
Singh et al. BMCMedical ResearchMethodology          (2021) 21:114 
https://doi.org/10.1186/s12874-021-01301-1

RESEARCH Open Access

Incorporating single-arm studies in
meta-analysis of randomised controlled
trials: a simulation study
Janharpreet Singh1* , Keith R. Abrams1,2 and Sylwia Bujkiewicz1

Abstract

Background: Use of real world data (RWD) from non-randomised studies (e.g. single-arm studies) is increasingly
being explored to overcome issues associated with data from randomised controlled trials (RCTs). We aimed to
compare methods for pairwise meta-analysis of RCTs and single-arm studies using aggregate data, via a simulation
study and application to an illustrative example.

Methods: We considered contrast-based methods proposed by Begg & Pilote (1991) and arm-based methods by
Zhang et al (2019). We performed a simulation study with scenarios varying (i) the proportion of RCTs and single-arm
studies in the synthesis (ii) the magnitude of bias, and (iii) between-study heterogeneity. We also applied methods to
data from a published health technology assessment (HTA), including three RCTs and 11 single-arm studies.

Results: Our simulation study showed that the hierarchical power and commensurate prior methods by Zhang et al
provided a consistent reduction in uncertainty, whilst maintaining over-coverage and small error in scenarios where
there was limited RCT data, bias and differences in between-study heterogeneity between the two sets of data. The
contrast-based methods provided a reduction in uncertainty, but performed worse in terms of coverage and error,
unless there was no marked difference in heterogeneity between the two sets of data.

Conclusions: The hierarchical power and commensurate prior methods provide the most robust approach to
synthesising aggregate data from RCTs and single-arm studies, balancing the need to account for bias and differences
in between-study heterogeneity, whilst reducing uncertainty in estimates. This work was restricted to considering a
pairwise meta-analysis using aggregate data.

Keywords: Evidence synthesis, Real world data, Single-arm studies, Bayesian hierarchical methods, Meta-analysis,
Arm-based methods

Background
Health technology assessment (HTA) decision-makers,
such as the National Institute for Health and Care Excel-
lence in England andWales, recommend new health tech-
nologies for reimbursement based on cost-effectiveness.
They consider the clinical effectiveness of a technol-
ogy against comparators, estimated by a meta-analysis of
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studies conducted in similar patient populations record-
ing a common outcome measure [1]. A randomised con-
trolled trial (RCT) provides the best evidence of rela-
tive effectiveness because random treatment allocation
minimises participant selection bias between arms [2].
However, decision-makers may consider observational
evidence (e.g. single-arm studies) when, for example, a
technology has received accelerated regulatory approval
[3]. This suggests a need to develop meta-analysis meth-
ods which can combine randomised and non-randomised
studies, whilst addressing issues in non-randomised data.
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Bayesianmethods provide a flexible approach for combin-
ing data from different sources, and can be implemented
via Markov chain Monte Carlo (MCMC) sampling which
aids probablistic decison-making in HTA [4].
A number of methods have been proposed for pair-

wise meta-analysis of RCTs and single-arm studies using
aggregate data, which make different assumptions regard-
ing data variability. Begg & Pilote [5] proposed a method
under a frequentist framework, which assumes exchange-
ability for baseline treatment effects and a common
relative treatment effect. The method does not distin-
guish between RCTs and single-arm studies, but can be
extended to account for bias in single-arm data. In this
context, bias refers to the systematic difference between
data from RCTs and single-arm studies. Zhang et al
[6] proposed several methods under a Bayesian frame-
work, which assume exchangeability for treatment effects
on each arm. The methods distinguish between RCTs
and single-arm studies, by assuming correlation between
RCT arms and differences in between-study heterogene-
ity. Some of the methods use single-arm data to inform
prior distributions formodel parameters. Although Zhang
et al performed a simulation study to compare the rel-
ative performance between their methods [6], there has
been no comparison of these methods with the methods
by Begg & Pilote. Other methods, which are not consid-
ered here, use study-matching or individual participant
data (IPD) to perform a network meta-analysis (NMA) of
RCTs and single-arm studies. Schmitz et al [7] proposed
a method using aggregate data on patient characteristics
to match single-arm studies with similar patient samples,
and perform a NMA of RCTs and the matched stud-
ies. Thom et al [8] proposed a method which assumes
exchangeability for baseline treatment effects, and uses
IPD to adjust for covariates.

In this paper, we focus on the methods proposed by
Begg & Pilote [5] and Zhang et al [6], which combine
data from RCTs and single-arm studies at the aggregate
level. The two sets of meta-analytic methods are contrast-
based and arm-based methods, respectively. We aim to
compare both sets of methods to investigate how these
different approaches, as well as a number of other spe-
cific assumptions, affect their relative performance. We
compare the methods in an extensive simulation study,
building on the simulation study by Zhang et al [6]. We
evaluate performance under a number of scenarios vary-
ing the proportion of RCTs and single-arm studies in the
synthesis, the magnitude of bias between data from RCTs
and single-arm studies, and differences in between-study
heterogeneity across RCTs and single-arm studies.

Illustrative example: dataset
Rheumatoid arthritis (RA) is a chronic auto-immune
condition causing joint inflammation, which can be
treated by a number of biologic disease-modifying anti-
rheumatic drugs (bDMARDs); adalimumab (ADA), etan-
ercept (ETN), infliximab (IFX), abatacept (ABT), and
rituximab (RTX) [9]. The treatment response can be
assessed by using the American College of Rheumatol-
ogy (ACR) response criteria, where ACR20 represents
a 20% improvement in symptoms [10]. Malottki et al
assessed the clinical effectiveness of bDMARDs in a HTA
[11], identifying three RCTs and 11 single-arm studies
for which data were available on the ACR20 outcome.
Figure 1 shows a forest plot illustrating the arm-level pro-
portions of ACR20 responders in each study. The plot
does not suggest a systematic bias between data from
RCTs and single-arm studies on the bDMARD arm.
There are three RCTs in which participants have been

assigned a placebo or a bDMARD, and 11 single-arm

Fig. 1 An arm-level forest plot of the proportion of ACR20 responders in each study
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studies in which participants were assigned a bDMARD.
We select the three placebo arms as the baseline, so
that π1 represents the marginal response probability for
participants assigned a placebo, and π2 represents the
marginal response probability for participants assigned a
bDMARD. Thus, the odds ratio represents the increase in
odds of achieving a ACR20 response for participants given
a bDMARD versus placebo.

Methods
Methods for meta-analysis of RCTs and single-arm studies
using aggregate data
In this section, we describe the methods by Begg & Pilote
[5] and by Zhang et al [6] under a Bayesian framework.
Although Begg & Pilote introduced methods under a fre-
quentist framework, they are adapted here for Bayesian
implementation to ensure a fair comparison between both
sets of methods. For consistency, and to enable a direct
comparison of all methods, we adapt the methods by Begg
& Pilote to a dichotomous outcome. We consider a pair-
wise meta-analysis, with n RCTs assessing treatments one
and two, m single-arm studies assessing treatment one,
and l single-arm studies assessing treatment two. We let
i = 1, ..., n index RCTs, i = n + 1, ..., n + m indexes
single-arm studies on arm 1, and i = n + m + 1, ..., n +
m + l indexes single-arm studies on arm 2. Here, we
describe first the methods introduced by Begg & Pilote,
and then the methods introduced by Zhang et al. The first
set of methods parametrise treatment effect contrasts,
whilst the latter parametrise treatment effects on each
arm. For clarity, we define notation as we introduce each
method and attempt to use the original symbols where
possible. For the methods by Begg & Pilote, we begin by
describing the original method (BP), and then describe the
bias-adjusted (BPbias) and random-effects (BPrandom)
methods by showing how they build-on the BP method.
For the methods by Zhang et al, we begin by describ-
ing the bivariate generalised linear mixed-effects model
(BGLMM) I method, and then describe the BGLMM
II, hierarchical power prior (HPP) and hierarchical com-
mensurate prior (HCP) methods by showing how they
build-on the BGLMM I method. We then describe how
marginal response probabilities are calculated for each
method.

Begg & Pilote (BP) original method
By adapting the method by Begg & Pilote (BP) to Binomial
data, it assumes that in each arm of study i the number of
responders follows a Binomial distribution

r1i ∼ Bin (n1i, p1i) , i = 1, ..., n + m;

r2i ∼ Bin (n2i, p2i) , i = 1, ..., n; i = n + m + 1, ..., n + m + l;

(1)

where n1i, n2i are the numbers of participants on arms one
and two, respectively, and p1i, p2i are the response prob-
abilities on arms one and two, respectively. The response
probability in each arm is transformed onto the linear
predictor scale using a suitable link function g()

g (p1i) = θi, i = 1, ..., n + m;

g (p2i) = θi + δ, i = 1, ..., n; i = n + m + 1, ..., n + m + l;

(2)

where θi represents the baseline treatment effect (i.e. the
treatment effect in arm one) in study i, and δ represents
the relative treatment effect (i.e. the treatment effect in
arm two relative to arm one). Here, the relative treatment
effect is assumed to be identical across all studies, whilst
the baseline treatment effects are exchangeable (i.e. vary
across studies according to a common distribution)

θi ∼ N
(
μ, σ 2) , i = 1, ..., n + m + l; (3)

with mean μ and standard deviation σ . Suitably non-
informative prior distributions can be placed on μ and σ ;
μ ∼ N

(
0, 105

)
, σ ∼ �−1 (

10−4, 10−4).

Begg & Pilotemethodwith bias-adjustment (BPbias)
The bias-adjusted version of the BP method (BPbias)
extends BP in Eq. (2) with the additional assumption that
single-arm data are systematically biased relative to RCT
data

g (p1i) = θi + ξ , i = n + 1, ..., n + m;
g (p2i) = θi + δ + η, i = n + m + 1, ..., n + m + l;

(4)

where ξ (for arm one) and η (for arm two) represent bias
in the single-arm data. The bias is assumed to be common
across single-arm studies and suitably non-informative
Normal prior distributions can be placed on the bias
parameters; ξ ∼ N

(
0, 105

)
and η ∼ N

(
0, 105

)
.

Begg & Pilotemethodwith random effects (BPrandom)
The BP method with random effects (BPrandom) extends
BP in Eq. (2) by assuming exchangeable relative treatment
effects

g (p1i) = θi, i = 1, ..., n + m;

g (p2i) = θi + δi, i = 1, ..., n; i = n + m + 1, ..., n + m + l;

(5)

where δi are the relative treatment effects assumed to
follow a Normal distribution

δi ∼ N
(
d, τ 2

)
, i = 1, ..., n; i = n + m + 1, ..., n + m + l;

(6)

with mean d and standard deviation τ . Suitably non-
informative prior distributions can be placed on d and τ ;
d ∼ N

(
0, 105

)
, τ ∼ �−1 (

10−4, 10−4).
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Bivariate generalised linearmixed effects models (BGLMM) I
& II
The first method proposed by Zhang et al is bivariate gen-
eralised linear mixed-effects model (BGLMM) I, which
assumes a Binomial likelihood for the arm-level data as
formulated in Eq. (1). In contrast to Begg & Pilote, Zhang
et al model the treatment effect in each arm of study i. For
RCTs, the method assumes data are correlated between
arms

g (p1i) = μ1 + ν1i,
g (p2i) = μ2 + ν2i,
(ν1i, ν2i) ∼ N (0,�) , i = 1, ..., n;

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
(7)

where μ1 and μ2 represent the mean treatment effect in
each arm, whilst (ν1i, ν2i) are assumed to follow a bivari-
ate Normal distribution with covariance matrix �, which
accounts for between-study heterogeneity across RCTs on
each arm and correlation between arms. Non-informative
Normal prior distributions can be placed on the mean
treatment effects; μ1 ∼ N

(
0, 105

)
, μ2 ∼ N

(
0, 105

)
. An

inverse-Wishart prior distribution can be placed on the
covariance matrix; � ∼ W−1(R, 2), where R is a 2 × 2
scale matrix with diagonal elements equal to 1 and off-
diagonal elements equal to 0.005. This prior distribution
is weakly informative on both the correlation and stan-
dard deviation parameters, but correctly implies that the
population-averaged treatment-specific event probabili-
ties range from 0 to 1. The method assumes the same
mean treatment effects μ1 and μ2 for single-arm studies

g(p1i) = μ1+ ν3i, ν3i ∼ N
(
0, σ 2

3
)

i = n + 1, ..., n + m;

g(p2i) = μ2+ ν4i, ν4i ∼ N
(
0, σ 2

4
)

i = n + m + 1, ..., n + m + l;

(8)

where ν3i and ν4i are each assumed to follow a univari-
ate Normal distribution to account for the between-study
heterogeneity across single-arm studies on each arm. Sim-
ilar to Zhang et al, we place inverse-Gamma prior dis-
tributions on the standard deviation parameters; σ3 ∼
�−1 (

10−4, 10−4) and σ4 ∼ �−1 (
10−4, 10−4).

The BGLMM I method can be modified in Eq. (8) to
assume different mean treatment effects μ3 and μ4 for
single-arm studies

g (p1i) =μ3 + ν3i, ν3i ∼ N
(
0, σ 2

3
)

i =n+ 1, ..., n + m;

g (p2i) =μ4 + ν4i, ν4i ∼ N
(
0, σ 2

4
)

i =n+ m + 1, ..., n + m + l;

(9)

Non-informative Normal prior distributions can be
placed on the mean treatment effects; μ3 ∼ N

(
0, 105

)
,

μ4 ∼ N
(
0, 105

)
, which can themselves be applied to

inform prior distributions for μ1 and μ2 in a two-step

method. First, the model specified in Eq. (9) is fit to
the single-arm data to estimate posterior distributions
for μ3 and μ4, from which posterior median and stan-
dard deviation estimates are obtained. Then, the model
specified in Eq. (7) is fit to the RCT data, with informa-
tive prior distributions (based on the extracted estimates)
placed on the mean treatment effects; μ1 ∼ N

(
μ̂3, τ̂12

)
,

μ2 ∼ N
(
μ̂4, τ̂22

)
. This modified-version of the BGLMM

I method is labelled BGLMM II.

Hierarchical power prior (HPP)
The hierarchical power prior (HPP) method extends the
BGLMM I method in Eq. (1) by raising the likelihood
functions L(p1i) and L(p2i) for the single-arm studies to a
power between zero and one

L (p1i) = (
pr1i1i (1 − p1i)n1i−r1i )α1 , i = n + 1, ..., n + m;

L (p2i) = (
pr2i2i (1 − p2i)n2i−r2i )α2 , i = n + m + 1, ..., n + m + l;

(10)

where α1 and α2 represent the power parameters for each
arm. To allow flexibility in down-weighting the single-arm
data, Beta prior distributions can be placed on the power
parameters; α1 ∼ β(10, 1), α2 ∼ β(10, 1). A β(10, 1) prior
has mean 0.91 and a 95% credible interval ranging from
0.69 to 0.99, which indicates a moderate-to-strong simi-
larity between single-arm studies and RCTs, and provides
a modest down-weighting [6].

Hierarchical commensurate prior (HCP)
The hierarchical commensurate prior (HCP) method
assumes different mean treatment effects for RCTs and
single-arm studies (described by Eqs. (7) and (9)), and
places Normal prior distributions on μ1 and μ2 informed
by the single-arm data;

μ1 ∼ N
(

μ3,
1
τ 21

)

μ2 ∼ N
(

μ4,
1
τ 22

)

(11)

where τ1 and τ2 are commensurability parameters repre-
senting agreement between data from RCTs and single-
arm studies. Similar to Zhang et al, we place Gamma prior
distributions on each parameter; τ1 ∼ �

(
10−3, 10−3),

τ2 ∼ �
(
10−3, 10−3). For small parameter values, the

variance of the single-arm data is inflated and the con-
tribution to μ1 and μ2 is down-weighted. As parameter
values approach zero, only RCT data contribute in esti-
mating μ1 and μ2, whilst single-arm data are ignored. As
the parameter values approach infinity, data from RCTs
and single-arm studies contribute equally in estimatingμ1
and μ2.
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Marginal response probabilities
The methods described above for a dichotomous out-
come model the response probability in each arm, based
on the numbers of participants and responders (described
by Eq. (1)), and use a link function g() to transform the
response probability onto the linear predictor scale where
treatment effects are additive. A logit or probit link func-
tion can be used for meta-analysis with Binomial data [4],
although the logit link is often favoured in the published
literature as the relative treatment effects are easier to
interpret on the log odds ratio scale. The methods pro-
posed by Zhang et al do not parametrise relative treatment
effects, and instead they recommend using the probit
link �−1() and then calculating the marginal response
probability in each arm

π1 = �

⎛

⎜
⎝

μ1√
1 + σ 2

1

⎞

⎟
⎠

π2 = �

⎛

⎜
⎝

μ2√
1 + σ 2

2

⎞

⎟
⎠ (12)

where � is the cumulative distribution function for the
standard Normal distribution. The marginal response
probabilities can be used to calculate a marginal odds
ratio OR21 = π2 (1 − π1) /π1 (1 − π2). We implement the
methods proposed by Begg & Pilote using a probit link
to allow a direct comparison of all methods. For the BP
and BPbias methods, we obtain the marginal response
probabilities using Eq. (13)

π1 = �

(
μ√

1 + σ 2

)

π2 = �

(
μ + δ√
1 + σ 2

)
(13)

and for the BPrandom method using Eq. (14)

π1 = �

(
μ√

1 + σ 2

)

π2 = �

(
μ + d

√
1 + (σ + τ)2

)

(14)

Summary of methods
In this section, we have described the details of each
method (including suitable prior distributions) and the
corresponding marginal response probabilities (Win-
BUGS code used to fit each of the methods is provided
in Appendix D). We note that the methods proposed by
Zhang et al reduce to the model described by Eq. (7) when
applied to RCT data only (i = 1, ..., n), which we label
BGLMM∗. Similarly, the BP and BPbias methods reduce
to the model described by Eqs. (2) and (3) when applied to

RCT data only, which we label BP∗. We label the BPran-
dom method applied to RCT data only as BPrandom∗.

Simulation study: methods
In this section, we report aims, data-generation methods,
estimands, methods, and performance measures for the
simulation study, as recommended by Morris et al [12].
The simulation study aimed to compare the performance
of the methods described previously, under a number of
scenarios varying the proportion of RCTs and single-arm
studies in the synthesis, the magnitude of bias between
data from RCTs and single-arm studies, and differences
in between-study heterogeneity across RCTs and single-
arm studies. We aimed to build-on the simulation study
performed by Zhang et al [6], where the estimands were
the marginal response probability in each arm π1 and π2.
We evaluated performance by calculating coverage, mean-
square error (MSE), and mean change in 95% credible
interval length (CrIL). The latter measures the average
change in CrIL when a method is applied to RCT and
single-arm data versus RCT data only. The methods were
implemented via MCMC sampling in the WinBUGS soft-
ware, using a burn-in of 20,000 iterations and 100,000
iterations for posterior estimation [13].

Data-generationmethods
As in Zhang et al [6], we let n represent the number of
RCTs assessing treatments one and two, m - the number
of single-arm studies assessing treatment one, and l - the
number of single-arm studies assessing treatment two.We
let i denote study, and set the total number of studies in a
dataset n + m + l = 30. The data were simulated based-
on the BGLMM I method, modified to assume bias in
the single-arm data. The steps taken to simulate a dataset
were as follows. For RCT data, we specified values for
the between-study heterogeneity on each arm (σ1 and σ2)
and correlation between arms (ρ) to obtain the covariance
matrix (�) to simulate v1i and v2i

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)

(ν1i, ν2i) ∼ N (0,�) , i = 1, ..., n;

We assigned values to the mean treatment effect in each
arm (μ1 and μ2), and applied the simulated v1i and v2i to
obtain response probabilities on each arm

p1i = �(μ1 + ν1i) ,
p2i = �(μ2 + ν2i) , i = 1, ..., n;

where � is the cumulative distribution function for the
standard Normal distribution. We set the number of par-
ticipants to 100 in each arm of study i, and applied the
response probabilities (p1i and p2i) to sample the number
of responders (r1i and r2i) from a Binomial distribution
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r1i ∼ Bin (100, p1i) ,
r2i ∼ Bin (100, p2i) , i = 1, ..., n;

For single-arm data, we specified values for the between-
study heterogeneity on each arm (σ3 and σ4) to simulate
v3i and v4i

ν3i ∼ N
(
0, σ 2

3
)

i = n + 1, ..., n + m;
ν4i ∼ (

0, σ 2
4
)

i = n + m + 1, ..., n + m + l;

We defined values for the bias in each arm (ξ and η), and
applied the simulated v3i and v4i together with the mean
treatment effects (μ1 and μ2), to obtain the response
probabilities on each arm

p1i = � (μ1 + ν3i + ξ) , i = n + 1, ..., n + m;
p2i = � (μ2 + ν4i + η) , i = n + m + 1, ..., n + m + l;

We applied the response probabilities (p1i and p2i) to
sample the numbers of responders (r1i and r2i) from a
Binomial distribution

r1i ∼ Bin (100, p1i) , i = n + 1, ..., n + m;
r2i ∼ Bin (100, p2i) , i = n + m + 1, ..., n + m + l;

The data were simulated under a number of scenarios
adapted from scenario 1 (S1), where the number of RCTs
n = 15 and the number of single-arm studies on each
arm m = 10 and l = 5. The magnitude of bias for single-
arm studies ξ = 0.2 and η = 0.4, and between-study
heterogeneity parameters σ1 = 0.6, σ2 = 0.7, σ3 = 0.8,
σ4 = 1. Due to lack of randomisation, single-arm data are
at a higher risk of bias compared to randomised data, so
we assume a systematic difference (i.e. parameters ξ = 0.2
and η = 0.4) and larger between-study heterogeneity (i.e.
parameters σ3 = 0.8 and σ4 = 1.0). For all scenarios, the
mean treatment effects were set toμ1 = 0.4 andμ2 = 1.1,

and correlation was ρ = 0.6. We arrange the scenarios
into four groups, where in each group the scenarios focus
on varying a common set of parameter values. In group
one, S1-5, the number of RCTs gradually decreases (from
n = 15 to n = 1). This was intended to clearly demon-
strate the performance of the methods in scenarios where
there is little randomised evidence (i.e. S4 and S5, where
n = 3 and n = 1) compared to scenarios where there is
relatively substantial randomised evidence (i.e. S1, where
n = 15). In group two, [S6, S1, S7-9], the bias gradually
increases (from ξ = 0, η = 0 to ξ = 0.8, η = 1). In group
three, [S10-12, S6], the between-study heterogeneity for
single-arm data gradually increases (from σ3 = 0.1, σ4 =
0.3 to σ3 = 0.8, σ4 = 1), with zero bias (ξ = 0, η = 0).
In group four, [S13-15, S1], the between-study hetero-
geneity for the single-arm data gradually increases (from
σ3 = 0.1, σ4 = 0.3 to σ3 = 0.8, σ4 = 1), with non-zero
bias (ξ = 0.2, η = 0.4). A full description of the parameter
values specified in each scenario is provided in Table A.1
(Appendix A).

Results
Illustrative example: results
Table 1 presents posterior median estimates (and 95%
credible intervals) for π1, π2, and the marginal odds ratio.
The results are presented separately for analysis of RCT
and single-arm data versus analysis of RCT data only.
For the latter analysis, a random-effects meta-analysis
(REMA) [14] and fixed-effect meta-analysis (FEMA) were
also implemented. The odds ratio estimates range from
2.53 to 3.4, suggesting participants assigned a bDMARD
versus placeboweremore than twice as likely to achieve an
ACR20 response. However, only the contrast-based meth-
ods show CrIs greater than one. There is a reduction in

Table 1 Posterior median estimates and 95% credible intervals from application to illustrative example

Method π1 π2 OR DIC

BGLMM1 0.32 (0.14, 0.59) 0.55 (0.49, 0.62) 2.65 (0.84, 7.68) 104.10 ( 94.93, 118.30)

BGLMM2 0.33 (0.15, 0.62) 0.55 (0.49, 0.62) 2.53 (0.74, 7.31)

HPP 0.32 (0.13, 0.60) 0.56 (0.40, 0.72) 2.73 (0.74, 10.64)

HCP 0.32 (0.13, 0.64) 0.56 (0.35, 0.72) 2.60 (0.61, 9.38) 104.20 (95.07, 118.40)

BP 0.30 (0.23, 0.37) 0.56 (0.51, 0.62) 3.06 (2.42, 3.89) 131.40 (122.70, 144.90)

BPbias 0.30 (0.20, 0.44) 0.57 (0.45, 0.69) 3.06 (2.41, 3.93) 131.10 (122.60, 144.90)

BPrandom 0.30 (0.15, 0.53) 0.55 (0.29, 0.77) 2.74 (1.05, 6.78) 103.90 (94.82, 118.40)

RCT data only

BGLMM∗ 0.32 (0.13, 0.61) 0.56 (0.28, 0.78) 2.64 (0.51, 13.32) 39.08 (34.99, 48.09)

BP∗ 0.30 (0.19, 0.49) 0.57 (0.40, 0.71) 3.00 (2.00, 3.89) 65.84 (62.91, 73.80)

BPrandom∗ 0.31 (0.15, 0.58) 0.56 (0.26, 0.81) 2.76 (0.95, 7.85) 39.59 (35.11, 49.61)

REMA 3.40 (0.82, 14.02) 39.17 (35.02, 48.34)

FEMA 3.18 (2.49, 4.08) 65.95 (63.07, 73.78)
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uncertainty when methods are applied to include single-
arm studies in the synthesis, and the arm-based meth-
ods show a greater reduction in CrIL for the odds ratio
(between 23-49%) compared to the contrast-based meth-
ods (between 17-22%). Table 1 includes estimates for the
deviance information criterion (DIC), which provides a
measure of model fit whilst penalising model complexity
[15]. The BP method has the highest DIC value and is the
simplest method in terms of model parameters.

Simulation study: results
In this section, we present the simulation study results for
each method in terms of coverage, MSE and mean change
in CrIL. We illustrate the results for each scenario group
with a line plot of the performance measures for each
estimand.

Scenarios S1-5
Across scenarios S1-5, the proportion of RCTs gradually
decreases (from n = 15 to n = 1), whilst the total
number of studies remains fixed (n + m + l = 30).
The results for these scenarios are presented in Fig. 2.
The HPP and HCP methods, which both down-weight
the single-arm data, perform relatively strongly with over-
coverage (i.e. coverage above the nominal value 0.95) and
small MSE for both estimands. This suggests that down-
weighting the single-arm data can mitigate the effect of
bias. The BPbias method, which includes a parameter on
each arm to account for bias, performs strongly in S1-2
where there is a significant number of RCTs (n = 15 and
n = 12). However, its performance drops-off and MSE
is much larger in S4-5 where there are few RCTs (n = 3
and n = 1). This suggests that it requires a significant
number of both RCTs and single-arm studies to estimate
bias. The BP method is naive to study-design, and shows
under-coverage for all scenarios, which worsens as the
proportion of RCTs decreases. All methods, aside from
BPbias, provide a reduction in uncertainty when including
versus excluding single-arm data.
In scenarios S1-5, data were simulated using the

BGLMM I method, potentially favouring arm-based
methods over contrast-based methods. We performed a
sensitivity analysis to further explore this, where data
were simulated using the BPrandom method. We label
these scenarios S1∗-5∗, and the results are presented
in Figure B.1 (Appendix B). The HCP and HPP meth-
ods performed strongly across S1-5, and maintain their
performance in S1∗-5∗ with over-coverage and relatively
small MSE. The performance of BPbias in S1∗-5∗ mir-
rors its performance in S1-5, with a significant decrease
in coverage and increase in MSE occurring in S5∗. The
BP and BPrandom methods show a reduction in under-
coverage andMSE, perhaps because their assumptions are
now better aligned with the data-generating method (e.g.

common between-study heterogeneity across all stud-
ies). In contrast, the BGLMM I and II methods show
a reduction in coverage and a small increase in MSE,
because their assumptions are not as aligned to the data-
generating method. The impact of between-study hetero-
geneity is explored further in scenarios [S10-12, S6] and
[S13-15, S6].

Scenarios [S6, S1, S7-9]
Across scenarios [S6, S1, S7-9], the magnitude of bias in
each arm gradually increases (from ξ = 0, η = 0 to
ξ = 0.8, η = 1). The results for these scenarios are
presented in Fig. 3. The BPbias method shows consis-
tent over-coverage and small MSE, but does not offer any
reduction in uncertainty when including single-arm stud-
ies. The HCP and HPP methods maintain coverage close
to the nominal value and small MSE, whilst offering a con-
sistent reduction in uncertainty. They only show a drop in
performance in S9, where there is relatively large bias in
single-arm data. The BP and BPrandommethods are naive
to study-design and show reduction in uncertainty, but a
steep decrease in coverage and increase inMSE as the bias
is increased. The drop in performance is worse for π1 than
π2, perhaps because there are more single-arm studies on
arm one (m = 10) than arm two (l = 5). The BGLMM I
and II methods do not account for bias in the single-arm
data, but show a more gradual decrease in coverage and
increase in MSE.

Scenarios [S10-12, S6]
Across scenarios [S10-12, S6], between-study heterogene-
ity in single-arm studies on each arm gradually increases
(from σ3 = 0.1, σ4 = 0.3 to σ3 = 0.8, σ4 = 1) but
remains fixed in RCTs (σ1 = 0.6, σ2 = 0.7), and there is
zero bias (ξ = 0, η = 0). Figure 4 presents the results
for these scenarios. The BPbias method shows signifi-
cant under-coverage and large MSE in S10 where the
single-arm studies have much lower between-study het-
erogeneity compared to RCTs, but still provides some
reduction in uncertainty. The BP and BPrandom meth-
ods show less under-coverage and much smaller MSE,
whilst providing a greater reduction in uncertainty. The
BGLMM I and II methods show over-coverage and little
MSE, whilst providing the greatest reduction in uncer-
tainty. As the between-study heterogeneity is increased,
all methods show a decrease for the reduction in uncer-
tainty, but the HCP and HPP methods are impacted the
least.

Scenarios [S13-15, S1]
In contrast to [S10-12, S6], scenarios [S13-15, S1] assume
non-zero bias in the single-arm data (ξ = 0.2, η = 0.4),
and the results are presented in Fig. 5. In S13, where
single-arm data is much less uncertain than the RCT
data, the BGLMM I and II methods show a significant
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Fig. 2 Coverage, MSE, and mean change in CrIL for each estimand, across scenarios S1-5 where the number of RCTs is gradually decreased

reduction in uncertainty but large under-coverage and
significant MSE. In comparison, the BP and BPrandom
methods provide a more modest reduction in uncertainty
but better coverage, although the BPrandom method
shows large MSE. The BPbias method shows improve-
ment compared to S10, but offers only a modest reduction
in uncertainty which diminishes in [S14-15, S1]. The HCP
and HPP methods, which down-weight single-arm data,
show over-coverage and small MSE across the scenarios
whilst maintaining a reduction in uncertainty.

Discussion
In this paper, we aimed to compare methods proposed by
Begg & Pilote and Zhang et al, for pairwise meta-analysis
combining data from RCTs and single-arm studies using
aggregate data. Based on our simulation study, we con-
clude that the HCP and HPP methods provide a consis-
tent reduction in uncertainty when including single-arm
data, whilst remaining robust to limited RCT data, bias,
and differences in between-study heterogeneity across the
two sets of data. Both methods achieve this by down-
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Fig. 3 Coverage, MSE, and mean CrIL change for each estimand, across scenarios [S6, S1, S7-9] where bias in each arm gradually increases

weighting the single-arm data, HPP through specification
of a prior distribution, and HCP through estimating dis-
agreement between the data from RCTs and single-arm
studies. The BPbias method offers a simpler approach
to mitigating bias, but requires a significant proportion
of RCTs and single-arm studies in the synthesis. The
BGLMM I and II methods provide a reduction in uncer-
tainty, contingent upon little or no bias. Through our
analysis of an illustrative example, we have shown that
the methods can be used to combine data from RCTs
and single-arm studies to achieve a significant reduction

in uncertainty, compared to traditional meta-analysis of
RCTs alone.We list below key recommendations in apply-
ing the methods for synthesis of RCTs and single-arm
studies.
Key recommendations:

• The BP method is a parsimonious approach offering
significant reduction in uncertainty (compared to the
analysis of RCT data alone), when there is little or no
bias and differences in between-study heterogeneity
between the two types of data.
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Fig. 4 Coverage, MSE, and mean CrIL change for each estimand, across scenarios [S10-12, S6] where the between-study heterogeneity for
single-arm studies gradually increases with zero bias

• The BGLMM I and II methods provide a significant
reduction in uncertainty whilst accounting for
differences in between-study heterogeneity, when
there is little or no bias.

• The HPP method allows for down-weighting single-
arm data, and remains robust to limited RCT data
and bias whilst providing a reduction in uncertainty.

• The HCP method provides a consistent reduction in
uncertainty whilst accounting for disagreement
between RCT and single-arm data, and also remains
robust to limited RCT data.

In a traditional meta-analysis of RCTs aiming to esti-
mate a pooled relative treatment effect [16], baseline treat-
ment effects are allowed to vary independently to preserve
randomisation in each arm and minimise bias. There has
been discussion in the literature regarding arm-based and
contrast-based approaches to meta-analysis. Hong et al
have suggested arm-based methods can minimise bias
when data are assumed to be missing in a particular arm
[17]. In response, Dias &Ades have argued that arm-based
models actually increase bias since they do not preserve
randomisation [18]. A further exploration of constrast-
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Fig. 5 Coverage, MSE, and mean CrIL change for estimands, across scenarios [S13-15, S1] where the between-study heterogeneity for single-arm
studies gradually increases with non-zero bias

based and arm-based models has been performed by
White et al considering a NMA context [19]. The tradi-
tional meta-analysis approach is not feasible when seeking
to combine RCTs and single-arm studies, because the
single-arm studies lack a comparator arm to estimate a
relative treatment effect. Consequently, exchangeability
must be assumed on at least one arm to incorporate the
single-arm studies. The methods by Begg & Pilote assume
exchangeability on the designated baseline arm, whilst
those by Zhang et al assume exchangeability on both arms.

Thus, it may be beneficial to perform a sensitivity analysis
using more than one method. Decision-makers can then
consider the benefits offered by including the single-arm
studies (e.g. reduction in uncertainty) versus the poten-
tial penalties (e.g. increased risk of bias), and whether
the penalties have been mitigated by applying a suitable
method.
Aside from application in HTA, the methods assessed

here can also be useful in clinical settings, for instance, in
early-phase cancer research. Phase II cancer trials assess
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treatment efficacy via randomised-controlled or single-
arm study designs, where only the latter may be ethical for
rare cancers [20]. Consequently, there may be data avail-
able from both RCTs and single-arm studies, which need
to be synthesised to determine the feasibility of a phase
III trial [21]. Thus, further methodological development
for performing a meta-analysis (or NMA [22]) to combine
data from different study designs is required.
In this paper, we have considered the case where only

aggregate data are available, which limits the methods
to rudimentary bias-adjustment. The methods, however,
can be very useful in situations when there are no IPD
available and RCT data are limited. Further research is
required to explore methods adjusting for bias which
is variable across studies, to account for differences in
risk of bias due to study setting (e.g. single-centre versus
multi-centre single-arm studies). When IPD are available,
a more detailed adjustment for potential biases can be
carried out, as there are a number of approaches avail-
able that can be applied to mitigate confounding when
estimating causal treatment effects [23]. For example,
availability of IPD allows for enhancing approaches for
meta-regression, which is recommended to explore bias
and heterogeneity in a synthesis of evidence [24]. Further-
more, we did not consider the methods recently proposed
by Schmitz et al [7], which incorporate single-arm studies
in NMA of RCTs. Although proposed under a NMA con-
text, they can be adapted for pairwisemeta-analysis. How-
ever, after matching single-arm studies based on covariate
information, the models used to synthesise data are only
applicable to two-arm studies. Including those methods
in this simulation study would also require specifying a
model from which to simulate data on covariates. Thus,
the simulation study was restricted to the methods by
Begg & Pilote and Zhang et al.

Conclusions
We have performed an extensive comparison of meth-
ods proposed by Begg & Pilote and Zhang et al, for
pairwise meta-analysis combining data from RCTs and
single-arm studies using aggregate data. We conclude
that those methods by Zhang et al (HCP and HPP),
which use the single-arm data to define prior distribu-
tion for model parameters, provide a consistent reduction
in uncertainty when including single-arm data, whilst
remaining robust to data variability. The other methods
considered here performworse when there is limited RCT
data (BPbias), significant bias (BGLMM I & II), and dif-
ferences in between-studies heterogeneity across the two
sets of data (BP and BPrandom). We hope this study is
informative for researchers seeking to perform a pair-
wise meta-analysis of RCTs and single-arm studies using
aggregate data. We have described the existing methods
in detail under a Bayesian framework, and the methods’

advantages and disadvantages under a number of data
scenarios.
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