Although the results of the minigene assay showed no difference, the pedigree survey,
genetic analysis, and parameters of the proband and his family members all indicated
that the mutation c.865 + 5G > A: IVS7 + 5G > A could contribute to causing FX deficiency
along with Ile265Thr. NNSPLICE and Netgene2 analysis of the splicing-site mutation
c.865 + 5G > A: IVS7 + 5G > A both predict the mutation to affect the normal splicing as
well. The splicing reporter minigene assay can nevertheless present some limitations. In
the minigene assay, the heterologous cellular system used in the minigene assay may not
fully reflect the splicing regulatory process involved in the affected tissue [30]. However,
Ding et al. reported a 46-year-old Chinese male, who has factor VII (FVII) deficiency
with IVS1 + 5G > A in F7, which resulted in two novel aberrant patterns of splicing [31].
Moreover, IVS2 + 5G > T, IVS3 + 5G > A, IVS7 + 5G > A in F7 all resulted aberrant patterns
of splicing [32–34]. In F9, IVS1 + 5G > A, IVS1 + 5G > T, IVS1 + 5G > C, IVS2 + 5G > A,
IVS2 + 5G > T, IVS2 + 5G > C, IVS3 + 5G > A, IVS3 + 5G > C, IVS4 + 5G > A are all re-
ported previously to be associated with haemophilia B. In PROC(protein C), IVS3 + 5G > A,
IVS5 + 5G > A, IVS5 + 5G > T, IVS5 + 5G > C are all reported to result in protein C defi-
ciency [34,35]. Moreover, IVS5 + 5G > A and IVS19 + 5G > A in F8 are demonstrated to be
associated with haemophilia A caused by impaired splicing patterns [36,37]. Considering
the homology of FX, FVII, FIX, and protein C, the mutation we identified, IVS7 + 5G > A in
F10 is quite likely to cause FX deficiency.

In the present study, we observed that the mutation c.794T > C: p.Ile265Thr or
c.865 + 5G > A: IVS7 + 5G > A alone could cause decreased FX concentration or activity
without causing clinical bleeding. However, when present together, they caused severe
bleeding. Therefore, we may preliminarily conclude that these two sequence variant sites
have a dose-effect relationship and cause FX deficiency. Similar cases of compound het-
erozygous mutations have been also reported by many studies [14,38–42]. Our research
reported two novel unreported mutations for the first time, and conducted in vitro func-
tional studies on them to find potential pathogenic mechanism also. However, there are
some limitations for our research. Firstly, a whole genome sequencing is necessary to rule
out potential pathogenic deep intronic variant in the future. Secondly, we will adjust and
repeat our minigene assay to simulate a situation closer to the endogenous expression.
Nevertheless, how the mutation Ile265Thr impairs the enzyme activity of FX and how the
splicing mutation IVS7 + 5G > A of FX functions need further functional research in depth
to be done.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12101521/s1, Table S1: PCR primers and sequence in “Materials and methods”.
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