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Abstract. Autism spectrum disorder (ASD) is a neurodevel‑
opmental abnormality that impairs social communication. 
The human gut microbiome (GM) influences a variety of 
local processes, including dysbiosis and the defense against 
pathogenic microorganisms. The aim of the present study 
was to categorize and identify molecular biomarkers for ASD. 
In the present study, metagenomics whole genome shotgun 
sequencing was used to identify the gut microbiota in autistic 
individuals. Fecal samples from four children with ASD and 
four healthy control siblings, aged 3‑10 years old, were exam‑
ined using bioinformatics analysis. A total of 673,091 genes 
were cataloged, encompassing 25 phyla and 2 kingdoms based 
on the taxonomy analysis. The results revealed 257 families, 
34 classes, 84 orders, and 1,314 genera among 4,339 species. 
The top 10 most abundant genes and corresponding functional 
genes for each group were determined after the abundance 
profile was screened. The results showed that children with 
ASD had a higher abundance of certain gut microbiomes than 
their normal siblings and vice versa. The phyla Firmicutes 
and Proteobacteria were the most abundant in ASD. The 
Thermoanaerobacteria class was also restricted to younger 
healthy individuals. Moreover, the Lactobacillaceae family 
was more abundant in children with ASD. Additionally, it 
was discovered that children with ASD had a higher abun‑
dance of the Bacteroides genus and a lower abundance of the 

Bifidobacterium and Prevotella genera. In conclusion, there 
were more pathogenic genera and species and higher levels 
of biomass, diversity and richness in the GM of children with 
ASD.

Introduction

The quality of life for an individual is negatively affected 
by autism spectrum disorder (ASD), a neurodevelopmental 
condition that affects social communications and results in 
obstinate and repetitive behaviors (1). Gastrointestinal (GI) 
tract issues, such as food intolerance, abdominal pain, inflam‑
matory disease, digestive disorders, diarrhea, or constipation 
are common in autistic patients in addition to the characteristic 
cognitive traits (2). Although ASD can be identified in children 
as young as 3 years old, symptoms persist throughout an the 
life of an individual (3). The human gut microbiome (GM) is 
home to a complex ecosystem of microorganisms living in the 
GI tract including viruses, eukaryotes, archaea and bacteria (4). 
Additionally, saprophytic commensal flora in the gut plays a 
crucial role in modulating a variety of local functions, including 
nutrient absorption, maintenance of the intestinal barrier, stim‑
ulation and regulation of the host immune system and defense 
against pathogenic microorganisms (4‑7). An imbalance in 
the gut microbiota is referred to as dysbiosis and can interfere 
with a wide range of biological mechanisms. Alterations in 
systemic metabolism, neuroplasticity and the neuroimmune 
system, all of which have been linked to ASD (8‑13), may 
result from dysbiosis. Additionally, the GM interacts with 
relevant host, microbiota and environmental factors that can 
result in gut dysbiosis (14,15). Numerous studies have shown 
that gastrointestinal dysfunction coexists with ASD (16‑21). 
According to literature reviews of the human gut microbiota, 
the coordination between the brain and the microflora of 
the gastrointestinal tract can be disrupted by changes in the 
composition of the GM (22). The ability to identify microor‑
ganisms from all domains of life is the primary advantage of 
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metagenomic whole genome shotgun sequencing (mWGS) for 
taxonomic classification over amplicon sequencing or marker 
gene approaches (23). Given the complex enteric nervous 
system in the gut directly interferes with the brain and permits 
the bidirectional flow of information, microbiome research 
that focuses on the relationship between ASD and gut micro‑
biota is crucial. This enhances functions and emotions that 
may be affected by gastrointestinal contents, such as cognition 
and function (22). Therefore, changes in the composition of the 
microbiome may result in disturbed host‑microbiota homeo‑
stasis and cause autism (24). Changes in the GM composition 
have been observed in individuals with ASD (25). The immune 
pathway is largely involved in regulating microbial profiles, 
supporting the theory of a complex relationship between ASD, 
immune dysregulation, and altered microbiome that may aid 
in the identification of molecular biomarkers for the diagnosis 
of ASD (26). According to a recent study, the gut‑brain and 
gut metabolic models of ASD with GI symptoms showed 
abnormalities in several cases, including neurotoxin‑related 
p‑cresol degradation and short‑chain fatty acid (SCFA) 
degradation/synthesis, which are closely associated with 
ASD behaviors in animal models (27). Additionally, the GM 
is the primary contributing factor for behavioral symptoms 
and gastrointestinal symptoms linked to ASD (28). Through 
pathways connected to the gut‑brain axis, the gut microbiota 
and their metabolic products, such as SCFAs, may have an 
effect on the metabolism of central neurotransmitters (29). 
Furthermore, a variety of factors, such as antibiotics, pH, 
oxygen levels, dietary supplements including probiotics and 
prebiotics, and bacterial load, can alter the composition of the 
gut microbiota (30). Probiotic administration to regulate the 
gut‑brain axis may improve gastrointestinal symptoms, reduce 
inflammation and restore behavioral symptoms associated 
with ASD, as well as the gut microbiota composition and intes‑
tinal barrier function in animal and human models (31). The 
gut‑brain axis is altered by gut dysbiosis, which increases the 
risk of developing ASD and other disorders (32). It has been 
established that the gut‑brain axis links various brain functions, 
including the emotional and cognitive functions of the limbic 
system, prefrontal cortex, and hypothalamus (33). The central 
nervous system, the hypothalamic‑pituitary‑adrenal axis, the 
enteric nervous system and the autonomic nervous system all 
have bidirectional, intricately integrated signaling pathways 
that together make up the gut‑brain axis (34). Through vagal 
stimulation and inflammatory mediators and their metabolites, 
the GM can directly affect these processes (35). Regarding 
somatic complaints and symptoms, self‑dysregulation, 
criminal behavior, and cognitive difficulties are markedly 
associated with changes in taxonomic diversity in individuals 
with ASD (26).

To classify and identify molecular biomarkers for ASD, the 
present study aimed to evaluate the differences in the compo‑
sition of the gut microbiota between children with autism and 
their healthy siblings.

Materials and methods

Sampling. Fecal samples were taken at Pediatric Clinics 
in King Abdulaziz University Hospital in Jeddah, Saudi 
Arabia, over 1 month in March 2022. A total of eight 

children, aged 3‑10 years old, including four patients with 
ASD (three males and one female) and four of their siblings 
who were healthy controls (two females and two males), were 
recruited; the characteristics of the children with ASD are 
presented in Tables I and II. The Biomedical Ethics Research 
Committee at King Abdulaziz University (Jeddah, Kingdom 
of Saudi Arabia) approved the present study (approval 
no. 10‑CEGMR‑Bioeth‑2021). To guarantee the integrity 
of the DNA for deep sequencing and microbiome analysis, 
all samples were collected using particular collection tubes 
(ISWAB microbiome collection tube).

Extraction of genomic DNA. Following the manufacturer's 
instructions, DNA was extracted from fecal samples using 
a QIAMP mini kit designed for stool purification (QIAamp 
DNA Mini Kit; Qiagen GmbH). A DeNovix DS‑11 FX 
Spectrophotometer/Fluorometer nanodrop (Thermo Fisher 
Scientific, Inc.) was used to assess the integrity and purity of 
the sample.

Bioinformatics analysis. The Beijing Genomics Institute sent 
eight samples of genomic DNA (four from the patients with 
ASD and four from the healthy individuals) for bioinfor‑
matics analysis. The DNBSEQ platform was used to test the 
samples initially. The total number of detected gene catalogs 
was 673,091, which were functionally annotated by seven 
databases, including BacMet (Antibacterial Biocide and Metal 
Resistance Genes Database; version 20180311; http://bacmet.
biomedicine.gu.se/), CARD (The Comprehensive Antibiotic 
Resistance Database; version 3.0.9; https://card.mcmaster.ca/), 
KEGG (Kyoto Encyclopedia of Genes and Genomes; version 
101; http://www.genome.ad.jp/kegg/), eggNOG (evolutionary 
genealogy of genes: Non‑supervised Orthologous Groups; 
version 5.0; http://eggnog6.embl.de/), COG (Clusters of 
Orthologous Groups; version 20201125; https://www.ncbi.nlm.
nih.gov/research/cog‑project/), (Swiss‑Prot; release‑2021_04; 
https://www.uniprot.org/), and CAZy (Carbohydrate‑Active 
enZYmes Database; version 20211013; http://www.cazy.org/). 
The average output of each sample was 6.04 gigabyte of 
data and the average assembly length was 134.31 megabytes. 
Following taxonomy analysis, the number of species found 
was as follows: Kingdom level, 2; phylum level, 25; class level, 
34; order level, 84; family level, 257; genus level, 1,314; and 
species level, 4,339.

The library was sequenced on a DNBSEQ‑400RS using 
a DNA Library Prep Kit (cat. no. 1000017571, MGI Tech 
Co., Ltd.). The main steps of sequencing and library prepa‑
ration were as follows: The concentration of the sample was 
detected using a Qubit Fluorometer (Invitrogen; Thermo 
Fisher Scientific, Inc.), and the integrity and purity of samples 
were assessed by agarose gel electrophoresis (concentration 
of agarose gel, 1%; 150 V; electrophoresis time, 40 min). A 
total of 1 µg genomic DNA was randomly fragmented using 
an ultrasonicator (M220; Covaris, Inc.). 75.0 W (Peak incident 
power), 5.0% duty factor, 200 cycles per burst, 50 sec treat‑
ment time), 20.0˚C temperature, 50 µl sample volume, and 
200‑400 bp fragments of genomic DNA were selected by 
2.8 µm of Dynabeads M‑280 Streptavidin magnetic beads (cat. 
no. 112‑05D; Invitrogen; Thermo Fisher Scientific, Inc.). Next, 
the fragments were end‑repaired and then 3' adenylated, then 
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adaptors were ligated to the ends of these 3' adenylated frag‑
ments. PCR was used [98˚C/1 min, 11 cycles of (98˚C/10 sec, 
60˚C/30 sec, 72˚C/30 sec), 72˚C/5 min and 4˚C/hold] to 
amplify fragments with adaptors from the previous step, and 
then PCR products were purified using the magnetic beads. 
The double‑stranded PCR products were heat‑denatured and 
circularized by the splint oligo sequence. The single‑strand 
circle DNA was formatted as the final library. The library was 
amplified using phi29 to make a DNA nanoball (DNB) which 
contained >300 copies of one molecule. The DNBs were loaded 
into the patterned nanoarray, and pair‑end 100/150 base reads 
were generated by combinatorial probe‑anchor synthesis.

Since a certain percentage of low‑quality linker 
sequences may have been present in the original sequencing 
data, SOAPnuke software (version 1.5.0; https://github.
com/BGI‑flexlab/SOAPnuke) was used to filter out the 
low‑quality data to obtain high‑quality clean data. MEGAHIT 
(version 1.1.3; https://github.com/voutcn/megahit) was used 
to put together clean, filtered data, and to remove sequences 
<300 bp, as well as for statistical analysis and gene predic‑
tion. MetaGeneMark (version 3.38; http://exon.gatech.
edu/index.html) was used to perform metagenomic gene 
prediction for the assembled scaffold, CD‑HIT (version 4.6.4; 
http://weizhong‑lab.ucsd.edu/cd‑hit/) was used to cluster 
predicted genes, and redundant sequences were removed to 
create the gene catalog. Then, Venn diagrams were created 
between various samples or groups by aligning reads with 
non‑redundant gene catalogs using Salmon (version 1.3.0; 
https://github.com/COMBINE‑lab/salmon). Kraken (version 
2.1.2; https://github.com/DerrickWood/kraken2) was used to 
perform the taxonomy annotation for the metagenomic data, 
to determine the species abundance and to compare or contrast 

various samples or groups. Bar charts, nonmetric multidi‑
mensional scaling dimension reduction analysis, principal 
component analysis (PCA), principal coordinates analysis 
(PCoA), anosim analysis of similarity of different species and 
multivariate statistical analysis of linear discriminant analysis 
were all employed in the metagenomic taxonomy analysis. 
The analysis of species diversity in a single sample is called 
α diversity. The functional database was screened for the 
absolute abundance profile, the top 10 abundant genes were 
assigned functional Circos (https://circos.ca), and the distribu‑
tion of the corresponding functional genes in each group was 
visually displayed.

Results

To identify the taxonomic classification of the GM and demon‑
strate the differences in gut microbe abundance between 
children with ASD and their healthy control siblings, mWGS 
was conducted on the GMs of both children with ASD and 
their healthy control siblings. Tables III and IV show the statis‑
tics of the raw metagenomics data (filtering and assembly). 
Using a Venn diagram, it can be seen that there were 253,688 
unique genes found in children with autism, compared with 
270,713 unique genes in healthy control subjects. The overlap 
area, or core genes, between the samples of ASD and healthy 
control subjects was 148,720, indicating that there were also 
shared genes between the two groups of children (Fig. 1). To 
determine the functional regions of genes and the distribution 
of gene length for gene prediction, the assembled genomic 
sequences based on gene structure information was used. The 
longer gene query was 213,570 base pairs, while the shorter 
gene query was 1 (Fig. 2).

Table I. Demographic characteristics of children with ASD.

Sample Sex Age, years Severity of ASD Symptoms

1 Male 6 Mild/level 1 Hyperactivity, repetitive behaviour, lack of eye contact,
    walking on tiptoes and severe constipation
2 Female 5 Severe/level 1 Hyperactivity, repetitive behaviour, lack of eye contact,
    delay in language acquisition and diarrhoea
3 Male 8 Mild/level 1 Hyperactivity and attention deficit
4 Male 5 Severe/level 2 Hyperactivity, attention deficit, cognitive and emotional 
    symptoms, lack of eye contact and delay in language
    acquisition

ASD, autism spectrum disorder.

Table II. Demographic characteristics of children as controls.

Sample Sex Age, years Control Symptoms

5 Male 9 Healthy Did not suffer from any symptoms
6 Female 5 Healthy Did not suffer from any symptoms
7 Male 5 Healthy Did not suffer from any symptoms
8 Female 10 Healthy Did not suffer from any symptoms

https://www.spandidos-publications.com/10.3892/etm.2024.12719
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The findings showed that all samples had the highest 
evenness (high community biodiversity) and richness at the 
kingdom level. Autistic samples with high evenness displayed 
higher levels of richness (Fig. 3). Compared with their siblings, 
the microbiomes of children with autism had undergone more 
changes. In addition, when compared with the ASD samples, 
the healthy control sibling samples had a higher level of 
Archaea and a lower level of Bacteria at the kingdom level 
(Fig. 3). At the phylum level, all samples had a propensity for 
high richness and low evenness between the two groups. The 
species richness was higher in all samples from healthy control 
siblings. The phyla proteobacteria and Firmicutes were the 
most abundant in the ASD samples. Several phyla, including 
Bdellovibrionota, Verrucomicrobiota, and Bacteroidota, 
showed a higher abundance in the healthy control sibling 
samples (Fig. 4).

Additionally, there were differences in the diversity of 
the healthy control and ASD samples at the class level. When 
compared with healthy controls, ASD samples had higher rich‑
ness and lower evenness, which shows that children with autism 
had more pronounced changes in their microbiome diversity. 
Furthermore, only children in good health contained members 
of the Thermoanaerobacteria class. Methanobacteria and 
Verrucomicrobiae were more abundant in the healthy control 
samples than they were in the ASD samples. ASD samples had 

a noticeably higher concentration of Gammaproteobacteria, 
Bacilli, and Elusimicrobia (Fig. 5). In comparison with the 
normal controls, all ASD samples displayed a higher abun‑
dance and evenness at the order level. The Enterobacterales, 
Staphylococcales, Halomicrobiota, and Mycobacteriales were 
the orders with the highest abundance in the ASD samples. 
Verrucomicrobiales, Acidaminococcales, and 4C28d‑15 
exhibited the highest abundance orders in the healthy controls 
(Fig. 6). Moreover, ASD children had a higher abundance of 
Enterobacterales and Lactobacillales at order level. However, 
Lachnospirales was found in fluctuated abundance in both 
ASD and controls. Results at the family level revealed that 
children with ASD had a discernible change in diversity. 
Furthermore, as shown in Fig. 7, the Lactobacillaceae, 
Enterobacteriaceae, and Peptostreptococcaceae families 
were more abundant in the children with ASD than they were 
in the healthy controls, whereas the Succinivibrionaceae 
and Acidaminococcaceae families were more abundant in 
the controls. These findings showed that ASD samples and 
their healthy control siblings had higher richness and lower 
evenness across all samples at both the genus and species 
levels. Bacteroidetes_B, Bifidobacterium, Prevotella, and 
Blautia were more abundant in the healthy control samples 
compared with the ASD samples while Parabacteroides and 
Proteus were more abundant in the ASD samples (Fig. 8). 

Table III. Filtering statistics for the DNA samples collected from fecal samples of four children with autism (A) and four healthy 
control siblings (C).

Sample Raw data Clean data, Raw data, Clean read Raw data
ID size, bp bp (Filtering) % (remove host) (%)

A1 6,310,231,200 6,182,568,000 97.98 6,182,139,600 97.97
A2 6,047,304,900 5,965,336,200 98.64 5,964,390,300 98.63
A3 6,047,304,900 5,954,599,500 98.47 5,954,453,400 98.46
A4 6,310,231,200 6,144,631,500 97.38 6,144,401,400 97.37
C1 6,310,231,200 6,169,231,200 97.77 6,169,022,700 97.76
C2 6,047,304,900 5,961,072,900 98.57 5,960,247,900 98.56
C3 6,047,304,900 5,955,091,200 98.48 5,954,439,900 98.46
C4 6,047,304,900 5,963,012,400 98.61 5,931,360,300 98.08

Table IV. Assembly statistics for the DNA samples collected from fecal samples of four children with autism (A) and four healthy 
control siblings (C) by using megahit software.

Sample Contig Assembly N50, N90, Max, Min, Average Mapping
ID Number length, bp bp bp bp bp size, bp rate %

A1 19,193 84,328,730 29,340 1,367 757,805 300 4,393 89.2
A2 68,535 147,395,260 5,125 797 365,378 300 2,150 66.34
A3 41,520 123,293,288 8,915 1,120 690,186 300 2,969 75.1
A4 48,415 148,672,006 12,445 1,041 445,303 300 3,070 79.87
C1 67,622 180,343,949 6,774 989 438,212 300 2,666 73.41
C2 14,596 71,410,148 34,067 1,566 618,837 300 4,892 83.87
C3 49,572 158,802,107 12,427 1,144 398,112 300 3,203 77.5
C4 57,057 160,194,825 6,948 1,066 420,902 300 2,807 73.81
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Bacteroides uniformis, Bacteroides fragilis, Klebsiella A 
oxytoca, and Faecalibacterium prausnitziia J were more 
abundant in the children with ASD at species level, whereas 
Roseburia inulinivorans and Bifidobacterium infantis were 
higher in the healthy control samples (Fig. 9).

Principal coordinate analysis (PCoA) plot with Bray‑Curtis 
dissimilarity both depicted β diversity (36). The difference 
in species diversity between two or more communities is 
referred to as β diversity. To describe β‑diversity patterns, 
PCA based on Bray Curtis distances was used. This divides 
samples based on a single condition, whether it is an ASD or 
a healthy condition. The results show that among ASD, the 
biggest data changes were seen at the species level, whereas 

relatively small changes were seen among samples of healthy 
controls. It is notable that the PCA1 axis was able to completely 
distinguish between healthy controls and ASD Although some 
pathological samples were present with the control, the general 
separation between samples from the children with ASD and 
healthy controls across one condition is shown in Fig. 10, 
despite the overlap between the ASD and healthy control 
samples being separated. The findings also revealed the pres‑
ence of a few minerals and dyes, which are listed in Fig. 11 
in order of decreasing abundance. The findings indicated that 
compared with their healthy control siblings, children with 
ASD exhibited higher levels of zinc (Zn), copper (Cu), and 
nickel (Ni), suggesting that these elements may have some 
association with autism.

The results of the association between mineral concentra‑
tions and gene abundance that affects the way these minerals 
work is shown in Fig. 11. Of note, 124,053.237 genes or 60% of 
the Zn genes were found in the ASD samples, compared with 
72,194.72 genes or 40% of the Zn genes in the control samples. 
For Cu, the numbers were ~113,018.838 genes (55%) and 
81,013.569 genes (50%), respectively, in the control and ASD 
samples. For Ni, the numbers were ~105,305.895 genes in ASD 
samples (60%) compared with 61,909.547 genes in controls 
(45%). For selenium, the numbers were 66,569.415 genes and 
67,635.147 genes, and for pyronin Y they were 26,602.361 
and 23,183.965, in the ASD and control samples respectively, 
suggesting approximately equal amounts (~50%). According 
to the findings, the amount of molybdenum increased in the 
ASD group by 55%, arsenic by 60%, magnesium by 80% 
and chlorhexidine by 90%. When compared with the control 
sample, the abundance of crystal violet was 60% while in the 
ASD samples it was 30%.

Discussion

The present study aimed to classify and identify molecular 
biomarkers for ASD by examining differences in the composi‑
tion of the gut microbiota between children with autism and 
their healthy siblings. Children with ASD have a different 
GM compared with healthy controls, according to the results 
of the present study, which showed higher levels of bacteria 
in children with autism compared with the healthy controls. 
The GMs of children with ASD were more diverse, rich and 

Figure 1. Venn diagram showing the number of genes found in children with 
ASD and healthy control siblings in their fecal samples. The different colors 
in the Venn diagram represent different groups: blue, control; pink, children 
with ASD. The number of unique genes in each group and the number of 
common genes shared between the groups are shown. ASD, autism spectrum 
disorder.

Figure 2. Distribution of the length of the genes in nucleotides in the ASD 
and healthy control children. The horizontal axis represents the gene length 
interval, and the vertical axis represents the number of genes falling in this 
interval. ASD, autism spectrum disorder.

Figure 3. The relative microbial abundance of two kingdoms, bacteria and 
archaea, in the children with ASD and healthy control siblings. Children with 
ASD had a higher diversity of bacteria, but a lower abundance of archaea. 
ASD, autism spectrum disorder.

https://www.spandidos-publications.com/10.3892/etm.2024.12719
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Figure 5. The relative microbial abundance at the class level across healthy control (blue) and ASD samples (red). ASD, autism spectrum disorder.

Figure 4. The relative microbial abundance of phyla across healthy controls (blue) and ASD samples (red). ASD, autism spectrum disorder.
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Figure 6. The relative microbial abundance at the order level across healthy control (blue) and ASD samples (red). ASD, autism spectrum disorder.

Figure 7. The relative microbial abundance at the family level across healthy control (blue) and ASD samples (red). ASD, autism spectrum disorder.

https://www.spandidos-publications.com/10.3892/etm.2024.12719
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Figure 8. The relative microbial abundance at the genus level across healthy control (blue) and ASD samples (red). ASD, autism spectrum disorder.

Figure 9. The relative microbial abundance at the species level across healthy control (blue) and ASD samples (red). ASD, autism spectrum disorder.
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biomass‑rich than those of typically developing children, 
which is consistent with earlier research by Finegold et al (37) 
and De Angelis et al (38).

The findings at the phylum level showed that children with 
ASD had a higher abundance of the phylum Proteobacteria, 
which is associated with host inflammation (39). Animal 
studies found that Proteobacteria produce lipopolysaccha‑
rides (LPS), which result in a decreased level of glutathione 
in the brain and this is a primary cause of immune dysregula‑
tion in individuals with ASD (40,41). Additionally, there was 
a higher abundance of Firmicutes in the samples from the 
patients with autism, which is consistent with a prior study 
by Tomova et al (42). Bdellovibrionota and Verrucomicrobia 
phyla were more abundant in healthy control samples. 
Bdellovibrionota is an obligate predator that can engulf and 
kill other gram‑negative bacteria (43). It may thus serve as a 
protective agent against pathogens, resulting in a decrease in 
the number of harmful bacteria in the gut of healthy control 
siblings (44). Additionally, the most abundant phyla in healthy 
control samples were Verrucomicrobiota, which is consistent 
with a previous study by Zou et al (45). Members of the 
Verrucomicrobiota phylum are mucin‑degrading bacteria that 
contribute to glucose homeostasis and intestinal health (46). 
Furthermore, the results of the present study showed that the 
Bacteroidota phylum was more abundant in healthy indi‑
viduals than in patients with ASD, which is consistent with 
the findings of Settanni et al (47). Bacteroidota is responsible 
for the digestion of polysaccharides, thus a reduction in this 
phylum results in mucosal dysbiosis in the gut and abnormal 
digestion of carbohydrates in children with autism (48,49).

Results at the class level showed that Thermoanaerobacteria 
were only present in the healthy control groups. 

Thermoanaerobacteria play a role in the fermentation of both 
carbohydrates and polysaccharides by producing L‑lactic acid, 
H2, CO2, acetic acid and ethanol (50‑52). Methanobacteria 
were more abundant in healthy control siblings and they 
produce methane as a metabolic by‑product (53). A reduc‑
tion in the number of microorganisms producing methane 
is a major mechanism of hydrogen disposal in the human 
colon, which can be associated with excess abdominal gas 
in irritable bowel syndrome (54). Additionally, there were 
more Verrucomicrobiae in healthy controls than in the ASD 
samples. As aforementioned, the Verrucomicrobiae class is a 
mucin‑degrading bacteria residing in the intestinal mucosa, 
which plays a role in glucose homeostasis and intestinal 
health and serves as an interface between host tissues and 
the human GM (55). Children with ASD had higher levels of 
Gammaproteobacteria and Bacilli, which is consistent with the 
study by Plaza‑Díaz et al (56). Gammaproteobacteria contains 
most of the human pathogens; for example, Salmonella and 
Escherichia coli, some of these genera exist in symbiosis with 
hydrothermal vent‑dwelling animals while others are methane 
oxidizers (57). Bacilli are known to cause diarrhea, nausea, 
vomiting and abdominal pain (58), which may be associated 
with GI symptoms in children with ASD.

At the order level, Enterobacterales were more abundant 
in ASD samples. This order includes several harmful gram‑
negative bacteria that are responsible for numerous enteric 
infections including several of the more familiar pathogens, 
such as Salmonella and Escherichia coli (59). Furthermore, 
the preponderance of Staphylococcales was higher in ASD 
samples than healthy control samples. Most members of 
Staphylococcales can cause several types of infection; for 
example, skin lesions, food poisoning, endocarditis and urinary 
tract infections (60). Additionally, a higher abundance of the 
Mycobacteriales order was recorded in children with ASD. 
Mycobacteriales contain one of the most important human 
pathogens, Mycobacterium tuberculosis which is the causative 
agent of tuberculosis (TB) (61). A previous study found that 
maternal infection with TB during pregnancy was sufficient 
to affect the development of the brain in the offspring and 
this contributed to impaired social interactions and enhanced 
systemic inflammation (62).

Enterobacteriaceae were more abundant in ASD samples 
at the family level which is consistent with previous studies by 
Plaza‑Díaz et al (56) and De Angelis et al (38). In addition, a 
study found that the higher abundance of Enterobacteriaceae 
in inflammatory bowel diseases (IBD) caused inflammation 
that could be triggered by GM imbalances such as those 
observed in patients with ASD (63). Lactobacillaceae were 
found in greater abundance in ASD samples than in the healthy 
controls, which is consistent with a study by Pulikkan et al (64). 
A higher abundance of Lactobacillaceae is associated with a 
decrease in gut microbial‑derived bacterial metabolites such 
as SCFAs; consequently, lower levels of SCFAs in individuals 
with ASD lead to imbalances in their behavior, immune system 
function and brain function (65,66). Peptostreptococcaceae 
were more abundant in ASD samples. A study found that 
Peptostreptococcaceae levels were associated with social 
deficit symptoms (67). Peptostreptococcaceae may thus have 
an impact on both behavior and brain function, which could be 
related to cognitive symptoms and social deficits in children 

Figure 10. PCA based on the number of genes at the species level of metage‑
nomes collected from Children with ASD and their healthy control siblings. 
A colored dot refers to a given sample in one group and similar colored dots 
refer to the same group. The x‑axis is the first principal component, and the 
y‑axis is the second principal component for the analysis. The number in 
the brackets represents the contribution of the PCA to differences among 
samples. PCA, principal component analysis; ASD, autism spectrum disorder.
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with autism (68). However, healthy control samples demon‑
strated a higher abundance of Succinivibrionaceae. Members 
of this family are important for carbohydrate metabolism, as 
they ferment glucose to produce large quantities of succinic 
and acetic acid (69). Acetic acid plays a role in relieving consti‑
pation (70), thus constipation is more common in children with 
autism than in healthy control siblings. Acidaminococcaceae 
were more abundant in healthy control samples, in agree‑
ment with a previous that illustrated a higher abundance of 
Acidaminococcaceae in the gut of healthy individuals (71).

The presence of the Parabacteroides genus was mark‑
edly higher in the ASD group. Parabacteroides are closely 

associated with obesity, metabolic syndrome, and IBD (72,73). 
Bacteroidetes were highly abundant in the healthy control 
samples. The majority of the Bacteroidetes genus produces 
propionic acid and SCFAs as metabolic byproducts (37). 
When SCFAs and propionic acid were injected into the cere‑
bral ventricles of rats, MacFabe et al (74) noticed that the rats 
exhibited chemical, pathological and biological changes that 
were typical of ASD, such as hyperactivity, abnormal motor 
movements and repetitive behaviors, as well as exhibiting 
seizures (74). The Proteus genus was found to be more abun‑
dant in ASD samples. Several gastrointestinal conditions have 
been linked to an abundance of bacteria from the Proteus 

Figure 11. Circus plot showing the results of the correlation between mineral concentration and gene abundance, affecting the way these minerals work on the 
relative percentage scale. The different colors of the inner circle indicate different samples/groups and functional classifications. The right side of the outer 
circle is the relative percentage of each functional category in both groups (control and ASD), and the left side of the outer circle is the relative percentage of 
a few minerals and dyes in each sample. ASD, autism spectrum disorder.
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genus, including Crohn's disease, gastroenteritis, and appendi‑
citis (75), which suggests that an abundance of bacteria from 
the Proteus genus could be related to GI symptoms in children 
with ASD. Bifidobacterium was found to be a less abundant 
genus in children with ASD, consistent with previous studies 
by Iglesias‑Vázquez et al (76) and Finegold et al (37). Certain 
Bifidobacterium species showed decreased levels in children 
with autism compared with healthy individuals; bacteria 
from this species produce γ‑aminobutyric acid (77), which is 
closely associated with glutamate metabolism and is a major 
excitatory neurotransmitter in the brain (78). According to 
previous studies, there is a correlation between lower levels 
of glutamate concentrations and the behavioral, anxiety and 
social disorder characteristics of ASD (79,80). Prevotella 
was found in a lower abundance in ASD samples than in the 
healthy control samples, which is consistent with a previous 
study by Kang et al (81). Additionally, Blautia was found 
to be higher in healthy control siblings. Blautia is a butyric 
acid‑producing bacterium that helps to remove gas from the 
intestine (82). Roseburia inulinivorans and Bifidobacterium 
infantis were found to be less abundant at the species level 
in ASD samples. A previous study discovered a higher 
abundance of Roseburia inulinivorans in the intestines of 
healthy individuals, where it plays a significant role in butyrate 
formation from a variety of dietary polysaccharide substrates 
in the large intestines (83). Furthermore, B. infantis is a gut 
bacterium that plays a role in reducing intestinal inflammation 
in infants with severe acute malnutrition (84) and may thus be 
used as a supplement to improve the gut health of children with 
autism. The abundance of Klebsiella A oxytoca was higher 
in children with ASD. K. oxytoca is an intestinal pathobiont 
and the causative agent of antibiotic‑associated hemorrhagic 
colitis (85). Under conditions of gut dysbiosis, K. oxytoca 
exerts pathogenic potential, such as in conditions observed 
in patients with ASD (86). Additionally, K. oxytoca exhibits 
natural resistance to penicillin and contributes to the trans‑
mission of antibiotic‑resistance genes to other bacteria (87,88); 
this linking may explain the relationship between children 
with children with ASD and the increased probability of 
exhibiting antibiotic resistance compared with healthy control 
siblings. The presence of Bacteroides fragilis was found to 
be higher in children with autism, B. fragilis produces LPS, a 
major virulence factor that can serve as a potent poison under 
specific circumstances (37).

Regarding mineral concentration in the two groups of this 
study, Zn was more abundant in the ASD samples compared 
with the healthy controls, consistent with a previous study 
by Hawari et al (89) but in disagreement with a study by 
Faber et al (90), the latter of which found that Zn deficiency 
was the primary cause of mood and behavioral disorders in 
humans. Children with ASD in the study by Faber et al (90) 
were found to have Zn deficiency; the amount of Zn in their 
nails, plasma, and hair was measured, and it was found that 
the levels of Zn were lower in ASD compared with healthy 
controls (90). In addition, a study found that sleep duration 
was favorably correlated with Zn levels and adversely corre‑
lated with Cu levels (91). Sleep impairment has an effect 
on the cognitive performance of children (92). However, 
several studies have highlighted the numerous physiological 
functions of Zn, including cell growth, differentiation and 

development (93‑96). Zn affects cognitive development and 
supports healthy brain function by regulating differentiation, 
neurogenesis, and neuronal migration (94,95). Zn, which 
may have an impact on the brain‑gut axis, is essential for gut 
and gastrointestinal system function during neural develop‑
ment (96). Additionally, an increase in Cu concentration has 
been linked to an increase in ASD severity (97). The findings 
of the present study corroborated those of the aforementioned 
studies; there was a high ratio of Cu in the ASD samples 
compared with the controls. The results also showed that Ni 
was more abundant in the ASD samples. Organ dysfunction 
that results in various behavioral and physiological disorders 
is associated with Ni homeostasis, imbalanced due to an over‑
load or a deficiency (98). The brain, lungs, kidneys, and liver 
are just a few of the organs that are negatively affected by high 
Ni levels (99‑102).

The present study found that certain compounds, including 
molybdenum, arsenic, and magnesium, were present at 
slightly higher levels in the ASD samples. Cognitive func‑
tion is inversely associated with molybdenum (101). Arsenic 
is also a neurotoxic metal that impairs cognitive function 
and has negative effects on brain development as well as 
behavioral performance (103). Magnesium regulation of 
glutamate‑activated channels in neuronal membranes during 
neurodevelopment is closely associated with the pathogenesis 
of ASD (104). In both autistic and healthy children, Se and 
pyronin Y (a cationic dye) were found in comparable amounts. 
Se controls redox homeostasis, neuroimmune processes and 
signal transduction pathways in brain tissues. Pyronin Y and 
Se are both necessary for maintaining healthy physiological 
processes and the growth of the brain (105).

The present study has shown that most of the symptoms that 
children with autism suffer from are linked in one way or another 
to the function of the microbiome. Certainly, more research is 
required for the development of appropriate treatments to assist 
individuals with ASD and improve the quality of their lives.

An important area of research in the last decade has 
been the function of the human GM in health and disease. 
To classify and identify the significant pathogenic genera 
and species in children with autism, as potential biomarkers 
for the detection of autism, the present study compared the 
composition of the GM between children with autism and 
their healthy siblings. The results showed that individuals with 
ASD had a higher GM biomass, diversity, and richness when 
compared with controls. These differences included the pres‑
ence of more pathogenic genera and species, which may affect 
social interactions and behavioral phenotypes associated with 
ASD. The relative percentage of the gene abundance of each 
functional category in the samples revealed significant differ‑
ences between the two groups. The case and control groups in 
the current study were only examined in four samples; thus, 
the small sample size was a limitation to the present study. 
Therefore, additional research using a larger cohort of patients 
and controls is required to examine the interference of the 
identified microbes with a variety of biological mechanisms 
to confirm the findings and hypotheses presented in this study.
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