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Abstract

Background: Ultra-deep pyrosequencing (UDPS) is used to identify rare sequence variants. The sequence depth is
influenced by several factors including the error frequency of PCR and UDPS. This study investigated the characteristics and
source of errors in raw and cleaned UDPS data.

Results: UDPS of a 167-nucleotide fragment of the HIV-1 SG3Denv plasmid was performed on the Roche/454 platform. The
plasmid was diluted to one copy, PCR amplified and subjected to bidirectional UDPS on three occasions. The dataset
consisted of 47,693 UDPS reads. Raw UDPS data had an average error frequency of 0.30% per nucleotide site. Most errors
were insertions and deletions in homopolymeric regions. We used a cleaning strategy that removed almost all indel errors,
but had little effect on substitution errors, which reduced the error frequency to 0.056% per nucleotide. In cleaned data the
error frequency was similar in homopolymeric and non-homopolymeric regions, but varied considerably across sites. These
site-specific error frequencies were moderately, but still significantly, correlated between runs (r = 0.15–0.65) and between
forward and reverse sequencing directions within runs (r = 0.33–0.65). Furthermore, transition errors were 48-times more
common than transversion errors (0.052% vs. 0.001%; p,0.0001). Collectively the results indicate that a considerable
proportion of the sequencing errors that remained after data cleaning were generated during the PCR that preceded UDPS.

Conclusions: A majority of the sequencing errors that remained after data cleaning were introduced by PCR prior to
sequencing, which means that they will be independent of platform used for next-generation sequencing. The transition vs.
transversion error bias in cleaned UDPS data will influence the detection limits of rare mutations and sequence variants.
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Background

Ultra-deep pyrosequencing (UDPS), which is one of the

applications of next-generation sequencing (NGS), offers new

possibilities to detect minority sequence variants [1,2,3,4]. UDPS

involves sequencing of very large numbers of single DNA template

molecules that usually have been generated by a preceding PCR.

UDPS is therefore also known as amplicon sequencing or targeted

resequencing. Until the introduction of next-generation sequenc-

ing, Sanger sequencing was the dominating sequencing technol-

ogy. Sanger sequencing has also been applied to collections of non-

identical DNA templates, so called population sequencing, for

instance for routine genotypic HIV resistance testing [5].

However, population Sanger sequencing can only detect minority

variants that represent more than 10–20% of a heterogeneous

sequence population (e.g. a HIV-1 quasispecies) [6,7]. This

restricted sequencing depth sometimes limits research and clinical

utility. Thus, minority HIV resistance mutations, below the

detection limit of population Sanger sequencing, have been shown

to be of clinical relevance [8,9,10,11,12]. The importance of

sequencing depth has also been shown in studies of rare cancer

cells in biopsies [13].

The resolution of UDPS is primarily determined by the number

of input DNA templates and the error frequency of the method. In

this context it is a draw-back that UDPS has higher error

frequency than Sanger sequencing (approximately 0.5% vs. 0.1%

errors per nucleotide site) [14], which means that it may be

difficult to distinguish rare, but genuine, sequence variants from

sequencing artefacts. The type of sequencing errors also differs

between UDPS and Sanger sequencing. Homopolymeric regions,

i.e. runs of the same nucleotide, pose a particular problem during

pyrosequencing because there is no terminating signal to prevent

multiple consecutive incorporations at a given cycle. Therefore the

length of homopolymers is inferred from differences in light
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intensity, which become increasingly smaller as a function of

homopolymer length [14,15]. UDPS errors due insertions and

deletions (indels) are therefore over-represented in homopolymeric

regions [16]. The indel errors are primarily generated during the

emission, detection and interpretation of the chemi-luminescent

light signal that is generated during pyrosequencing [14].

However, UDPS errors can also be introduced by other

mechanisms, such as nucleotide misincorporations and indels

during PCR or uneven nucleotide-flow over the Picotiter plate.

The 454-sequencing software removes reads with some types of

errors, e.g. reads originating from two or more DNA templates,

but both indel errors and substitution errors may be present in the

UDPS data that is output from the instrument, herein referred to

as ‘‘raw’’ UDPS data. Therefore, researchers have used different

bioinformatic approaches to identify as well as remove or correct

these sequencing artefacts [17,18,19,20,21]. Several of these data

cleaning procedures have reduced UDPS error frequencies down

to 0.05%, but there is still incomplete knowledge about the

character of the errors that remain after data cleaning as well as in

which steps of the sequencing procedure they are introduced.

Here we present a comprehensive investigation of the types and

frequencies of errors that occurred when the UDPS was used to

repeatedly sequence an HIV-1 molecular clone. Data cleaning

reduced the average error frequency from 0.30% to 0.056%. Most

errors that remained after data cleaning were transitions that

primarily were introduced PCR rather than during the actual

UDPS. The difference in frequency of transition vs. transversion

errors will lead to site-specific differences in the detection limits of

minority mutations.

Results

UDPS Data and Definitions of Sequencing Errors
In this study we have investigated the types and frequencies of

errors that occur during repeated UDPS of an HIV-1 clone

(SG3Denv). The investigation consisted of two parts. First we

characterized sequencing errors in the UDPS data that is output

from the instrument, herein referred to as ‘‘raw’’ UDPS data.

Based on these analyses and previous publications [16,19,22], we

developed a set of scripts (Text S1) that filtered reads that were

likely to contain sequencing errors. Second, we characterized the

sequencing errors that remained after we had applied our UDPS

data cleaning strategy.

The target amplicon consisted of a 167-base pair fragment of

the HIV-1 pol gene corresponding to amino acids 170–224 of the

reverse transcriptase. The SG3Denv clone was subjected to three

separate, bidirectional UDPS runs and we obtained a total of

47,693 UDPS reads (Table 1). As shown in Table 1, we divided

these reads into six datasets corresponding to the reads in forward

or reverse sequencing direction from each of the three UDPS run.

An UDPS read was defined as having one or more sequencing

errors if the sequence of the read did not exactly match the

published sequence of the SG3Denv clone, which was identical to

a de novo Sanger population sequence of the target region of the

clone. All sequences were aligned in a multiple alignment created

by Genome Amplicon Variant Analyzer (454 Life Sciences,

Branford, CT). Sequencing errors were categorized as substitu-

tions, deletions or insertions as illustrated in Figure 1. We separately

investigated sequencing errors in homopolymeric and non-

homopolymeric regions of the amplicon.

Errors in Raw UDPS Data
The average error frequency in the raw UDPS data from the

three runs was 0.30% per nucleotide. Deletions were the most

frequent error type (56%) and had an average per nucleotide

frequency of 0.16%. Insertions and substitutions constituted 24%

and 20% of the errors, respectively, and had an average per

nucleotide frequency of 0.069% and 0.057%. We also separately

studied the error frequencies in homopolymeric and non-

homopolymeric regions. The error frequency was higher in

homopolymeric regions (0.59% per nucleotide) than in non-

homopolymeric regions (0.12% per nucleotide), but this difference

was not statistically significant for any of the six datasets (p = 0.14–

0.90, Mann-Whitney U-test). Sequencing errors were distributed

unevenly also within homopolymeric and non-homopolymeric

regions. The site-specific frequencies of the positions containing

deletion errors ranged from 0.0021% to 20.39% in homopoly-

meric regions and from 0.0021% to 0.086% in non-homopoly-

meric regions, whereas the frequencies of insertion errors ranged

from 0.0021% to 1.25% in homopolymeric regions and from

0.0021% to 1.36% in non-homopolymeric regions. Finally, the

site-specific frequencies of substitution errors ranged from

0.0021% to 0.17% in homopolymeric regions and from

0.0063% to 1.17% in non-homopolymeric regions. The type of

substitution errors were also distributed unevenly. Table 2 shows

that transition errors and especially GRA and TRC were more

common than transversion errors in raw UDPS data. Table 2 also

shows that there were considerable differences in substitution error

frequencies across sites. For instance, for GRA substitutions the

site-specific error frequency ranged from 0% (i.e. no substitution

observed) to 0.21%.

The length distribution of the total dataset of 47,693 UDPS

reads is shown in Figure S1. A total of 33,092 (69%) of the reads

had the expected length of 167 bases, whereas 11,562 (24%) reads

were shorter than expected and 3,039 (6%) reads were longer than

expected. A majority (83%) of the short reads occurred among the

reverse reads from run 2, in which 8,525 of 10,482 (81%) of the

reads lacked an adenosine (A) in a homopolymeric stretch of six

A’s from position 145 to 151 of the amplicon. This sequencing

error was probably introduced during pyrosequencing since only

118 of 12,092 (0.96%) of the forward reads of the same PCR

product displayed this deletion. Sequencing errors were strongly

associated with read length (Table S1). Most (29,852 of 33,264;

90%) reads with the expected length (167 bases) were correct,

which resulted in an average error frequency of 0.07% errors per

nucleotide. In contrast all 2,867 reads that were longer than

expected had at least one insertion error and had an average error

frequency of 1.13% per nucleotide. Finally, 99% of all reads that

were shorter than 167 nucleotides (11,436 of 11,562 reads) had at

least one deletion (often the missing A mentioned above) and their

average error frequency was 0.71% per nucleotide.

Over-representation of PCR-induced Transition Errors in
Cleaned UDPS Data

We used an in-house data cleaning strategy with scripts that

removed 14,963 of 47,693 (31%) of reads based on presence of

indels (except indels involving entire codons), unresolved bases

(N’s) and stop codons (see Text S1). This removed all, except two,

of the reads with indel errors. These two reads had three A’s

inserted in a homopolymeric region of five A’s and where retained

because our cleaning strategy did not filter reads with insertions of

entire codons. In contrast, the frequency of substitution errors was

largely unaffected by the data cleaning. Consequently, the average

error frequency per nucleotide for the six datasets after data

cleaning was 0.056% (range 0.038–0.077%) (Figure S2, Table S2),

which was similar to the frequency of substitution errors in raw

data (0.057%). In all three sequencing runs and both sequencing

directions, the error frequencies in cleaned data were similar in

Errors in Cleaned Ultra-Deep Pyrosequencing Data
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homopolymeric and non-homopolymeric regions (average 0.054%

vs. 0.057% per nucleotide; p = 0.34–0.81, Mann-Whitney U-test).

Transition errors, especially GRA and TRC transitions, were

over-represented in the cleaned UDPS data compared to

transversion errors (Figure 2). The average frequency of transition

errors was 0.052% per nucleotide and the average frequency of

transversion errors was 0.0001%, a 48-fold difference (p,0.001,

Fisher exact test). As discussed further below, this transition/

transversion bias indicated that most substitution errors were

generated during the PCR that preceded UDPS.

Next, we investigated the error frequency across nucleotide sites

in the cleaned UDPS data. As shown in Figure 3, the site-specific

errors varied considerably as exemplified by the forward reads in

run 1 where the site-specific errors varied from a minimum of 0%

per site to a maximum of 0.25% per site. Similar results were

obtained in the forward reads from the two other runs as well as

the reverse reads from all three runs. To further characterize these

errors we studied the correlation of site-specific error frequencies

between the forward runs, the reverse runs, and the forward and

reverse reads from the same run. There were moderate, but

Table 1. Total number of reads and mean error frequency percent (%) per nucleotide as well as the number of unique sequence
variants in raw and cleaned UDPS data from forward and reverse reads from three UDPS runs.

Raw data Cleaned data

Run Sequencing direction
No. of reads/mean % error
frequency per nucleotide

No. of unique
variants

No. of reads/mean % error
frequency per nucleotide

No. of unique
variants

1 Forward 10,121/0.20 633 8,756/0.063 204

Reverse 7,378/0.19 480 6,205/0.058 146

2 Forward 12,092/0.23 682 9,537/0.058 206

Reverse 10,482/0.61 527 1,462/0.077 91

3 Forward 2,570/0.21 271 2,187/0.041 85

Reverse 5,050/0.14 354 4,583/0.08 124

Total Both 47,693/0.30 2,044 32,730/0.056 315

doi:10.1371/journal.pone.0070388.t001

Figure 1. Examples of how different types of UDPS error were
defined.
doi:10.1371/journal.pone.0070388.g001

Table 2. Frequency of specific nucleotide substitution errors
in raw UDPS data.

To base

From base A T G C

A – 0.00 (0.00–0.01)0.06 (0.00–0.20)0.00 (0.00–0.02)

T 0.00 (0.00–0.01) – 0.00 (0.00–0.03)0.06 (0.00–0.19)

G 0.02 (0.00*–0.21)0.00 (0.00–0.01)– 0.00 (0.00–0.01)

C 0.00 (0.00–0.01) 0.02 (0.00–0.18)0.00 (0.00–0.01)–

Results were combined from the three UDPS runs and are displayed as median
and range percent (%) error per nucleotide.
0.00* denotes an error frequency of = 0.00021%. 0.00 denotes that the
substitution error was not observed.
doi:10.1371/journal.pone.0070388.t002

Figure 2. The average frequency of different substitution
errors in percent (%) in cleaned UDPS data from three
sequencing runs. Thick arrows indicate transitions and thin arrows
indicate transversions.
doi:10.1371/journal.pone.0070388.g002
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significant, correlations of site-specific error frequencies in forward

as well as reverse reads in all three 454 runs (Spearman R = 0.31–

0.65; p,0.001) (Table S3). The same was true when the forward

and reverse sequencing direction was compared within runs

(Spearman R = 0.33–0.60; p,0.001). In contrast, we found no

evidence for a general increase in error frequency across the 167-

base pair amplicon (data not shown). The correlation between

errors in forward and reverse reads suggests that systematic errors

were introduced during PCR, which agrees well with the strong

bias towards transition errors.

Because we cannot expect every PCR product to be available or

sequenced in the 454-system, the counts of each sequence variant

detected will be stochastic regardless of whether it is a genuine

variant or a variant generated due to sequencing errors. Naturally,

this stochastic effect will be more severe at low counts, such as the

low-frequency sequencing errors that remained after data clean-

ing. Hence, we next asked if the forward and reverse read counts

for specific variants were within an expected Poisson margin. The

forward vs. reverse read counts that are significantly different are

most likely not due to PCR errors, but rather UDPS induced. The

ratio of significantly and non-significantly correlated errors in

forward and reverse reads of the same run thus gives us a measure

of the proportion of PCR vs. UDPS errors. We used a q-value

#0.05 to account for the false discovery rate that arises from the

large number of p-values analyzed. The PCR/UDPS error ratio

was 217/11 = 19.7, 157/64 = 2.4, and 146/2 = 73 in runs 1, 2,

and 3, respectively, after our cleaning procedure (Figure 4). Hence,

these analyses also indicated that the vast majority of the errors

that remained after data cleaning occurred during the pre-UDPS

PCR amplification. Interestingly, while our cleaning procedure

reduced the overall differences between forward and reverse

counts (from 940 to 228 in run 1, from 1088 to 221 in run 2, and

from 526 to 148 in run 3), it cleaned up PCR errors proportionally

more in runs 1 and 2 (ratio changed from 26.6 to 19.7 and 10.1 to

2.45) and vice versa in run 3 (ratio changed from 51.6 to 73). If

only PCR errors occurred, then a normalization using the main

variant of the forward and reverse counts should remove all

differences (within a Poisson expectation). However, if differences

remain, they are likely UDPS errors. Indeed, when we normalize

each run the remaining significant differences between forward

and reverse counts diminish from 11 to 6, 64 to 15, and 2 to 0,

respectively, further indicating that most errors that remain in our

data after cleaning originate in the pre-UDPS PCR amplification.

Finally, we calculated the expected contribution of errors due to

PCR based on the number of PCR cycles and error rate of the

PCR enzyme (i.e. FastStart High Fidelity PCR System with a

reported error rate of approximately 4.0 * 1026). The probability

for a single position to be incorrect after 60 PCR cycles is 1-(1–4.0

* 1026)60 = 0.024%. This agrees well with the results above that

showed that PCR contributes to a substantial proportion of errors

that remain in our cleaned UDPS data.

Discussion

In this study we have investigated the type, frequency and

source of sequencing errors in raw and cleaned UDPS data from a

molecular clone corresponding to a fragment of the HIV-1 pol

gene. As reported by others, UDPS-induced indels in homopol-

ymeric regions was the dominating error type in raw UDPS data

[16,18]. In contrast, a substantial proportion of the errors that

remained after data cleaning were substitutions errors introduced

in the PCR that preceded UDPS. These substitution errors

significantly more often were transitions than transversions.

In line with our findings, Shao et al. recently reported that

substitution errors in raw UDPS data were mainly introduced

during PCR [23]. Here we extend this finding by showing that

PCR contributed to a substantial proportion of substitution errors

also in cleaned UDPS data. Thus, our data cleaning strategy,

which effectively removed indel errors, had little effect on PCR-

induced substitution errors. This problem may be relevant also to

other cleaning pipelines. However, some programs, like PyroNoise

and AmpliconNoise, attempt to remove both sequencing and PCR

errors [20], but it unclear how well they perform on highly diverse

viral data. Importantly, our finding that PCR contributes to a

substantial proportion of sequencing errors in cleaned UDPS data

is relevant to studies that utilize other NGS platforms. Thus, the

Illumina NGS platform, which is gaining popularity in HIV

research because it has lower error rates and higher throughput

than the 454 platform, also requires PCR amplification of HIV

templates prior to NGS. Our findings indicate that HIV sequences

generated on the Illumina platform can be expected to have an

error rate of approximately 0.05% per nucleotide unless additional

Figure 3. Site-specific error frequencies in percent (%) in cleaned UDPS data obtained in the forward sequencing direction of run 1.
All sequencing errors were substitutions since all deletions and insertions were removed by the data cleaning procedure. The bars are color-coded
according to the type of substitution error. Homopolymeric regions are shaded.
doi:10.1371/journal.pone.0070388.g003

Errors in Cleaned Ultra-Deep Pyrosequencing Data

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e70388



measures are taken to reduce PCR-induced errors. Examples of

such measures could include reduction of the number of PCR

cycles and use of DNA polymerases with even higher fidelity than

the polymerase mix that we used. It is well-known that PCR error

frequency increases with increasing number of PCR cycles

[24,25], but to our knowledge the effect of reduced number of

PCR cycles on NGS error frequencies has not been thoroughly

investigated. However, Zagordi et al. and Shao et al. reported

significantly reduced UDPS error frequencies in clones that were

not PCR amplified prior to UDPS [17] [23]. A problem with using

polymerases with very high fidelity is that they tend to have low

processivity, which may reduce PCR success and thereby sequence

depth. In addition, high fidelity enzymes have been reported to

increase PCR recombination frequency [23]. The Primer ID

technology, which involves tagging and resequencing of individual

template molecules [26], represents an interesting new approach

to further reduce NGS error frequency.

We found that transition errors were 48-times more common

than transversion errors in cleaned UDPS data. This overrepre-

sentation of transition errors in UDPS has been observed in two

other studies [23,27]. The transition/transversion bias is typical

polymerase misincorporations where the TNG mispairings are

over-represented [24,28,29,30,31]. It is unlikely that errors

introduced during the pyrosequencing steps should have this

substitution bias despite the fact that a polymerase is used as part

of the enzyme mixture in the emulsion PCR. This is because each

DNA temple is bound to a single microbead and by emulsion PCR

used to generate millions of DNA templates that are subjected to

‘‘consensus’’ sequencing. Thus, the overrepresentation of trans-

version errors, as well as our other results, shows that a substantial

proportion of the UDPS errors that remained after data cleaning

were introduced during PCR. The strong transition/transversion

bias in cleaned UDPS data has implications for detection of

minority mutations, for instance minority HIV-1 resistance

mutations. Thus, our findings indicate that different cut-offs are

needed for detection of mutations involving transitions compared

to transversions.

In summary, we have investigated the frequency, type and

source of errors that occurred during UDPS of a fragment of the

HIV-1 pol gene. A substantial proportion of the errors that

remained after data cleaning were introduced in the pre-UDPS

PCR amplification and they significantly more often were

transitions than transversions, which affects the limits of detection

of minority mutations. Our findings are of relevance to other NGS

applications and platforms, because PCR errors will be introduced

will be independent of NGS platform, as long as sequencing is

preceded by PCR.

Materials and Methods

UDPS Data
The data for this work were generated as part of a published

study by Hedskog et al. [4]. The data consisted of 47,693 UDPS

reads of the SG3Denv plasmid that were generated in three

separate runs on the Genome Sequencer FLX (454 Life

Sciences, Branford, CT) (Table 1). The plasmid is available at

the NIH AIDS Research and Reference reagent Program under

catalogue no. 11051 and the sequence of the parent plasmid

pSG3.1 is available in Genbank under accession no. L02317.

The amplicon contained 167 nucleotides from the HIV-1 pol

gene corresponding to the last nucleotide of amino acid 169,

amino acids 170–224, and the first nucleotide from amino acid

225 as well as the sample tags and the 454-specific adaptors A

and B. Briefly and as described previously, single molecules of

the SG3Denv plasmid were obtained by limiting dilution and

amplified using nested PCR (30+30 cycles) using a polymerase

mix with high fidelity (Roche FastStart High Fidelity System).

The amplicon was subjected to bidirectional UDPS. The entire

procedure from sample preparation to UDPS was repeated on

three separate occasions. The sequence of the targeted regions

of the plasmid clone was determined by Sanger sequencing and

was identical to the published sequence.

Sequence analyses were performed on the total dataset of

47,693 UDPS reads as well as separately for forward and reverse

reads from each of the three UDPS runs. Furthermore, for each

UDPS read we created two concatenated sub-sequences that

combined all homopolymeric and non-homopolymeric regions,

respectively. There exists no formal definition of a homopolymeric

Figure 4. PCR/UDPS error ratio in our cleaned data. This figure shows a comparison of the counts of reverse to forward variants of run 1. A) Our
filtered UDPS data. B) Same data, normalized by the main variant forward and reverse counts.
doi:10.1371/journal.pone.0070388.g004
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region, but here we defined a homopolymeric region as a stretch of

at least three identical nucleotides as well as one preceding and

one following nucleotide. Figure 3 shows the homopolymeric and

non-homopolymeric regions in the amplicon.

Programming
The scripts for data management, data cleaning and sequence

analyses were written in Perl. We used the collection of

biological applications from BioPerl [32]. We also used

interfaces from EMBOSS package [33] to get methods for

sequences alignment. Gnuplot was used to develop a visualiza-

tion tool for an easy overview of the data. The data cleaning

scripts were inspired by Tsibris et al. [19], who kindly made

their code available prior to publication and the results from

analyzing our own raw data. Our scripts filtered reads with: 1)

less than 80% similarity to a user-defined reference sequence, 2)

ambiguous nucleotide calls, 3) indels, and 4) stop codons (Text

S1). The scripts are available at http://ki.se/ki/jsp/polopoly.

jsp?d = 23336&a = 34965&l = en.

Definition of Sequencing Errors and Calculation of Error
Frequencies

Any difference from the Sanger sequence of the SG3Denv

plasmid in the UDPS analysis was defined as a sequencing

error. The sequencing errors were classified as deletions,

insertions or substitutions as described in the Results section

and in Figure 1. The average UDPS error frequency per

nucleotide was estimated from the three sets of UDPS data.

The Needleman-Wunsch algorithm with gap opening score 10

and gap extend score 0.5 was used to construct pairwise

alignments between the Sanger sequence of the SG3Denv

plasmid as a references sequence and UDPS reads from the

plasmid. The identity score, the number of correctly aligned

bases divided by the total number of bases, from the pairwise

comparisons were added together and divided by the number of

sequences and the 95% confidence interval was calculated. For

reads that were shorter than 167 bases we only compared

positions that were actually sequenced (see Figure 1).

Additionally, site-specific error frequencies were estimated

individually for all nucleotide positions. Again the Sanger

sequence of the SG3Denv plasmid was used as a reference

sequence and compared to the UDPS reads from all three runs.

The error in each position was divided by the number of reads in

the same position to get the error frequency and the 95%

confidence interval. The script has to rely on a previous alignment

or sequences that do not contain indels.

Analysis of Type of Sequencing Errors
To identify and study the types of UDPS sequencing errors that

were encountered we used the same approach as for the

calculations of site specific error frequency. Thus, an alignment

constructed by the GS Amplicon Variant Analyzer Software was

used. A deletion error was defined as a gap in the alignment of an

UDPS read relative to the Sanger reference sequence. An insertion

error was defined as a gap in the reference sequence that was

absent in the UDPS read. A substitution error was defined as a

nucleotide difference between the UDPS read relative to the

references sequence. The frequencies of different substitution

(GRA, GRC, etc) were calculated by dividing the number of

substitutions between specific nucleotides and the number of

possible substitutions of those nucleotides.

Statistical Analyses
Statistical analyses were performed in Statistica version 10 and

R version 2.10.1. Comparisons of error frequencies in homopol-

ymeric and non-homopolymeric regions were done using the

Mann-Whitney U-test. Correlations of site-specific error frequen-

cies between runs as well as between forward and reverse reads in

the same run were done using the Spearman rank correlation test

(Table S3). The use of this test, which requires independent

observations, was justified because we did not observe any

significant correlations in error frequencies of adjacent nucleotides

(range 1–5) or excess error frequencies in transitions between

homopolymeric and non-homopolymeric regions (data not

shown). To obtain p-values for the Spearman correlations we

created a null distribution of 100,000 Spearman R-values by

randomizing (100,000 times) the site-specific error frequencies of

one dataset while keeping those of the other dataset constant (e.g.

errors from the forward reads of run 2). P-values for observed

Spearman R-values were calculated using a z-test. Finally, the

frequency of transition vs. transversion errors was compared using

the Fisher exact test. The observed number of transitions and

transversions were compared with their expected numbers, where

we expected that there should be twice as many transversions if

there was no transition vs. transversion substitution bias. Because

substitution errors that occur during PCR may be amplified in

subsequent PCR cycles, we conservatively counted each observed

substitution only once.

Supporting Information

Figure S1 UDPS read length distribution. The expected read

length of 167 bases is shown in black.

(TIF)

Figure S2 Flow chart showing steps of the UDPS data error

cleaning procedure. Shown is also the number of reads that were

filtered and that remained, respectively, as well as their average

error frequency in percent (%) for the complete sequence, the

homopolymeric regions and the non-homopolymeric regions.

(TIF)

Table S1 Influence of read length on sequencing errors in three

bidirectional UDPS runs of a 167-base pair long fragment of the

SG3Denv HIV-1 plasmid.

(DOCX)

Table S2 Number of remaining reads and mean error frequency

percent (%) per nucleotide when the filtering steps of the cleaning

strategy were consecutively applied to raw data from three runs of

bidirectional UDPS of the SGDenv HIV-1 plasmid.

(DOCX)

Table S3 Table showing results from z-test used to generate p-

values for Spearman rank correlations between site-specific error

frequencies in different UDPS runs and sequencing directions.

Null distributions of Spearman R values were generated as

described in Materials and methods.

(DOCX)

Text S1 Description of the UDPS data error cleaning procedure

and the impact of each filtering step.

(DOCX)

Acknowledgments

We thank Dr. Richard Neher for valuable scientific input and comments

on the manuscript.

Errors in Cleaned Ultra-Deep Pyrosequencing Data

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e70388



Author Contributions

Conceived and designed the experiments: JB MM CH JA. Performed the

experiments: JB CH. Analyzed the data: JB MM CH TL JA. Contributed

reagents/materials/analysis tools: CH JA. Wrote the paper: JB MM CH

ES TL BA JA. Developed bioinformatic software: JB ES TL BA.

References

1. Margeridon-Thermet S, Shulman NS, Ahmed A, Shahriar R, Liu T, et al.

(2009) Ultra-deep pyrosequencing of hepatitis B virus quasispecies from
nucleoside and nucleotide reverse-transcriptase inhibitor (NRTI)-treated patients

and NRTI-naive patients. J Infect Dis 199: 1275–1285.
2. Simen BB, Simons JF, Hullsiek KH, Novak RM, Macarthur RD, et al. (2009)

Low-abundance drug-resistant viral variants in chronically HIV-infected,

antiretroviral treatment-naive patients significantly impact treatment outcomes.
J Infect Dis 199: 693–701.

3. Hoffmann C, Minkah N, Leipzig J, Wang G, Arens MQ, et al. (2007) DNA bar
coding and pyrosequencing to identify rare HIV drug resistance mutations.

Nucleic Acids Res 35: e91.

4. Hedskog C, Mild M, Jernberg J, Sherwood E, Bratt G, et al. (2010) Dynamics of
HIV-1 quasispecies during antiviral treatment dissected using ultra-deep

pyrosequencing. PLoS One 5: e11345.
5. Hirsch MS, Gunthard HF, Schapiro JM, Brun-Vezinet F, Clotet B, et al. (2008)

Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recom-
mendations of an International AIDS Society-USA panel. Clin Infect Dis 47:

266–285.

6. Sayer DC, Land S, Gizzarelli L, French M, Hales G, et al. (2003) Quality
assessment program for genotypic antiretroviral testing improves detection of

drug resistance mutations. J Clin Microbiol 41: 227–236.
7. Leitner T, Halapi E, Scarlatti G, Rossi P, Albert J, et al. (1993) Analysis of

heterogeneous viral populations by direct DNA sequencing. Biotechniques 15:

120–127.
8. Varghese V, Shahriar R, Rhee SY, Liu T, Simen BB, et al. (2009) Minority

variants associated with transmitted and acquired HIV-1 nonnucleoside reverse
transcriptase inhibitor resistance: implications for the use of second-generation

nonnucleoside reverse transcriptase inhibitors. J Acquir Immune Defic Syndr 52:

309–315.
9. Palmer S, Boltz V, Martinson N, Maldarelli F, Gray G, et al. (2006) Persistence

of nevirapine-resistant HIV-1 in women after single-dose nevirapine therapy for
prevention of maternal-to-fetal HIV-1 transmission. Proc Natl Acad Sci U S A

103: 7094–7099.
10. Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M, Shafer RW (2007)

Characterization of mutation spectra with ultra-deep pyrosequencing: applica-

tion to HIV-1 drug resistance. Genome Res 17: 1195–1201.
11. Li JZ, Paredes R, Ribaudo HJ, Svarovskaia ES, Metzner KJ, et al. (2011) Low-

frequency HIV-1 drug resistance mutations and risk of NNRTI-based
antiretroviral treatment failure: a systematic review and pooled analysis. JAMA

305: 1327–1335.

12. Liang B, Luo M, Scott-Herridge J, Semeniuk C, Mendoza M, et al. (2011) A
Comparison of Parallel Pyrosequencing and Sanger Clone-Based Sequencing

and Its Impact on the Characterization of the Genetic Diversity of HIV-1. PLoS
One 6: e26745.

13. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, et al. (2009) Mutational
evolution in a lobular breast tumour profiled at single nucleotide resolution.

Nature 461: 809–813.

14. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:
1135–1145.

15. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome
sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–

380.

16. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and

quality of massively parallel DNA pyrosequencing. Genome Biol 8: R143.

17. Zagordi O, Klein R, Daumer M, Beerenwinkel N (2010) Error correction of

next-generation sequencing data and reliable estimation of HIV quasispecies.

Nucleic Acids Res 38: 7400–7409.

18. Rozera G, Abbate I, Bruselles A, Vlassi C, D’Offizi G, et al. (2009) Massively

parallel pyrosequencing highlights minority variants in the HIV-1 env

quasispecies deriving from lymphomonocyte sub-populations. Retrovirology 6:

15.

19. Tsibris AM, Korber B, Arnaout R, Russ C, Lo CC, et al. (2009) Quantitative

deep sequencing reveals dynamic HIV-1 escape and large population shifts

during CCR5 antagonist therapy in vivo. PLoS One 4: e5683.

20. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise

from pyrosequenced amplicons. BMC Bioinformatics 12: 38.

21. Balzer S, Malde K, Jonassen I (2011) Systematic exploration of error sources in

pyrosequencing flowgram data. Bioinformatics 27: i304–309.

22. Campbell PJ, Pleasance ED, Stephens PJ, Dicks E, Rance R, et al. (2008)

Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing.

Proc Natl Acad Sci U S A 105: 13081–13086.

23. Shao W, Boltz VF, Spindler JE, Kearney MF, Maldarelli F, et al. (2013) Analysis

of 454 sequencing error rate, error sources, and artifact recombination for

detection of Low-frequency drug resistance mutations in HIV-1 DNA.

Retrovirology 10: 18.

24. Eckert KA, Kunkel TA (1991) DNA polymerase fidelity and the polymerase

chain reaction. PCR Methods Appl 1: 17–24.

25. Wu JY, Jiang XT, Jiang YX, Lu SY, Zou F, et al. (2010) Effects of polymerase,

template dilution and cycle number on PCR based 16 S rRNA diversity analysis

using the deep sequencing method. BMC Microbiol 10: 255.

26. Jabara CB, Jones CD, Roach J, Anderson JA, Swanstrom R (2011) Accurate

sampling and deep sequencing of the HIV-1 protease gene using a Primer ID.

Proc Natl Acad Sci U S A 108: 20166–20171.

27. Vandenbroucke I, Van Marck H, Verhasselt P, Thys K, Mostmans W, et al.

(2011) Minor variant detection in amplicons using 454 massive parallel

pyrosequencing: experiences and considerations for successful applications.

Biotechniques 51: 167–177.

28. Eckert KA, Kunkel TA (1990) High fidelity DNA synthesis by the Thermus

aquaticus DNA polymerase. Nucleic Acids Res 18: 3739–3744.

29. Dunning AM, Talmud P, Humphries SE (1988) Errors in the polymerase chain

reaction. Nucleic Acids Res 16: 10393.

30. Keohavong P, Ling L, Dias C, Thilly WG (1993) Predominant mutations

induced by the Thermococcus litoralis, vent DNA polymerase during DNA

amplification in vitro. PCR Methods Appl 2: 288–292.

31. Bracho MA, Moya A, Barrio E (1998) Contribution of Taq polymerase-induced

errors to the estimation of RNA virus diversity. J Gen Virol 79 (Pt 12): 2921–

2928.

32. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, et al. (2002) The

Bioperl toolkit: Perl modules for the life sciences. Genome Res 12: 1611–1618.

33. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular

Biology Open Software Suite. Trends Genet 16: 276–277.

Errors in Cleaned Ultra-Deep Pyrosequencing Data

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e70388


