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Abstract: Diabetes is emerging as an epidemic and is becoming a public health concern worldwide.
Diabetic nephropathy is one of the serious complications of diabetes, and about 40% of individuals
with diabetes develop diabetic nephropathy. The consistent feature of diabetes and its associated
nephropathy is hyperglycemia, and in some cases, hyperamylinemia. Currently, the treatment
includes the use of medication for blood pressure control, sugar control, and cholesterol control,
and in the later stage requires dialysis and kidney transplantation, making the management of this
complication very difficult. Bioactive compounds, herbal medicines, and extracts are extensively used
in the treatment and prevention of several diseases, and some are reported to be efficacious in diabetes
too. Therefore, in this study, we tried to identify the therapeutic potential of phytochemicals used in
in silico docking and molecular dynamic simulation studies using a library of 5284 phytochemicals
against the two potential targets of type 2 diabetes-associated nephropathy. We identified two
phytochemicals (i.e., gentisic acid and michelalbine) that target human amylin peptide and dipeptidyl
peptidase-4, respectively, with good binding affinity. These phytochemicals can be further evaluated
using in vitro and in vivo studies for their anti-hyperglycemia and anti-hyperamylinemia effects.

Keywords: diabetic nephropathy; phytochemicals; molecular docking; molecular dynamics simulation;
in-silico study

1. Introduction

In recent years, diabetes has become an epidemic and a public health concern worldwide.
The estimated global incidence and prevalence of diabetes were estimated to be 26.6 million
and 570.9 million, respectively, by 2025 [1]. Diabetes is considered to be responsible for 80% of
death associated with premature non-communicable diseases (NCDs), including others such
as cancer and cardiovascular and respiratory diseases [2]. There has been an increase in the
global burden of diabetes, which will be soaring high in the future. Additionally, according to
the WHO, by 2030, it will become the seventh-largest cause of death globally [3].

Diabetes mellitus (DM) is an endocrine disease caused by chronic hyperglycemia
associated with a relative or absolute insulin deficiency, i.e., there can be a defect in insulin
secretion, its action (insulin resistance), or both [4]. The glucose levels are regulated by
the negative feedback mechanism, which regulates the levels of insulin and glucagon in
the blood, thereby maintaining homeostasis. The disruption in this regulatory pathway
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results in altered glucose levels in the bloodstream, resulting in various complications [5].
The growing incidence of DM is a global health issue that appears to be caused by lifestyle
changes, rising obesity rates, and population aging [1,6]. Diabetes is classified into two
types, the first one being type I DM, which is an autoimmune disorder wherein the β cells
are destroyed, affecting the secretion of insulin [7]. The second is type II DM, where the
insulin secretion is reduced or resistance is developed against insulin, thereby hindering its
action [8]. As a result, people with diabetes are at an increased risk of diabetic retinopathy,
neuropathy, nephropathy, and cardiovascular diseases [9,10].

Osteopenia and bone fragility are some of the problems faced by many people with
diabetes, which are caused either by residual insulin secretion or high insulin requirements.
Apart from osteopenia, chronic hyperglycemia affects hemodynamic and metabolic home-
ostasis, which results in vascular dysfunction [11,12]. Diabetic nephropathy is the major
cause of end-stage renal disease brought on by diabetes mellitus [13].

Diabetic nephropathy (DN) is characterized by changes in the kidney structure and is
diagnosed by a group of clinical symptoms, primarily the persistent microalbuminuria that
occurs in both, type I and type II DM. It involves increased levels of albuminuria, i.e., more
than 300 mg/24 h in the urine [14]. The presence of albumin in the urine suggests that the
globular filtration rate has decreased, which is another DN feature affecting renal function.
The increased glucose levels activate various pathways such as protein kinase C and polyol
and produce reactive oxygen species [15]. The elevated levels of cytokines and chemokines
increase the vascular permeability, eventually leading to podocytopathy, thickening of
the glomerular basement membrane, Kimmelstiel–Wilson (K-W) nodule formation, and
glomerular mesangial matrix expansion [16,17]. One of the reasons for the increasing death
rate among diabetes mellitus patients is primarily caused by diabetes nephropathy [18].

Over time, at least 40% of individuals with diabetes develop diabetic nephropathy [19].
There is a need to understand the link between diabetic nephropathy and diabetes mellitus
to bridge the gap and develop effective therapeutics to cure the patient and improve
their life [20,21]. However, controlling the glucose levels has been associated with halting
the progression of diabetic nephropathy, although the exact underlying mechanism is
unknown [22]. Another feature reported in the case of DN is the deposition of amylin
amyloids in the kidneys [23].

Overall, two main features can be linked to cases of diabetes nephropathy condition:
(1) hyperglycemia; (2) hyperamylinemia. Therefore, targeting these two factors can effec-
tively control the progression of diabetic nephropathy.

Current Treatment Problems

Optimal cholesterol and blood pressure management, exercise, diet, and lifestyle thera-
pies are advised to control diabetes-related complications such as diabetic nephropathy [24].
However, no therapeutic intervention is available for this diabetes nephropathy, and only
symptomatic relief and hyperglycemic control medicines are provided.

From ancient times naturally occurring bioactive compounds, i.e., secondary metabo-
lites and plant extracts, have been used for their medicinal properties [25]. In the pharma-
ceutical industry, 30–50% of compounds are derived from herbal medicines and extracts [26].
Strategizing these photochemical against the two important targets of diabetes associated
with nephropathy will be of great significance. A wide range of natural compounds
identified in several plant species (Carthamus tinctorius, Acacia Arabica, Aegle marmelose,
Azadirachta indica, and Caesalpinia bonducella etc.) have shown therapeutic value in the case
of diabetes [27,28].

In the current research paper, we tried to evaluate the in silico activity of photochem-
icals against the major targets (DPP4 and amylin) of type II diabetes involved in diabetic
nephropathy. Dipeptidyl-peptidase 4 (DPP4), a glycoprotein, acts as an exopeptidase that
cleaves neuropeptides, incretin hormone, glucagon-like peptide, and glucose-dependent in-
sulinotropic polypeptide (GIP) [29]. The release of GLP-1 and GIP peptides is important for
maintaining the glucose level in the blood, as they control the insulin and glucagon secretion
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from the pancreas. The excess degradation of GLP-1 and GIP by DPP-4 can be related to
the hyperglycemia condition, which can be corrected by blocking the DPP-4 activity. It is
targeted by inhibitors such as the gliptin family of drugs for controlling type 2 diabetes [30].
Recent reports have shown the benefits of giving DPP4 inhibitors to diabetic nephropathy
patients. In US, there has been a significant increase in the uptake of new diabetic medications
targeting DPP4, which have been reported to be beneficial in improving patient outcomes
with DN [31]. In another retrospective, an observational cohort study was performed to
evaluate the reno-protective effects of DPP-4 inhibitors, urine albumin excretion, and eGFR,
which were found to be significantly reduced after the administration of DPP-4 inhibitors
in T2DM patients [32]. The role of DPP4 and its inhibitors is now also being studied to
target fibrotic and inflammatory pathways in diabetic nephropathy conditions, making it
an upcoming target [33]. The C-reactive protein (CRP) has been found to be pathogenic,
and its expression is significantly correlated with dipeptidyl peptidase-4 (DPP4) diabetic
nephropathy patients, although the reason is unknown; however, studies performed on mice
with DPP4 inhibitors have effectively blocked this CRP-driven DN [34]. A study on DPP-4
inhibition with angiotensin II receptor blockers showed significantly reduced urinary albumin
excretion and oxidative stress in diabetic eNOS knockout mice [35]. DPP4 inhibitors have also
been evaluated for their role in inflammation associated with DN, and it has been reported
that they can attenuate the inflammasome activation and the progression of DN in T2DM
mice [36]. Additionally, research groups are also working on fluorescent probes such as
GP-DCMNH2 for the early detection of DPP4 as a biomarker for diabetic nephropathy, and
the early evidence has shown stronger fluorescence signals in the kidneys and blood of mice
with diabetic nephropathy [37]. There are ample pieces of evidence suggesting the role of
DPP4 as a potent target for DN and a good target for our virtual screening study.

The other target is amylin (IAPP), an amino acid peptide hormone co-secreted with
insulin [38]. Its levels have been reported to be reduced in type II diabetes, and its amyloid
deposits have been found in the pancreatic and kidney tissues of diabetes nephropathy
patients [23]. The amylin deposition was related to the disease severity, as shown in a
study done on 149 patients with biopsy-proven diabetic nephropathy [23]. It has been
discussed that controlling the deposition of amylin can help in protecting renal function.
MicroRNA (MicroRNA-375)-based studies have also shown islet amyloid deposition in the
pancreas, as well as in other organs [39]. These facts suggest the important role played by
native amylin in controlling the glycemic level, i.e., the amylin amyloid formation can be
considered one of the potent targets for diabetic nephropathy. Therefore, targeting amyloid
formation can be one of the strategies to control diabetes-associated nephropathy, as shown
in Figure 1 [40].
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Based on the literature and clinical evidence, these two potential target proteins, i.e.,
DPP4 and amylin, can be modified to control the hyperglycaemic and hyperamylinemia
conditions associated with diabetes-associated nephropathy [41].

2. Methodology
2.1. Target Receptor Preparation

The 3D structures of our target receptors, human DPP-4 (PDB ID-2ONC) and human
amylin interaction (2L86) were downloaded from the Research Collaborator for Structural
Bioinformatics Protein Data Bank (RCSB PDB) [42]. The downloaded structures were
subjected to protein preparation and refinement using the Maestro package in Schrodinger
Suites 202. Using the Schrodinger workflow [43], the missing hydrogen atoms and missing
side chains were added, and the bond orders were assigned. The OPLS3e force field was
used for re-strained minimization for the final refinement of the structure. The receptor
grid was generated around the SY1 ligand for human DPP-4 (PDB ID-2ONC) and around
the full amylin peptide.

2.2. Ligand Preparation

The LigPrep tool was used to prepare the 3D structures of 5284 photochemicals down-
loaded from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on
3 June 2022). The structures of all ligands were imported into the project table in maestro
and prepared for docking using the OPLS3e forcefield for the final energy minimization step.

2.3. Docking Protocol

The docking study was performed and the binding affinities of 5284 photochemicals
against both the receptors of DPP-4 and amylin peptide were calculated. For docking, the
high-throughput virtual screening mode was selected to screen the photochemical library
in the Glide software.

2.4. In silico Pharmacokinetic Assessment of Investigated Compounds (ADMET)

The Qikprop 2.5 tools from Schrodinger software were used to calculate the ADME
properties of all phytochemicals, as the predictions of physico-chemically significant de-
scriptors and pharmacokinetically relevant properties form significant features for the
development of drugs [22]. QikProp is a quick, accurate, and authentic tool that provides a
range of parameters for evaluating drug-like properties and comparing them with known
drugs [44]. It evaluates such properties based on one of the most important rules, i.e.,
Lipinski’s rule [45], for defining a drug’s molecular properties as significant in evaluating a
drug’s pharmaco-kinetics. We also used the admet SAR online server for the prediction of
properties such as BBB permeability, cytochrome p450 inhibition, and acute oral toxicity.

2.5. Molecular Dynamics Simulation

The Desmond MD simulation package was used to perform the simulation study
of the best ligand-receptor complex [46] (human DPP-4 michelalbine and human amylin
gentisic acid complex) to evaluate their safety. General workflows such as solvating the
complex using a system builder and adding counter ions to neutralize the system were
used. To minimize the system, the steepest descent steps were used. Additionally, the
system was gradually heated from 0 to 310 K, and before the run the system was allowed
to run using the thermostat setting method and pressure relaxation method for 5 ns each,
respectively. Overall, a simulation of 100 ns was performed, and 5000 frame trajectories
were generated every 10 ps.

https://pubchem.ncbi.nlm.nih.gov/
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3. Results and Discussion
3.1. Docking Study

Our study involving the screening of phytochemicals suggests a promising bind-
ing affinity against the potential targets of diabetic nephropathy. As mentioned earlier,
amongst the 5284 phytochemicals that were screened against the human DPP-4 and hu-
man amylin, michelalbine (Docking score: −7.1) and gentisic acid (Docking score: −6.5)
show good binding affinity to their respective targets (Figures 2 and 3). Gentisic acid is a
phenolic acid found in various natural plants and fruits such as Citrus spp., Vitis vinifera,
Hibiscus rosa-sinensis, pears, and some mushrooms [47]. Michelalbine, an aporphine alka-
loid, can be isolated from Chelonanthus albus, Annona cherimola, Liriodendron tulipifera, and
Artabotryshexapetalus [48].

Molecules 2022, 27, x FOR PEER REVIEW 5 of 11 
 

 

known drugs [44]. It evaluates such properties based on one of the most important rules, 
i.e., Lipinski’s rule [45], for defining a drug’s molecular properties as significant in 
evaluating a drug’s pharmaco-kinetics. We also used the admet SAR online server for the 
prediction of properties such as BBB permeability, cytochrome p450 inhibition, and acute 
oral toxicity. 

2.5. Molecular Dynamics Simulation 
The Desmond MD simulation package was used to perform the simulation study of 

the best ligand-receptor complex [46] (human DPP-4 michelalbine and human amylin 
gentisic acid complex) to evaluate their safety. General workflows such as solvating the 
complex using a system builder and adding counter ions to neutralize the system were 
used. To minimize the system, the steepest descent steps were used. Additionally, the 
system was gradually heated from 0 to 310 K, and before the run the system was allowed 
to run using the thermostat setting method and pressure relaxation method for 5 ns each, 
respectively. Overall, a simulation of 100 ns was performed, and 5000 frame trajectories 
were generated every 10 ps. 

3. Results and Discussion 
3.1. Docking Study 

Our study involving the screening of phytochemicals suggests a promising binding 
affinity against the potential targets of diabetic nephropathy. As mentioned earlier, 
amongst the 5284 phytochemicals that were screened against the human DPP-4 and 
human amylin, michelalbine (Docking score: −7.1) and gentisic acid (Docking score: −6.5) 
show good binding affinity to their respective targets (Figures 2 and 3). Gentisic acid is a 
phenolic acid found in various natural plants and fruits such as Citrusspp., Vitis vinifera, 
Hibiscus rosa-sinensis, pears, and some mushrooms [47]. Michelalbine, an aporphine 
alkaloid, can be isolated from Chelonanthus albus, Annona cherimola, Liriodendron tulipifera, 
and Artabotryshexapetalus [48]. 

 
Figure 2. Interaction of human DPP-4 (PDB ID-2ONC) with michelalbine. 

Figure 2. Interaction of human DPP-4 (PDB ID-2ONC) with michelalbine.
Molecules 2022, 27, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 3. Human amylin’s interaction (2L86) with gentisic acid. 

3.2. ADMET Analysis 
The pharmaceutically relevant properties were predicted in silico using the QikProp 

tool. It is an advanced tool that helps in calculating the drug-like parameters of novel 
compounds and helps in filtering out compounds at an early stage of drug discovery [49]. 
In our study, both molecules with the best binding affinity showed drug-like properties 
(Table 1) and also followed the Lipinski rule of 5. The compound michelalbine is 
predicted to be a substrate for CYP2D6 and CYP3A4 enzymes involved in the 
biotransformation process and can inhibit the CYP2D6 enzyme, while gentisic acid is 
neither a substrate of the CYP enzymes nor an inhibitor. However, category III toxicity 
was predicted for both of these compounds, which requires further in vitro evaluation, as 
these are phytochemicals from commonly used edible plant species. 

Table 1. ADMET results for the top molecules. 

S.No Receptor Best Molecule mol_MW donorHB accptHB PSA BBB 

Cytochrome 
p450 

Inhibition/Subst
rate 

Oral 
Acute 

Toxicity 

1 DPP-4 Michelalbine 281.31 2 4.7 52.139 0.9739 

Substrate for 
CYP2D6 and 

CYP3A4/Only 
inhibit CYP2D6 

Category-I
II 

2 Amylin Gentisic acid 154.122 2 2.5 91.598 0.9350 Non-inhibitor/no
n- substrate 

Category-I
II 

3.3. MMGBSA Analysis 
The MMGBSA binding energies (Table 2) were obtained for both targets, i.e., amylin 

and DPP-4, with their complexes over a period of 100 ns. For DPP-4, the Coulomb energy 
(Coulom b) made a major contribution, followed by the van der Waals force, while in the 
case of the Human amylin gentisic acid complex, the major contributing force was the 
van der Waalsforce.  

Figure 3. Human amylin’s interaction (2L86) with gentisic acid.



Molecules 2022, 27, 4980 6 of 11

3.2. ADMET Analysis

The pharmaceutically relevant properties were predicted in silico using the QikProp
tool. It is an advanced tool that helps in calculating the drug-like parameters of novel
compounds and helps in filtering out compounds at an early stage of drug discovery [49].
In our study, both molecules with the best binding affinity showed drug-like properties
(Table 1) and also followed the Lipinski rule of 5. The compound michelalbine is predicted
to be a substrate for CYP2D6 and CYP3A4 enzymes involved in the biotransformation
process and can inhibit the CYP2D6 enzyme, while gentisic acid is neither a substrate of
the CYP enzymes nor an inhibitor. However, category III toxicity was predicted for both of
these compounds, which requires further in vitro evaluation, as these are phytochemicals
from commonly used edible plant species.

Table 1. ADMET results for the top molecules.

S.No Receptor Best Molecule mol_MW donorHB accptHB PSA BBB Cytochrome p450
Inhibition/Substrate Oral Acute Toxicity

1 DPP-4 Michelalbine 281.31 2 4.7 52.139 0.9739 Substrate for CYP2D6 and
CYP3A4/Only inhibit CYP2D6 Category-III

2 Amylin Gentisic acid 154.122 2 2.5 91.598 0.9350 Non-inhibitor/non- substrate Category-III

3.3. MMGBSA Analysis

The MMGBSA binding energies (Table 2) were obtained for both targets, i.e., amylin
and DPP-4, with their complexes over a period of 100 ns. For DPP-4, the Coulomb energy
(Coulom b) made a major contribution, followed by the van der Waals force, while in the
case of the Human amylin gentisic acid complex, the major contributing force was the van
der Waalsforce.

Table 2. Binding energies (MMGBSA) of the target and the best phytochemicals.

Target Phyto-Chemical MMGBSA dG Bind MMGBSA dG
Bind Coulomb

MMGBSA dG
Bind Covalent

MMGBSA dG
Bind Solv GB

MMGBSA dG
Bind vdW

Human amylin Gentisic Acid 0.057796044 0.015605996 0.030187095 0.043943182 −0.031940229

DPP-4 Michelalbine −38.17881278 −50.49822686 0.999651095 54.78785013 −29.32973714

3.4. RMSD Analysis

The stability of ligand-protein interactions was investigated using an MD simulation
study over 100 ns (Figure 4), and the interactions were analyzed using RMSD and RMSF
analyses. For the human amylin–gentisic acid complex, the protein RMSD was stable for
most of the duration, and at around 20 ns a fluctuation of 1.6 A was observed, but the
ligand was found to fluctuate throughout the duration of the simulation. In the case of the
DPP-4 and michelalbine complex, the protein and ligand RMSD values were very stable
throughout the 100 ns, showing a good interaction. For the gentisic acid–amylin complex,
the RMSD was not very stable, and the ligands showed fluctuations.
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3.5. Ligand Properties

The ligand parameters such as RMSD, radius of gyration, polar surface area, and molec-
ular surface area were calculated and analyzed, as shown in Figure 5 [50]. Fo rmichelalbine
interacting with DPP-4, significantly less fluctuation was seen throughout the simulation and
no intramolecular hydrogen bond was detected. For the gentisic acid–amylin interaction, a
high fluctuation up to 20 ns was observed for the RMSD, PSA, and rGyr values, followed by a
stable equilibrium stage throughout the entire simulation duration.
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3.6. Protein-Ligand Interaction Contacts

The protein-ligand contact histograms were plotted for stable interactions during the
simulation (Figure 6). The four major types of interaction, including ionic interactions,
hydrophobic interactions, water bridges, and hydrogen bonds, were used to analyze the
protein-ligand contacts. In the case of DPP-4 and michelalbine, the major amino acids were
involved in the interactions using the H-bonds (GLN_153, GLU_191, THR_129, TYR_128),
hydrophobic interactions (TRP_124, TYR_195, VAL_252), and water bridges (GLN_123,
ASP_192, TYR_211, ARG_253). However, the amylin interacted with gentisic acid with
mainly hydrogen bonds (LYS_1, CYS_2, SER_19, ASN_21 THR_29, ASN_31, ASN_35),
water bridges (ASN_3, ARG_11, SER_19, ASN_21, SER_28, THR_30, TYR_37), and very
less ionic interactions (LYS_1, ASN_22, SER_29).
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This study suggests the idea of employing traditionally used phytochemicals and
medicinal plants for their activity against targets of diabetes nephropathy. Although some
early studies targeting diabetes nephropathy have been reported, such as whenAKT1 and
MAPK8 were targeted with myriocin using network biology and molecular docking ap-
proaches [51]. In another study, GeneCards, OMIM, TTD, DisGeNET, and DrugBank were
used to identify the potential target and it was reported that the Yishen capsule interfered
with the HIF-1α and JAK/STAT signaling pathways [52]. In another attempt, lisinopril
drug analogs were created by replacing functional groups to improve inflammation control
in the case of diabetic nephropathy [53]. Pathogen pathways such asmTOR and reduced
autophagy have also been targeted using compounds such as santalin A [54]. However,
our study has the advantage of using a strategically chosen target, keeping in mind the
pathophysiology of diabetic nephropathy—hyperglycemia and hyperamylinemia.

4. Conclusions

The use of natural products has a successful history of efficacious effects on various
diseases, including diabetes. However, very few studies have been reported explaining
the role of natural compounds in diabetes associated with nephropathy. As hyperglycemia
and amyloid deposits are the principal factors responsible for the structural alterations at
the renal level, glycemic control remains the main target for therapy in patients with the
potential for the development of diabetic nephropathy. Our virtual screening study of the
phytochemical library against the two main targets, i.e., DPP-4 and human amylin, led to
the determination of compounds (michelalbine and gentisic acid, respectively) with the
best theoretical affinity, as described in the study. Further, more target information on these
compounds is needed for drug interventions, long-term drug design, in vitro and in vivo
evaluations, and preparation in terms of the clinical trial applications so that they can be
used for diabetes-associated nephropathy.
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