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Purpose: This article reviews the effects of the increase in bacterial resistance on the treatment 

of ocular infections.

Design: Interpretive assessment.

Methods: Literature review and interpretation.

Results: Ocular bacterial infections include conjunctivitis, keratitis, endophthalmitis, blepharitis, 

orbital cellulitis, and dacryocystitis. Treatment for most ocular bacterial infections is primarily 

empiric with broad-spectrum antibiotics, which are effective against the most common bacteria 

associated with these ocular infections. However, the widespread use of broad-spectrum 

systemic antibiotics has resulted in a global increase in resistance among both Gram-positive 

and Gram-negative bacteria to a number of the older antibiotics as well as some of the newer 

fluoroquinolones used to treat ophthalmic infections. Strategies for the prevention of the increase 

in ocular pathogen resistance should be developed and implemented. In addition, new antimi-

crobial agents with optimized pharmacokinetic and pharmacodynamic properties that have low 

toxicity, high efficacy, and reduced potential for the development of resistance are needed.

Conclusions: New antimicrobial agents that treat ocular infections effectively and have a low 

potential for the development of resistance could be a part of strategies to prevent the global 

increase in ocular pathogen resistance.
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Introduction
Ophthalmic infections can cause damage to structures of the eye, which can lead to 

vision loss and even blindness if left untreated.1 The effective use of antibiotics to treat 

ophthalmic infections requires an understanding of the disease and the pharmacokinetics 

and pharmacodynamics of the drugs used for the treatment.1,2 The most common ocular 

infection seen by primary care physicians worldwide is bacterial conjunctivitis, which 

is self-limiting and largely presents as an acute infection.3,4 Bacterial keratitis, an infec-

tion of the cornea often associated with contact lens wear, ocular trauma, or ocular 

surface disease, is less common but poses a risk of loss of vision.5–8 Endophthalmitis 

is a rare but potentially sight-threatening infective complication of intraocular surgery 

(primarily cataract), intravitreal injections, and ocular trauma.9,10 Bacterial blepharitis is 

an inflammation of the eyelids, particularly at the lid margins, that may be associated 

with a low-grade staphylococcal bacterial infection.11 Orbital cellulitis and other 

periorbital infections can be caused by a variety of organisms, including bacteria, 

and occurs as a complication of surgery, nonsurgical trauma, or the retention of a 

foreign body.12 Dacryocystitis, or infections of the lacrimal sac, are common at all 
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ages and occur due to acquired or congenital obstruction of 

nasolacrimal duct.13 Although treatment guidelines for these 

ocular infections recommend that laboratory culture and 

smear tests be conducted, when possible, for determination 

of the causative pathogens,14 in practice the initial choice 

of antibiotic therapy is generally made without knowing 

the identity or susceptibility of the ocular pathogen.1,9,15,16 

Broad-spectrum antibiotic therapy for bacterial infections is 

initially used in order to prevent a decline in vision or perma-

nent vision loss that may require surgical intervention.9,16,17 

Endophthalmitis, bacterial keratitis, and orbital cellulitis 

require aggressive initial broad-spectrum antibiotic therapy, 

which can subsequently be tapered or modified after the 

results from laboratory culture and smear tests are obtained.18 

In this context, it must be noted that most ophthalmic antibi-

otics are approved for bacterial conjunctivitis only, with few 

indicated for keratitis and none for endophthalmitis.19

Several therapeutic classes of antibiotic agents are 

available for ophthalmic indications. These agents differ in 

their mechanism of action, coverage of important pathogens, 

and bactericidal versus bacteriostatic effects. The penicillins, 

cephalosporins, aminoglycosides, and fluoroquinolones are 

bactericidal agents (ie, kill bacteria)20 and are generally 

used to treat ocular infections. Bacteriostatic drugs 

like tetracyclines, macrolides, chloramphenicol, and 

sulfonamides, which inhibit bacterial growth, are used 

in cases in which there is a specific benefit or an allergy 

issue. Antibiotics can be used systemically or topically to 

control ocular infection. Topically applied antibiotics are 

more effective in achieving rapid, high concentrations of the 

antibiotic at the site of infection compared to systemically 

administered antibiotics. Frequent or inappropriate, 

systemic long-term use of an antibiotic may result in the 

development of bacterial antibiotic resistance. Therefore, 

topical administration of antibiotics may be a better 

choice, although the occurrence of drug resistance with 

topical antibiotics used for prolonged periods has been 

reported.1 Ophthalmic antibiotics are generally formulated 

as solutions or suspensions, but some are also available as 

ointments (eg, erythromycin, polymyxin, or bacitracin). 

Ointments theoretically provide prolonged exposure, since 

they do not get removed from the site of infection as rapidly 

as ophthalmic solutions/suspensions do because of rapid 

tear film turnover.1 However, hydrophilic antibiotics often 

crystallize within the ointment base, which may impact their 

release, available concentration, and effectiveness.1 Other 

factors that affect the exposure of ocular drugs include the 

integrity of the corneal epithelial barrier, inflammation of 

the ocular tissues, and the microtoxicity associated with 

the use of preservatives.1 Thus, the clinician may choose 

from a number of formulations of agents based on the 

location and severity of the infection, comorbidities, and the 

safety and tolerability of the antibiotic as well as bacterial 

susceptibility.

Rapid use of antibiotics for severe ocular infections is 

routine in ophthalmic practice, as pathogenesis of ocular 

bacteria results in release of toxins and degradative enzymes 

that can damage the integrity of ocular tissues and cause 

sight-damaging sequelae. Although older ophthalmic 

antibiotics such as chloramphenicol, sulfonamides, polymyxins, 

bacitracin, and aminoglycosides and early-generation 

fluoroquinolones are still prescribed, they are less effective 

than the advanced-generation fluoroquinolones for treating 

ocular infections because of a limited spectrum of activity 

and/or the development of pathogen resistance.21,22 The 

advanced-generation fluoroquinolones (eg, moxifloxacin and 

gatifloxacin) have a broader spectrum of activity and are more 

effective against common ocular pathogens.23

The development of bacterial resistance to specific 

antibiotics is an important consideration for clinicians 

treating ocular infections. Bacterial resistance has been 

emerging worldwide, likely due to widespread and 

inappropriate dosing of broad-spectrum antibiotics for 

systemic infections, exacerbated by inadequate compliance to 

full treatment duration.24 Of note, the Ocular Tracking Resis-

tance in the U.S. Today (TRUST) program, which annually 

evaluates the in vitro susceptibility of Staphylococcus aureus, 

Streptococcus pneumoniae, and Haemophilus influenzae to 

a number of ophthalmic antibiotics in national samples of 

ocular isolates, reported a 12.1% increase in the incidence of 

methicillin-resistant S. aureus (MRSA) strains from January 

2000 to December 2005, with more than 80% of MRSA 

resistant to fluoroquinolones.25,26 While these numbers are 

alarming, one limitation of studies on the emergence of 

resistance among ocular pathogens is that the determina-

tion of bacterial susceptibility to ophthalmic antibiotics is 

typically based on systemic drug exposure breakpoints, 

the concentrations at which bacterial isolates are deemed 

susceptible or resistant to a particular drug.27,28 The data used 

to determine breakpoints are derived from systemic dosing and 

the average concentration of drugs in tissues after systemic 

administration. Since topical administration produces a higher 

concentration of antibiotic in ocular tissues than that achieved 

following systemic therapy, these breakpoints, defined by the 

Clinical and Laboratory Standards Institute (CLSI), do not 

apply.27 Nevertheless, as discussed later in this review, there 
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are many reports of clinical treatment failure due to ocular 

pathogen drug resistance. These reports highlight the need to 

reevaluate and implement improved treatment guidelines for 

the prevention of pathogen resistance to ocular anti-infective 

therapies,26,27 and the need to develop new antibiotics with 

greater efficacy, lower toxicity, and lower resistance potential 

than older agents.29

Ocular infections and current 
treatment options
Bacterial conjunctivitis
Bacterial conjunctivitis, or red eye, which involves 

inflammation of the conjunctival mucosa, is more common 

in young children and the elderly than in other age groups.3 

The etiology of conjunctivitis can be allergic, toxic, or 

infectious. Symptoms of bacterial conjunctivitis include a 

purulent discharge around the eye, hyperemia, and a burning 

or stinging sensation.3,15 The most common causal pathogens 

in bacterial conjunctivitis are S. aureus, S. pneumoniae, and 

H. influenzae. Staphylococcus epidermidis, Enterococcus 

spp., Moraxella spp., streptococci viridans group, Escherichia 

coli, Serratia marcescens, Pseudomonas aeruginosa, and 

Proteus mirabilis have also been isolated less frequently 

from bacterial conjunctivitis samples.3,30,31 Gram-positive 

pathogens accounted for 52.5% of positive cultures, 72.1% 

of which were S. aureus (Table 1).31 Staphylococci infections 

are more common in adults, while S. pneumoniae and 

H. influenzae are more common in children.31

Although clinical resolution of bacterial conjuncti-

vitis occurs without any treatment in most patients by 

7 days, treatment with broad-spectrum topical antibiotics 

accelerates the rate of clinical resolution and decreases 

the risk of contagious spread.4,15,30,32 Topical antibiotics 

indicated for bacterial conjunctivitis include aminoglyco-

sides (eg, gentamicin and tobramycin), polymyxin-based 

combinations (eg, polymyxin B sulfate and trimethoprim), 

azithromycin, fluoroquinolones (eg, ciprofloxacin, 

levofloxacin, ofloxacin, moxifloxacin, and gatifloxacin), 

and, outside of the United States, chloramphenicol.4,30

Bacterial keratitis
Bacterial keratitis is a potentially devastating ocular infection 

that may occur when the corneal epithelial barrier is 

compromised due to injury or trauma, leading to ulceration 

and infiltration of inflammatory cells.33 Infection largely 

involves Gram-positive S. aureus, S. epidermidis, and several 

Streptococcus and Bacillus spp., as well as Gram-negative 

bacteria like P. aeruginosa, S. marcescens, Moraxella 

lacunata, Microbacterium liquefaciens, and H. influenzae. 

Immediate diagnosis and treatment are important to avoid 

vision-threatening outcomes, including corneal scarring or 

perforation.1 Clinical signs and symptoms include mild to 

severe ocular pain, photophobia, decreased vision, tearing, 

discharge, inflammation, focal white opacity in the corneal 

stroma (infiltrate), staining of the area (indicating an 

epithelial defect), corneal thinning, stromal edema, mild to 

severe anterior chamber reaction, and eyelid edema.7,8,34 The 

most common predisposing factors for bacterial keratitis are 

ocular trauma, contact lens wear (especially extended wear), 

ocular surface disease, and prior ocular surgery.7,34

Standard treatment of bacterial keratitis is a combina-

tion of cefazolin and tobramycin or an aminoglycoside such 

as gentamicin and a second-generation cephalosporin such 

as cefuroxime to avoid aminoglycoside retinal toxicity.11 

Ciprofloxacin 0.3%, ofloxacin 0.3%, and levofloxacin 1.5% 

are indicated in the United States for the treatment of corneal 

ulcer;35–37 monotherapy with fluoroquinolones may now be 

the preferred treatment, especially if the infection is associ-

ated with wearing contact lenses.7 However, the emerging 

resistance of Gram-positive organisms to older agents and 

fluoroquinolones has underscored the importance of the 

clinical practice recommendation to culture all corneal ulcers 

before antimicrobial treatment.16 Newer fluoroquinolones 

are therefore recommended for initial therapy of bacterial 

Table 1 Prevalence of most common isolates from patients with bacterial conjunctivitis recovered within the 2-year period31

 1994–1995 1996–1997 1998–1999 2000–2001 2002–2003 Total

Gram-positive 
 Staphylococcus aureus 
 Streptococcus pneumoniae 
 Streptococcus viridans group

166 (54.2%) 
108 (65.0%) 
18 (10.8%) 
19 (11.6%)

152 (56.5%) 
114 (75.0%) 
14 (9.2%) 
6 (3.9%)

128 (50.4%) 
89 (69.5%) 
21 (16.4%) 
10 (7.8%)

88 (47.6%) 
69 (78.4%) 
11 (12.5%) 
6 (6.8%)

121 (50.4%) 
92 (76.0%) 
16 (13.2%) 
6 (5.0%)

655 (52.5%) 
472 (72.1%) 
80 (12.2%) 
47 (7.2%)

Gram-negative 
 Haemophilus influenzae 
 Pseudomonas aeruginosa 
 Proteus mirabilis

140 (45.8%) 
63 (45.0%) 
16 (11.4%) 
15 (10.7%)

117 (43.5%) 
53 (45.3%) 
8 (6.8%) 
8 (6.8%)

126 (49.6%) 
62 (49.2%) 
11 (8.7%) 
8 (6.3%)

97 (52.4%) 
50 (51.5%) 
5 (5.2%) 
3 (3.1%)

119 (49.6%) 
48 (40.3%) 
17 (14.3%) 
7 (5.9%)

599 (47.8%) 
276 (46.1%) 
57 (9.5%) 
41 (6.8%)
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keratitis to avoid progression of the ocular infection to corneal 

perforation, endophthalmitis, and even loss of the eye.33

endophthalmitis
Endophthalmitis is a rare but potentially sight-threatening 

complication of intraocular surgery, intravitreal injections, 

and ocular trauma.9,38,39 The incidence of endophthalmitis 

following cataract surgery has increased over the last decade 

despite many technical advances and faster visual recovery,40 

and ranges from 0.2% to 0.7% in the United States and 

Europe.10,41,42 The risk for occurrence of endophthalmitis 

following intravitreal injection of corticosteroids has been 

estimated to be 0.8% from noninfectious causes and 0.6% 

to 1.6% from infectious causes.37,43–46 Risk factors for endo-

phthalmitis can be preoperative (blepharitis, lachrymal duct 

obstruction, contact lens use, and secondary intraocular 

lens implantation), intraoperative (inadequate eyelid or 

conjunctival disinfection, surgery lasting for more than 1 hour, 

loss of vitreous humor, or unplanned ocular penetration) or 

postoperative (wound abnormalities, inadequately buried 

sutures, suture removal, and vitreous incarceration in the 

surgical wound).47 Coagulase-negative Staphylococcus 

(CoNS) and Bacillus spp. are the most common pathogens 

of posttraumatic endophthalmitis.48 A postcataract study 

with 497 patients with endophthalmitis showed that more 

than 90% of the isolates were Gram-positive, mostly CoNS, 

and that the in vitro susceptibility profiles of these pathogens 

had changed over a decade.49 A review of 1182 consecutive 

open-globe injuries identified 10 patients with culture-proven 

endophthalmitis. Endophthalmitis-related isolates from these 

patients included Streptococcus spp. (46.2%), CoNS (23.1%), 

and Bacillus cereus (15.4%).48

Intravitreal antibiotics including vancomycin and an 

aminoglycoside or third-generation cephalosporin are used 

to treat bacterial endophthalmitis, while vitrectomy may 

be needed for severe cases.9 Since the causal organisms of 

endophthalmitis may often be the patient’s own conjunctival 

bacterial flora, many of the routinely used prophylactic 

measures aim to decrease the number of ocular bacteria 

before and after surgery.50,51 Prophylaxis for endophthalmitis 

includes ocular antibiotics and anti-inflammatory agents 

used in the pre-, peri-, and postoperative period,10,52 as well 

as intracameral use of cefuroxime at the end of surgery.53 

Gatifloxacin and moxifloxacin are routinely administered 

topically along with the antiseptic povidone-iodine before 

cataract removal.11,52 Topical moxifloxacin was shown to 

reduce the incidence of endophthalmitis to less than 0.1% in a 

retrospective, observational case review of 20,013 patients,50 

while intracameral use of cefuroxime at the end of surgery 

also reduced the occurrence of endophthalmitis to less than 

0.1%.53 More than 75% of ophthalmologists in the United 

States and Europe use preoperative antibiotics, among which 

the fluoroquinolones have grown increasingly popular.48,54,55 

Neither topical antibiotics nor intracameral cefuroxime are 

indicated for endophthalmitis.

Bacterial blepharitis
Bacterial blepharitis is an infection and inflammation of the 

eyelid margin associated with hyperemia with crusting on 

the eyelashes. The most common complications of untreated 

blepharitis are abnormal eyelash growth (ie, trichiasis), 

scarring of the eyelids, and injury to the cornea due to 

constant irritation, which may cause small corneal ulcers.56 

The most common causal pathogens for bacterial blepharitis 

are S. aureus and CoNS.56,57 The standard of care in bacterial 

blepharitis is antibiotic therapy along with lid scrubs and 

hot compresses. Ointments of erythromycin, bacitracin, or 

polymyxin have routinely been used.11 Antibiotic therapy in 

chronic bacterial blepharitis has to be optimized in order to 

avoid the development of antibiotic resistance due to long-term 

antibiotic use.11 In cases where ocular rosacea is a contributing 

factor to eyelid inflammation in bacterial blepharitis, oral 

tetracycline, doxycycline, or minocycline is also used.11

Periorbital and orbital cellulitis
Preseptal (periorbital) and postseptal (orbital) cellulitis are 

potentially vision-threatening bacterial infections of the 

periocular tissue. While preseptal cellulitis involves only 

the lid structures and periorbital tissues anterior to the 

orbital septum, postseptal cellulitis involves tissues behind 

the septum, and it is seen more commonly in children and 

adolescents than adults. Routes of infection include trauma, 

bacteremia, sinusitis, and upper respiratory infections. 

Signs and symptoms include swelling of the eye, pain, 

fever, erythema, impaired ocular motility, afferent pupillary 

defect, proptosis, and visual loss. Sinus radiographs, 

computed tomography, magnetic resonance imaging, and 

orbital ultrasonography are used for prognosis. The most 

common pathogen is H. influenzae. If there is an associated 

local wound, the pathogens may include S. aureus and 

Streptococcus pyogenes.58

Traditionally, azithromycin, cephalosporins, penicillins, 

and clindamycin have been used in oral form to provide 

broad-spectrum coverage against staphylococci, streptococci, 

and anaerobes associated with ocular sinusitis (nonviral) 

and orbital cellulitis.59 Alternatively, vancomycin or other 
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intravenous antibiotics may be used.58,59 Optic nerve function 

is monitored every 4 hours (through pupillary reactions, 

visual acuity, color vision, and light brightness appreciation). 

Treatment, which may be modified according to laboratory 

results, typically lasts 7 to 10 days.58 Surgery is indicated if 

there is a lack of response to antibiotic treatment or other 

complications occur.1

Dacryocystitis
Dacryocystitis is a painful inflammation of the lacrimal sac 

resulting from congenital or acquired obstruction of the 

nasolacrimal duct. In adults, it is idiopathic or the result 

of an obstruction from infection, trauma, or dacryolith, or 

rarely a neoplasm.60 In dacryocystitis, the medial lower lid 

location is protruding, tender, and painful, with discharge 

and tearing. The most common isolates in dacryocystitis 

are P. aeruginosa, S. aureus, Enterobacter aerogenes, 

Citrobacter, S. pneumoniae, E. coli, and Enterococcus 

spp.61,62 Treatment of dacryocystitis includes hot packs 

with topical and systemic antibiotics to cover penicillinase-

producing staphylococcal organisms.6 Clearing the drainage 

system, along with treatment with parenteral and topical 

antibiotics until the infection clears, is the standard therapy 

for dacryocystitis.1 Topical antibiotic treatment includes 

ceftazidime, ciprofloxacin, and cefuroxime.62 A higher 

incidence of Gram-negative organisms, particularly 

Pseudomonas, may indicate a trend in dacryocystitis 

infections towards antibiotic resistance.62 It is important to 

modify the antibiotic therapy based on a patient’s response, 

laboratory culture, and sensitivity results to avoid the devel-

opment of drug-resistant chronic dacryocystitis.

Bacterial resistance  
in ocular infections
The emerging resistance of ocular pathogens to topical 

antimicrobial agents is a worldwide problem. The emer-

gence of bacterial resistance is influenced by characteristics 

of the pathogens, antibiotic-prescribing practices including 

the widespread use of systemic antibiotics, and health care 

guidelines.63 Data from the worldwide surveillance programs 

TRUST, GLOBAL, PROTEKT, ARM, SENTRY, ABC, 

and TSN64–69 document widespread resistance among the 

pathogens commonly responsible for systemic infections to 

many systemically administered antimicrobial agents.63,70,71 

Worldwide, S. pneumoniae has a 20% to 30% resistance rate 

to penicillin and a 25% to 35% resistance rate to macrolides 

and azalides.72,73 In addition, 20% to 30% of H. influenzae 

isolates produce β-lactamase, which confers resistance to 

ampicillin.72,73 Ocular pathogen resistance to antimicrobial 

agents is increasing in parallel with an increase in antibiotic 

resistance in general, and is a major concern, since it narrows 

treatment choices for the management of common ocular 

infections.74 Surveillance studies that document resistance 

among ocular pathogens include Ocular TRUST25,26 and 

analyses of data from The Surveillance Network (TSN).27

increasing bacterial resistance 
in conjunctival infections
Studies of bacterial isolates from ophthalmic infections have 

reported an increase in resistance to the older fluoroquino-

lone ciprofloxacin among S. aureus and the emergence of 

methicillin-resistant S. aureus (MRSA).26,65,74,75 A nearly 

3-fold increase in resistance to the older fluoroquinolones, 

including ciprofloxacin, among S. aureus isolates from con-

junctival swabs was noted over a 10-year period (1994 to 

2003), and the prevalence of MRSA among S. aureus isolates 

increased from 4.4% to 42.9% (P = 0.001).31 Of note, a recent 

study of multidrug-resistant isolates (total of 1324 isolates 

examined) from clinical trials in bacterial conjunctivitis 

reported a significant prevalence of ciprofloxacin resistance 

in conjunction with methicillin resistance - 65% of MRSA 

isolates and 47% of methicillin-resistant S. epidermidis 

isolates were also ciprofloxacin resistant.76 Resistance has 

also increased to erythromycin and oxacillin among Gram-

positive isolates and to trimethoprim/sulfamethoxazole 

(TMP/SMX) among Gram-negative isolates.31 In a bacterial 

conjunctivitis study in pediatric patients (N = 428, ages 2 to 

36 months), antibiotic resistance rates were high for pneu-

mococcal isolates (penicillin, 60%; TMP/SMX, 38%; 

erythromycin, 23%; tetracycline, 18%; clindamycin, 9%).77 

Multidrug resistance was reported in 20% of pneumococcal 

isolates, highlighting the potential role of conjunctivitis in 

the spread of antibiotic-resistant pathogens.77

In a phase III study of resistance to azithromycin and 

moxifloxacin among conjunctival isolates, the MIC
90

 

for tested organisms was below the CLSI-established 

resistance breakpoints for moxifloxacin and above the 

resistance breakpoints for azithromycin (3-fold higher for 

H. influenzae; 128-fold higher for S. epidermidis; 16-fold 

higher for S. pneumoniae; 128-fold higher for S. aureus).78 

In a killing kinetic study, moxifloxacin exhibited a faster speed 

of bacterial kill than other nonfluoroquinolone antibiotics 

(tobramycin, gentamicin, polymyxin B/trimethoprim, or 

azithromycin) in S. aureus, S. pneumoniae, and H. influenzae 

isolated from conjunctival swabs.79 These studies indicate that 

advanced-generation fluoroquinolones may kill bacteria more 
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rapidly, leading to a faster resolution of ocular infection in 

the eye than with older topical ocular antibiotics and thereby 

reducing the risk of ocular drug resistance.79

The trend of growing ocular bacterial antibiotic 

resistance was also seen in a decrease in in vitro sus-

ceptibility to gentamicin and tobramycin in corneal and 

conjunctival samples. Susceptibility decreased among all 

tested pathogens from 88% to 95% at the beginning of the 

study to 50% to 80% at the end of the 15-year surveillance 

period in 2000.80 Ninety percent of bacteria in the cornea and 

95% of bacteria in the conjunctiva remained susceptible to 

ciprofloxacin, norfloxacin, and ofloxacin in 2000.80 A subse-

quent 2-year Brazilian study (N = 219) also concluded that 

advanced-generation fluoroquinolones, such as gatifloxacin 

and moxifloxacin, were more active than older antibiotics 

against Gram-positive bacteria.81 It is therefore important 

to treat bacterial conjunctivitis rapidly to decrease disease 

transmission, shorten symptom duration, and minimize the 

emergence and spread of resistant bacteria.79

increasing bacterial resistance in keratitis 
infections
An increase in bacterial resistance has also been observed 

for keratitis infections. A review of resistance patterns 

over 2 consecutive 10-month periods found an increase 

in resistance rates among Gram-positive bacterial keratitis 

isolates to ciprofloxacin, cefazolin, and gentamicin.82 

Increased resistance to these commonly used antibiotics 

indicated a need for close follow-up after initial treatment and 

suggested maintaining a low threshold for selecting alterna-

tive therapy.82 Among Gram-negative bacteria, a retrospective 

chart review of 1312 bacterial isolates from 1984 through 1999 

found a significant (P = 0.0019) increase in chloramphenicol 

resistance, suggesting that chloramphenicol is unlikely to 

provide prophylactic coverage for Gram-negative ocular 

infections.83 In a study of 291 patients with presumed bac-

terial keratitis, 68% were culture positive, of which 83% 

of cultures were Gram-positive, 17% Gram-negative, and 

2% polymicrobial.6 In a 5-year retrospective review of 

patients (N = 131) with bacterial keratitis, P. aeruginosa 

and S. aureus were the most common isolates, and 15.4% 

of S. aureus isolates were resistant to fluoroquinolones.33 

Similar results were noted in another study in which, overall, 

96.2% of Gram-positive cocci isolated from bacterial keratitis 

samples (N = 104) were susceptible to gatifloxacin, whereas 

60.4% were susceptible to ciprofloxacin.84 No differences 

in susceptibility were observed among Gram-negative 

isolates.84 Corneal ulcer healing rates with gatifloxacin 

were significantly (P  0.01) higher for infections caused 

by Gram-positive pathogens but not for those caused by 

Gram-negative pathogens, indicating that gatifloxacin may 

be a preferred (albeit off-label) alternative to ciprofloxacin 

as the first-line monotherapy in bacterial keratitis.84

As discussed earlier, higher concentrations of topical 

drugs are achievable in the eye; however, systemic minimum 

inhibitory concentration (MIC) values (CLSI standards) 

continue to be used as the susceptibility breakpoint in 

the treatment of ocular infections. The effect of MIC 

breakpoints on the rate of clinical response of bacterial 

keratitis isolates (N = 663) to ciprofloxacin showed that 

for MIC  1 µg/mL, the cure rate was 74.5% (n = 272), 

but for isolates with MIC  1 µg/mL, the cure rate was 

only 57.7% (n = 15). This could indicate that ciprofloxacin-

resistant bacteria respond slowly to a higher concentration 

of ciprofloxacin,85 that organisms with higher MICs do not 

attain adequate pharmacodynamic goals for treatment, or 

that resistant mutants frequently emerge. Although this study 

may be limited by an inherent overestimation of the level of 

ciprofloxacin susceptibility on response rates, susceptibility 

testing of corneal cultures may predict the response of 

bacterial keratitis to fluoroquinolone therapy.85

S. aureus isolated from bacterial keratitis samples 

(N = 177) that was resistant to the older fluoroquino-

lones ciprofloxacin, levofloxacin, and ofloxacin remained 

susceptible to the advanced fluoroquinolones gatifloxacin 

and moxifloxacin.23 The MIC
90

 for the advanced-generation 

fluoroquinolones was lower than the MIC
90

 for the older 

agents for all other Gram-positive bacteria tested, indicating 

that the advanced fluoroquinolones exhibited greater 

potency against bacterial keratitis pathogens. Although 

ciprofloxacin still had the lowest MIC
90

 for Gram-negative 

bacteria, overall the newer fluoroquinolones offer significant 

advantages, especially for Gram-positive bacteria, in the 

treatment of bacterial keratitis.23 In one recent study, how-

ever, P. aeruginosa and S. aureus isolates from 2 cases of 

bacterial keratitis after refractive surgery showed resistance 

to moxifloxacin and gatifloxacin, highlighting the need to 

develop newer anti-infective agents.86

increasing bacterial resistance  
in endophthalmitis and other ocular 
infections
Antimicrobial resistance, including to the advanced-

generation fluoroquinolones, has been identified from endo-

phthalmitis isolates as well. The in vitro cross-resistance of 

gatifloxacin and moxifloxacin versus older fluoroquinolones 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Ophthalmology 2009:3 513

New strategies and treatment options for ocular infectionsDovepress

submit your manuscript | www.dovepress.com

Dovepress 

was evaluated among 111 CoNS isolates recovered from 

patients with endophthalmitis over 15 years from January 1, 

1990, through December 31, 2004.87 More than 65% of the 

CoNS isolates resistant to ciprofloxacin (n = 38) also dem-

onstrated in vitro cross-resistance to gatifloxacin (65.8%) 

and moxifloxacin (71.1%), indicating a significant increase 

in ocular pathogen resistance to fluoroquinolones over the 

15-year period.87 Increasing in vitro resistance to gatifloxacin 

and moxifloxacin may have important implications for the 

prevention and treatment of postoperative endophthalmitis 

and reinforce the need to develop new fluoroquinolones.87

Overall, among bacterial isolates from ocular infections, 

MRSA strains increased from 29.5% in 2000 to 41.6% in 

2005 (Figure 1).27 In this study of ocular isolates from more 

than 200 laboratories, fluoroquinolones were consistently 

active against methicillin-susceptible S. aureus (MSSA), 

S. pneumoniae, and H. influenzae but not against more than 

two-thirds of MRSA isolates.27 Moxifloxacin, gatifloxacin, 

levofloxacin, and ciprofloxacin were, respectively, effective 

against 92.1%, 90.2%, 90.6%, and 91.1% of MSSA isolates, 

but only against 27.4%, 29.0%, 26.5%, and 31.6% of MRSA 

isolates.25 In comparison, resistance among P. aeruginosa 

isolates was 10.5% to ciprofloxacin and gentamicin and 

13.2% to gatifloxacin and ofloxacin.27

Similar trends were observed by the Ocular TRUST 

program, which evaluates the annual change of in vitro 

antimicrobial susceptibilities of S. pneumoniae, H. influen-

zae, and S. aureus in national samples of ocular isolates.26 

In this study, 17% of S. aureus isolates were methicillin 

resistant. About 75% to 85% of MRSA isolates were resistant 

to ciprofloxacin, levofloxacin, moxifloxacin, and gatifloxacin; 

64% were resistant to tobramycin; and 91% were resistant to 

azithromycin. Increased in vitro MRSA resistance suggests 

the need to consider newer, more potent anti-infective agents 

when MRSA is a likely pathogen.26 The susceptibility rates of 

MSSA, S. pneumoniae, and H. influenzae to ciprofloxacin and 

levofloxacin varied from year to year, while the susceptibility 

patterns for the newer fluoroquinolones gatifloxacin and moxi-

floxacin in S. pneumoniae remained stable over the 8-year 

period studied (Figure 2).26 The Ocular TRUST 2 surveillance 

study reported that methicillin resistance in staphylococci was 

a marker for multidrug resistance. Susceptibility profiles for 

S. aureus, CoNS, S. pneumoniae, and H. influenzae to different 

ocular antibiotics also showed that newer fluoroquinolones 

were the most consistently active agents across the range 

of ocular pathogens.88 A European study of susceptibility 

to topical antimicrobial agents among 532 ocular pathogens 

found that overall resistance was substantially higher among 

MRSA isolates and lower among MSSA isolates as well 

(Table 2).89

 As is evident from the studies discussed above, the 

increasing resistance of ocular pathogens to antibiotics has 

followed global increases in resistance to systemic antibiotics.71 

These changes have important implications for the selection 

of antibiotic therapy for ocular infections.75 It is important 

to choose antibiotics with rapid bactericidal activity, based 

2000 2001 2002 2003 2004 2005

Year

100

90

80

70

60

50

40

30

20

10

0

= blood

= upper respiratory

= wound

= ocular

%
 o

f S
. a

ur
eu

s 
is

ol
at

es
re

si
st

an
t t

o 
m

et
hi

ci
lli

n

Figure 1 Percentage of S. aureus isolates resistant to methicillin (MrSA rate) according to specimen source (2000 to 2005 based on TSN database analysis).  reproduced with 
permission from  Asbell PA, Sahm DF, Shaw M, Draghi DC, Brown NP. increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus 
in the United States: 2000 to 2005. J Cataract Refract Surg. 2008;34(5):814–818.27 Copyright © 2008 elsevier.
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on a combination of microbiology (low MIC
90

 values) and 

pharmacokinetic (PK) and pharmacodynamic (PD) data 

that predict killing of bacteria with limited development of 

pathogen resistance. The advanced-generation fluoroquino-

lones moxifloxacin and gatifloxacin have been efficacious 

for resolving ocular infections but have also been used 

systemically, increasing the chances of ocular pathogens 

having resistance to these agents.75,90–92 Although most of the 

new fluoroquinolones in development are being developed 

for systemic use, ideally newer agents should be specifically 

designed for topical ophthalmic use with an optimized com-

bination of PK and reduced MIC
90

 (and thus optimized PD) 

versus MRSA isolates for increased efficacy and safety.27,90–92 

Breakpoints specific for topically administered ophthalmic 

antibiotics are needed to better understand resistance among 

ocular pathogens.90–92 Use of effective PD profiles of these 

new drugs to optimize antibiotic administration, maximize 

bactericidal effect, and minimize toxicity can lead to better 

clinical outcomes and prevention of bacterial resistance.93

Importance of pharmacokinetics 
and pharmacodynamics in the 
development of new  
agents in ocular infection therapy
Over the last decade, several lines of research have helped us 

understand the relevance of PD data in the development of 

new antibiotics for ocular infection.93 In preclinical studies, 

for a given organism, PD parameters provide a measurement 

for the rate and extent of bacterial kill and help to provide 

guidance on optimal modes of drug administration and 

reducing antibiotic resistance.93 A key measure for the 

optimization of an antibiotic’s PD is the amount of time 

the free drug remains available at an exposure greater than 

the MIC (T  MIC) for a pathogen, defined as the time-

dependent killing of the pathogen. Another measure for PD 

optimization of an antibiotic is the ratio of area under the 

free-drug concentration time curve (AUC) at 24 hours to 

the MIC (concentration-dependent killing) or AUC:MIC.94 

The maximum concentration of the drug in target tissue 

after a dose (C
max

) compared to MIC (C
max

/MIC) is another 

parameter used to obtain the PD index. The relative importance 
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through 2006. reproduced with permission from  Asbell PA, Colby KA, Deng S, et al. Ocular TrUST: nationwide antimicrobial susceptibility patterns in ocular isolates. Am J 
Ophthalmol. 2008;145(6):951–958.26 Copyright © 2008 elsevier.

Table 2 Ocular pathogen susceptibility to topical antimicrobial agents 
(not shown: 36 nonpneumoniae streptococci, 39 miscellaneous)89

Organism (No of isolates) Percentage of resistant pathogensa

 Gati Cipro Oflox Gent Chloram

H. influenzae (83) 0 0 0 0 1.2

S. pneumoniae (70) 0 1.4 0 94.3 7.1

MSSA (123) 0.8 2.4 1.6 1.6 1.6

enterobacteriaceae (60) 3.4 5.1 5.1 8.5 18.6

P. aeruginosa (38) 13.2 10.5 13.2 10.5 100

CoNS (48) 2.1 31.3 31.3 18.8 20.8

MrSA (35) 57.1 91.4 91.4 37.1 2.9

a532 ocular pathogens isolated from ocular infections from 2001 to 2002.
Abbreviations: Gati, gatifloxacin; Cipro, ciprofloxacin; Oflox, ofloxacin; Gent, gentamicin; 
Chloram, chloramphenicol; MSSA, methicillin-susceptible Staphylococcus aureus; CoNS, 
coagulase-negative Staphylococcus; MrSA, methicillin-resistant Staphylococcus aureus.
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of each of the PD parameters to a drug’s antibacterial activity 

varies among antibiotics.94 For the fluoroquinolones, it has 

been estimated that a C
max

:MIC
90

 ratio of at least 10 and 

an AUC:MIC
90

 ratio of at least 100 are required to predict 

microbiological and clinical efficacy.95

The PD properties of an antibiotic vary by organism. 

A study of 7 fluoroquinolones compared the AUC:MIC ratio 

with an index based on the time needed after the removal 

of antibiotic for surviving bacteria to resume growth and 

reach 109 CFU/mL bacterial culture growth density.96 The 

AUC:MIC ratio and the antimicrobial effect index (I
E
) 

were shown to be specific to each fluoroquinolone, with 

moxifloxacin and grepafloxacin having 1.4 times the anti-

staphylococcal effects of ciprofloxacin.96 When comparing 

therapeutically attainable total drug AUCs of fluoroquino-

lones in humans with the I
E
 and the known ciprofloxacin 

susceptibility breakpoint, moxifloxacin, grepafloxacin, 

and trovafloxacin would require smaller AUC:MIC ratios 

to attain the same acceptable antistaphylococcal effect 

as ciprofloxacin, indicating greater potency of the newer 

fluoroquinolones.96

Optimal antibiotic PD may reduce the development of 

resistant mutants. Recent data with the fluoroquinolones 

suggest that a mutant-prevention concentration (MPC) 

may exist for certain organisms, such as S. pneumoniae.97 

Although MPC has not been applied to other classes of 

antibiotics in general, the MPC for fluoroquinolones defines 

the antimicrobial drug concentration threshold that would 

require an organism to possess 2 mutations simultaneously 

for growth in the presence of the drug.29,98 Mutant prevention 

concentration and PD enable a clinician to optimize 

antimicrobial therapy by sustaining an antibiotic’s ability to 

kill organisms while suppressing the emergence of resistant 

subpopulations of organisms.29,99,100

It is possible to extend the duration of antibiotic expo-

sure for the ocular pathogen through the use of topical 

ocular antibiotics since these agents can achieve higher con-

centrations of the drug in the eye than systemic antibiotics. 

Factors that lead to high concentrations in the eye include 

the concentration of the formulation, its lipophilicity, and 

its aqueous solubility.101 To meet the need for differing ocu-

lar concentrations, ophthalmic antibiotics may be available 

in more than one formulation: for example, levofloxacin 

0.5% and 1.5% for bacterial conjunctivitis and keratitis, 

respectively.37,102 However, topical formulations are often 

limited by formulation, such as solubility and stability, and 

by toxicity issues that could make it difficult to achieve 

increased efficacy through higher concentrations.

In light of the increasing antibiotic resistance pattern of 

bacteria worldwide, including resistance to the more potent, 

advanced-generation fluoroquinolones, the development of 

still newer, more potent fluoroquinolones and improvements 

in treatment protocols for ocular infections have become 

more important.

A novel fluoroquinolone under 
investigation for the treatment 
of ocular infections
Fluoroquinolones act by binding and inhibiting 2 enzymes 

involved in the synthesis of bacterial DNA – DNA gyrase 

and DNA topoisomerase IV – and are therefore considered to 

have a dual mechanism of action.103 Newer fluoroquinolones 

such as gatifloxacin and moxifloxacin have potent activity 

against both of these enzymes in both Gram-negative and 

Gram-positive organisms. In contrast, older fluoroquino-

lones, such as ofloxacin and ciprofloxacin, preferentially 

bind DNA gyrase in Gram-negative organisms and topoi-

somerase IV in Gram-positive organisms, leading to the 

potential for resistance to these agents following a single 

mutation in the target enzyme.103 In the newer fluoroqui-

nolones, with strong affinities for both enzymes, double 

mutation of both target enzymes is needed for high-level 

resistance to develop.103

Besifloxacin (Besivance™; Bausch and Lomb Inc., 

Rochester, NY, USA), is a new fluoroquinolone that was 

recently approved by the US Food and Drug Administration 

for the treatment of bacterial conjunctivitis. This agent 

has a unique structure which may increase its potency.104 

Besifloxacin ophthalmic suspension 0.6% has been 

developed exclusively for the treatment of ocular infections, 

reducing the risk of the emergence of resistant strains due 

to prior widespread systemic exposure to that agent.104 

Besifloxacin’s mechanism of action is similar to that of 

other fluoroquinolones in that it kills bacteria through 

inhibition of DNA gyrase and topoisomerase IV.105 Unlike 

older representatives of that drug family, besifloxacin has 

balanced dual activity, inhibiting both enzymes at similar 

as well as lower concentrations. Thus, the inhibition of the 

enzymatic activities of DNA gyrase and topoisomerase 

IV of S. pneumoniae occurs at lower concentrations 

with besifloxacin than with ciprofloxacin, and even 

with moxifloxacin.105 Since both enzymes are targeted 

simultaneously, mutations leading to high-level resistance 

to besifloxacin cannot occur in a single step. While 

mutations that increased the MIC values for besifloxacin 
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were found in laboratory strains of E. coli, S. aureus, 

and S. pneumoniae, the increase in MIC was far greater 

for the comparators ciprofloxacin and moxifloxacin.105 

Besifloxacin has been shown to be active in vitro against 

a broad spectrum of pathogens, including the most com-

mon pathogens of bacterial conjunctivitis as well as drug-

resistant isolates (Table 3).76,106

Besifloxacin demonstrated efficacy in an in vivo murine 

infection model and excellent ocular pharmacokinetics in 

rabbits, with ocular mean residence times of 7 hours and 

conjunctival concentrations in excess of the MIC
90

 for nonre-

sistant ophthalmic isolates for 12 hours following a single 

dose.104 Single doses of besifloxacin administered to rabbit 

eyes maintained high concentrations in tears, conjunctiva, 

and aqueous humor, with mean residence times of 923, 

458, and 422 minutes, respectively.104,107 Compared with 

gatifloxacin and moxifloxacin, besifloxacin demonstrated 

greater exposure in tears and conjunctiva with lower systemic 

concentrations.108 The conjunctival C
max

:MIC
90

 ratio for 

besifloxacin exceeds 10 for all 8 nonresistant species, and 

the AUC:MIC
90

 ratio exceeds 100 for all species except 

P. aeruginosa.104 Based on a conjunctival besifloxacin 

C
max

 of 63 µg/mL and a predicted (from PK modeling and 

simulations) AUC
(0–24 h)

 of 214 µg.h/mL, 3 times per day (tid) 

dosing of besifloxacin 0.6% for 1 week should attain adequate 

therapeutic AUC:MIC
90

 ratios and prevent the development of 

2-step resistant mutants.104

In a rabbit model of MRSA-induced endophthalmitis, 

besifloxacin treatment resulted in significant improvement in 

clinical score (reductions in the signs and symptoms of endo-

phthalmitis), while gatifloxacin, levofloxacin, and moxifloxa-

cin were ineffective.109 Besifloxacin also exhibited significant 

dose-dependent inhibition of IL-1β or lipopolysaccharide-

stimulated cytokines in human monocytes, with a com-

parable or better potency than moxifloxacin, indicating 

that besifloxacin may have anti-inflammatory activity.110 

Similarly, besifloxacin significantly inhibited IL-1ß-induced 

release of proinflammatory cytokines in primary human 

corneal epithelial cells in a dose-dependent manner, with a 

comparable or better efficacy compared to moxifloxacin.109 

Table 3 MiC90 values for besifloxacin against common causes of bacterial conjunctivitis76,106

Bacterial strain Besifloxacin:  MIC90 Comparator(s):  MIC90

Susceptible S. aureusa 0.03–0.5 µg/mL N/A

Susceptible S. epidermidisa 0.03–0.5 µg/mL N/A

Susceptible S. pneumoniaea 0.03–0.5 µg/mL N/A

Susceptible H. influenzaea 0.03–0.5 µg/mL N/A

MrSA 0.06 µg/mL N/A

vancomycin-intermediate S. aureus 2 µg/mL N/A

Methicillin/ciprofloxacin-resistant S. aureus 8 µg/mL N/A

Penicillin-resistant S. pneumoniae 0.12 µg/mL N/A

Levofloxacin-resistant S. pneumoniae 2 µg/mL N/A

H. influenzae with β-lactamase production 0.03 µg/mL N/A

β-lactamase–positive, ampicillin-resistant H. influenzae 0.12 µg/mL N/A

Ciprofloxacin-susceptible MSSA 0.06 µg/mL Moxifloxacin: 0.125 µg/mL 
Gatifloxacin: 0.25 µg/mL

Ciprofloxacin-resistant MSSA 2 µg/mL Moxifloxacin: 8 µg/mL 
Gatifloxacin: 8 µg/mL

Methicillin-susceptible S. epidermidis sensitive to ciprofloxacin 0.06 µg/mL Moxifloxacin: 0.125 µg/mL 
Gatifloxacin: 0.25 µg/mL

Methicillin-resistant S. epidermidis sensitive to ciprofloxacin 0.06 µg/mL Moxifloxacin: 0.125 µg/mL 
Gatifloxacin: 0.25 µg/mL

S. aureus parC S80Y + gyrA S84L double mutant 0.5 µg/mL Moxifloxacin: 0.5 µg/mL 
Ciprofloxacin: 32 µg/mL

S. pneumoniae parC S79Y + gyrA S81Y double mutant 1 µg/mL Moxifloxacin: 4 µg/mL 
Ciprofloxacin: 64 µg/mL

aUnpublished data Bausch & Lomb inc.
Abbreviations: MrSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-susceptible Staphylococcus aureus.
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Although the clinical significance of anti-inflammatory 

activity has not been established, reducing inflammation 

associated with infections may enhance drug access to ocular 

tissue and reduce tissue damage.109,110

Human subjects (N = 64) administered a single-dose 

of besifloxacin ophthalmic suspension 0.6% in both eyes 

had mean tear AUC:MIC ratios (24 hours) ranging from 

2464 to 20,533 for S. aureus, S. pneumoniae, S. epidermidis, 

and H. influenzae.111 On average, besifloxacin concentrations 

of 1.6 µg/g or higher were sustained in tears for at least 

24 hours after a single dose.112 These values are greater than 

the MIC
90

 values for the common ocular pathogens and are 

above the exposure needed to eradicate the organism and 

prevent the development of resistant mutants.111 The PD data 

presented here are therefore indicative of a prolonged and 

effective ocular concentration of the drug. The high AUC:MIC 

ratio over 24 hours reported in this study suggests that the 

extended-release mucoadhesive polymer (DuraSite®; Insite 

Vision, Alameda, CA, USA) used for the besifloxacin oph-

thalmic suspension formulation is an optimal choice for the 

treatment of ocular infections. In this context, formulations 

such as in situ gelling ophthalmic delivery systems have 

also been reported to provide increased bioavailability for 

fluoroquinolones such as gatifloxacin, ciprofloxacin, and 

ofloxacin although it is not clear if or when these products 

may become available in the future.113–115

The efficacy and safety of besifloxacin ophthalmic 

suspension 0.6% was studied in two multicenter, randomized, 

double-masked, vehicle-controlled, parallel-design trials 

with patient populations of 269 and 957. In both trials, the 

efficacy and safety of besifloxacin ophthalmic suspension 

0.6% tid for 5 days was compared with vehicle for the 

complete clinical resolution and eradication of bacterial 

infection.116,117 In the first trial, clinical resolution at the 

primary analysis visit (Day 8) occurred in 73.3% (44/60) 

of besifloxacin-treated patients with culture-confirmed 

conjunctivitis versus 43.1% (25/58) of patients receiving 

vehicle (P  0.001).116 Bacterial eradication occurred in 

88.3% (53/60) of patients in the besifloxacin group versus 

60.3% (35/58) of vehicle-treated patients (P  0.001).116 

In the second trial, clinical resolution at the primary analysis 

visit (Day 5) occurred in 45.2% (90/199) of besifloxacin-

treated patients with culture-confirmed conjunctivitis versus 

33.0% (63/191) of patients receiving vehicle (P = 0.0084), 

while bacterial eradication occurred in 91.5% (182/199) of 

patients in the besifloxacin group versus 59.7% (114/191) 

of vehicle-treated patients (P  0.0001).117 In the first trial, 

the cumulative frequency of ocular adverse events (AEs) 

was similar between the 2 groups116; however, in the second 

trial, the cumulative frequency of ocular AEs was statistically 

greater in the vehicle treatment group (P = 0.0047), due, in 

part, to the higher incidence of conjunctivitis in the vehicle-

treated group.117

A non-inferiority study compared the efficacy and safety 

of besifloxacin and moxifloxacin 0.5% tid for 5 days for 

the treatment of bacterial conjunctivitis (N = 1161, 533 of 

whom had positive cultures).118 Clinical resolution at the 

primary analysis visit (Day 5) occurred in 58.3% and 59.4% 

of patients (besifloxacin and moxifloxacin, respectively; 

P = 0.652; CI, -9.48% to 7.29%), and bacterial eradication 

occurred in 93.3% and 91.1% (besifloxacin and moxifloxacin, 

respectively; P = 0.1238; CI, -2.44% to 6.74%), indicating 

that besifloxacin was non-inferior to moxifloxacin for the 

treatment of bacterial conjunctivitis.118 Besifloxacin was 

well tolerated, with an incidence of AEs that was similar 

to that reported for vehicle or moxifloxacin with no unex-

pected findings.118 Eye irritation was the only ocular AE 

statistically different between treatment groups, occurring 

in 0.3% of subjects on besifloxacin and 1.4% of subjects 

on moxifloxacin (P = 0.0201). The only nonocular AE that 

occurred in more than 1% was headache (1.2% besifloxacin, 

1.6% moxifloxacin).118

Strategies for prevention of antibiotic 
resistance in ocular pathogens
The Centers for Disease Control and Prevention and the 

World Health Organization have proposed strategies to 

preserve the usefulness of antibiotics.119,120 In addition to 

global surveillance programs, adequate training and aware-

ness programs should be implemented.119,120 However, 

surveillance programs must be evaluated with reference 

to the PD data that influence the concentration of an 

antibiotic in the eye. Ocular TRUST data show that cip-

rofloxacin resistance has increased over the past decade.26 

The improved PD properties of the newer generation 

fluoroquinolones help to maximize the concentration of 

the antibiotic at the site of infection and help to reduce 

the incidence of bacterial resistance. Strategies to prevent 

or delay the development of antibiotic resistance among 

ocular pathogens include the prescription of antibiotics 

only when needed and the use of sensitivity testing to 

prescribe the appropriate antibiotic.75 Additional recom-

mended strategies for the prevention of antibiotic resis-

tance are completion of the full course of therapy and the 

decrease in the use of antibiotics for growth promotion 

in animals and agriculture, as well as the development 
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of new antibiotic agents with optimized PD.121 Ultimate 

outcomes of treatment depend on efficacy and safety of the 

pharmacotherapy as well as adherence to the established 

guidelines. Prevention of ocular antibiotic resistance 

requires cooperation between patients, physicians (both eye 

care and non-eye care), and the pharmaceutical industry 

to keep current antibiotics effective for a longer time and 

to develop newer antibiotic agents to stay ahead of the 

changing microbial pathogenesis.

Conclusion
Evolving bacterial resistance represents a worldwide 

challenge in the clinical management of infection. 

A parallel increase in resistance among ocular pathogens 

has necessitated transitioning from older to newer, more 

potent antibiotics. In the future, antibiotics for ocular infec-

tions should possess a broad spectrum of activity against 

a wide range of pathogens and be effective and safe to 

use at the optimized PK/PD and MIC
90

 against resistant 

strains of bacteria.22 Currently, the newer fluoroquinolones 

gatifloxacin and moxifloxacin, and in the near future besi-

floxacin, appear to represent the best choice for treating and 

preventing ophthalmic infections. Agents developed specifi-

cally for ocular use only may help to overcome the evolving 

global antibiotic resistance problem that has resulted from 

inappropriate widespread use of systemic antibiotics.
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