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OBJECTIVE — Alveolar microvascular function is moderately impaired in type 1 diabetes, as
manifested by restriction of lung volume and diffusing capacity (DLCO). We examined whether
similar impairment develops in type 2 diabetes and defined the physiologic sources of impair-
ment as well as the relationships to glycemia and systemic microangiopathy.

RESEARCH DESIGN AND METHODS — A cross-sectional study was conducted at a
university-affiliated diabetes treatment center and outpatient diabetes clinic, involving 69 non-
smoking type 2 diabetic patients without overt cardiopulmonary disease. Lung volume, pulmo-
nary blood flow (Q̇), DLCO, membrane diffusing capacity (measured from nitric oxide uptake
[DLNO]), and pulmonary capillary blood volume (VC) were determined at rest and exercise for
comparison with those in 45 healthy nonsmokers as well as with normal reference values.

RESULTS — In type 2 diabetic patients, peak levels of oxygen uptake, Q̇ and DLCO, DLNO,
and VC at exercise were 10–25% lower compared with those in control subjects. In nonobese
patients (BMI �30 kg/m2), reductions in DLCO, DLNO, and VC were fully explained by the lower
lung volume and peak Q̇, but these factors did not fully explain the impairment in obese patients
(BMI �30 kg/m2). The slope of the increase in VC with respect to Q̇ was reduced �20% in
patients regardless of BMI, consistent with impaired alveolar-capillary recruitment. Functional
impairment was directly related to A1C level, retinopathy, neuropathy, and microalbuminuria in
a sex-specific manner.

CONCLUSIONS — Alveolar microvascular reserves are reduced in type 2 diabetes, reflect-
ing restriction of lung volume, alveolar perfusion, and capillary recruitment. This reduction
correlates with glycemic control and extrapulmonary microangiopathy and is aggravated by
obesity.
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D iabetic microangiopathy can in-
volve alveolar tissue and capillaries,
the largest microvascular bed in the

body, leading to restriction of lung vol-
ume and alveolar gas transport, as mani-
fested by reduced diffusing capacity of the
lung for carbon monoxide (DLCO), as well
as its components: membrane diffusing
capacity and pulmonary capillary blood
volume (VC). Lung diffusing capacity is

the gas conductance across the lung,
modeled as diffusion across alveolar-
capillary membrane barrier followed by
chemical binding to capillary hemoglo-
bin. In young nonsmokers with poorly
controlled type 1 diabetes, DLCO and its
components were reduced 15–30% at
rest and exercise compared with age-
matched nondiabetic subjects (1,2). In
type 1 diabetic patients who maintained

near-normoglycemia, these parameters
are near normal, suggesting a relationship
between alveolar function and systemic
microangiopathy. Impaired alveolar gas
transfer in type 1 diabetes signifies ero-
sion of microvascular reserves that could
accelerate clinical decline in conjunction
with primary lung disease, aging, or car-
diorenal complications and affect long-
term tolerance to the use of inhaled
insulin.

Type 2 diabetes has also been linked
to lower spirometric indexes (3,4) and
resting DLCO (5,6). However, previous
studies had not taken into account the
dependence of DLCO on pulmonary
blood flow (Q̇). Normally, DLCO and its
components increase 40–60% in a linear
relationship as Q̇ increases up to peak ex-
ercise. The ability to augment DLCO and
its components indexes the recruitment
of alveolar microvascular reserves via en-
larged membrane surfaces, as well as in-
creased mass and improved distribution
of alveolar-capillary erythrocytes. Re-
cruitment is essential for maintaining a
normal diffusion-to-perfusion (D/Q̇) ratio
and achieving adequate oxygenation of
end-capillary blood leaving the lung (7).
Conventional interpretation of DLCO im-
plicitly assumes an unchanged Q̇; this as-
sumption is unwarranted and can be
misleading. For example, lower cardiac
output associated with diabetic heart dis-
ease decreases apparent DLCO even when
alveolar diffusion is normal. Conversely,
elevated cardiac output associated with
obesity increases apparent DLCO and
could mask the impairment of alveolar
diffusion. Thus, the adequacy of alveolar-
capillary recruitment and gas transfer
cannot be optimally assessed without
knowledge of both DLCO and Q̇. We hy-
pothesized that restriction of lung vol-
ume , DL C O , and mic rovascu l a r
recruitment develops in type 2 diabetes
independent of Q̇ and that abnormalities
correlate with disease duration, glycemic
control, and extrapulmonary microangi-
opathy and are compounded by obesity.
We simultaneously measured lung vol-
ume, Q̇, DLCO, membrane diffusing ca-
pacity, and VC using a noninvasive
rebreathing technique in type 2 diabetic
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patients from rest to heavy exercise. Mea-
surements were compared with reference
values obtained in nondiabetic control
subjects and adjusted for Q̇. Alveolar-
capillary recruitment was assessed from
the slopes of the increase in DLCO, diffus-
ing capacity of the lung for nitric oxide
(DLNO) and VC with respect to Q̇.

RESEARCH DESIGN AND
METHODS — The institutional re-
view board approved all protocols; writ-
ten informed consent was obtained from
all subjects. Nonsmoking type 2 diabetic
patients (n � 69) without overt cardio-
pulmonary disease were recruited from
the University of Texas Southwestern Di-
abetes Treatment Center. Thirty-seven
patients were treated with insulin; 25
were also taking an oral hypoglycemic
agent. Thirty-one patients were taking
oral agents only. Thirty subjects were tak-
ing antihypertensive medication, and 32
were taking antihyperlipidemia medica-
tion. Five subjects were remote smokers
(�10 pack-years); the average time since
smoking cessation was 14 years. Forty-
five healthy nondiabetic nonsmokers
served as simultaneous control subjects.
Adjusted reference values were derived
from 75 cumulative nonobese (BMI �30
kg/m2) control subjects.

Apparatus
Standard spirometry was performed
(Vmax229; Sensormedics, Yorba Linda,
CA). Subjects exercised on a bicycle er-
gometer (Ergometrics-800; Sensormed-
ics) while breathing through a respiratory
valve (8500; Hans Rudolph, Kansas City,
MO) and solenoid-controlled switching
assembly (GH3315; Precision Dynamics,
San Fernando, CA, and EV-3–12; Clipp-
ard, Cincinnati, OH). The expiratory cir-
cuit opened via a mixing chamber to
either room air or a bag-in-a box reservoir
containing the test gas mixture. Expired
ventilation was measured using a turbine
flowmeter (VMM2; Interface Associates,
Aliso Viejo, CA). Oxygen and CO2 con-
centrations were measured by mass spec-
trometry (MGA-1100; PerkinElmer).
Electrocardiogram and transcutaneous
oxygen saturation (N-180; Nelcor, Carls-
bad, CA) were monitored continuously.

Rebreathing technique
The technique is well established (8,9).
The bag-in-a box reservoir contained a
mixture of 0.3% methane, 0.3% carbon
monoxide (CO), 0.8% acetylene, and ei-
ther 30 or 90% oxygen in a balance of

nitrogen. When needed, nitric oxide
(NO) (�40 ppm) was added immediately
before testing. At a selected end-
expiration the valves switched electroni-
cally, allowing the subject to inspire one
bolus of test gas to total lung capacity and
then rebreathe this bolus in and out of an
anesthetic bag for 12–16 s while gas con-
centrations at the mouth were monitored.
Methane, acetylene, and CO concentra-
tions were measured by an infrared ana-
lyzer (Sensors, Saline, MI); the NO
concentration was measured by chemilu-
minescence (NOA280; Sievers Instru-
ments, Boulder, CO).

Systemic microangiopathy
Retinopathy was assessed by funduscopic
examination. The presence of microaneu-
rysm, hemorrhage, exudate, or neovascu-
larization or previous laser treatment was
considered positive. Microalbuminuria
was assessed from a nonfasting urine sam-
ple: �30 �g/mg creatinine was consid-
ered abnormal. Nerve conduction was
studied in the Electrodiagnostics Labora-
tory of University Diabetes Treatment
Center. The ulnar sensory and peroneal
motor nerves were stimulated, and the
compound nerve or muscle action poten-
tial was recorded to assess conduction ve-
locity, latency, and amplitude in
comparison with established reference
values (10). Individual nerves were ab-
normal if at least one of these parameters
was outside the normal threshold. Neu-
ropathy was conservatively defined as ab-
normalities in both motor and sensory
nerves.

Protocol
On the first visit, medical history was re-
viewed and physical examination was
performed. A venous blood sample was
drawn to measure hematocrit, Hb, and
A1C concentrations. A urine sample was
collected, and nerve conduction was mea-
sured. Spirometry, maximal voluntary
ventilation, and DLCO at rest were mea-
sured. Maximal oxygen uptake was deter-
mined by an incremental protocol
(20–30 W every 3 min) until volitional
termination.

On a second visit, studies were per-
formed at rest and at 30, 60, and 90% of
the predetermined maximal workload,
with each sustained for 3 min followed by
the rebreathing maneuver. Duplicate
measurements were performed with the
test gas containing 30 or 90% oxygen in
balanced order. Before rebreathing the
test gas containing 90% oxygen, subjects

prebreathed 100% oxygen for �30 s until
alveolar oxygen tension (PAO2) reached
�600 mmHg. Subjects rested between
workloads until heart rate and ventilation
returned to baseline. On a third visit, the
exercise protocol was repeated but with-
out NO in the test gas. The presence of
NO in the test gas mixture does not alter
the measurements during the brief
(12–16 s) rebreathing period (11).

Data analysis
The analysis was established previously
(8,9). Lung volume (body temperature
and pressure saturated, in liters) was esti-
mated by methane dilution. Q̇, DLNO, and
DLCO were determined from end-tidal
disappearance of acetylene, NO, and CO,
respectively. Conductance of membrane
and hemoglobin binding contribute
about equally to DLCO. DLNO was used as
a direct index of membrane diffusing ca-
pacity. Because NO is rapidly scavenged
by hemoglobin, resistance to alveolar NO
uptake resides mainly within the tissue/
erythrocyte membrane, and DLNO is di-
rectly related to diffusing capacity of
alveolar membrane for carbon monoxide
(DMCO) (DLNO � 2.42.DMCO) (9). From
DLCO and the DMCO derived from DLNO,
VC was calculated by the standard
equation:

1

DLCO
�

1

DMCO
�

1

�CO � Vc

where CO uptake by 1 ml of whole blood
(�CO) is dependent on mean PAO2 and the
Hb concentration:

1

�CO
� 	0.73 � 0.0058.PAO2
 �

14.6

�Hb]

DMCO and VC were used to express DLCO
at a constant Hb concentration (14.6 g/dl)
and PAO2 (120 mmHg).

Duplicate measurements were aver-
aged and expressed as absolute values and
as percentages of reference values from
nondiabetic control subjects. End-
expiratory lung volume (EELV) and end-
inspiratory lung volume (EILV) were
adjusted for sex, age, and height (men:
EELV � 5.72 � height � 0.02 � age 
7.24, EILV � 11.32 � height  13.23;
women: EELV � 3.45 � height � 0.02 �
age  3.84, EILV � 4.89 � height �
0.02 � age  3.79). DLCO, DLNO, and VC
were adjusted for sex, age, body surface
area, and Q̇ using multivariate regression
analysis (8,11). Individual DLCO, DLNO,
and VC measurements were analyzed with

Chance and Associates

DIABETES CARE, VOLUME 31, NUMBER 8, AUGUST 2008 1597



respect to Q̇; slope of the linear regression
provides an index of alveolar-capillary re-
cruitment (7). Data were compared by
ANOVA with a post hoc test by Fisher’s
protected least significant difference. Dif-
ferences were significant at P � 0.05.

RESULTS — In type 2 diabetic pa-
tients, the prevalence of retinopathy was
32%, the prevalence of microalbuminuria
was 38%, and the prevalence of nerve
conduction defects was 28%. A1C ex-
ceeded 8.0% in 54% of patients; average
A1C was slightly lower in obese (BMI
�30 kg/m2) than in nonobese patients
(Table 1). Hematological indexes were
normal. Forced vital capacity (FVC) was
significantly (8–11%) lower regardless of
BMI. Forced expiratory volume in 1 s
(FEV1), and maximal voluntary ventila-
tion were normal. Peak heart rate ex-
ceeded 80% of the predicted maximum;
peak workload and peak oxygen uptake
were �25% below the predicted maxi-
mum. Ventilation and tidal volume at
peak exercise were �20% lower in pa-
tients compared with control subjects.

Mixing efficiency during rebreathing

and transcutaneous oxygen saturation
was normal in all subjects. Mean alveolar
NO concentration (5–7 ppb) was similar
among groups. In patients, EELV and
EILV were �15% below normal regard-
less of BMI (Fig. 1A). At the highest sus-
tained workload, Q̇ in patients was below
normal (Table 2). Unadjusted DLCO,
DLNO, and VC measured upon exercise
were modestly lower in patients com-
pared with control subjects (Table 2).
When expressed as a percentage of refer-
ence values adjusted for Q̇, DLCO, DLNO,
and VC were within the normal range in
nonobese patients but remained signifi-
cantly reduced (16–18%) in obese pa-
tients (Fig. 1B). The relationship between
DLNO and DMCO was normal (not
shown). The slopes of the linear increase
in DLCO and DLNO with respect to Q̇ were
similar among groups. The slope of the
linear increase in VC with respect to Q̇ was
20 –25% below normal in patients re-
gardless of BMI (Table 2).

In male and female patients, A1C
�8.0% correlated with significantly
lower DLCO, DLNO, VC, and EILV (Fig.
2A), and microalbuminuria correlated

with lower DLCO, DLNO, and EILV (Fig.
2B) compared with patients without these
complications. In male but not female pa-
tients, the presence of neuropathy was as-
sociated with significantly lower DLCO,
DLNO, VC, and EILV (Fig. 2C), whereas
retinopathy correlated with a significantly
lower DLNO (Fig. 2B). There was no sig-
nificant correlation of lung function to age
or to disease duration in either sex.

CONCLUSIONS — This is the first
study to quantify pulmonary microvascu-
lar reserves in type 2 diabetes. The main
findings were as follows. 1) Lung volume
was moderately reduced regardless of sex
or obesity. 2) Peak Q̇, DLCO, DLNO, and
VC were reduced upon exercise. 3) Ad-
justment for sex, age, and Q̇ normalized
DLCO, DLNO, and VC in nonobese type 2
diabetic patients, but the adjusted param-
eters remained reduced in obese patients.
4) The slope of the increase in VC with
respect to Q̇ was reduced regardless of
obesity, consistent with diminished re-
cruitment of alveolar capillaries. These re-
sults highlight the need to consider Q̇
when interpreting DLCO and its compo-
nents. 5) Alveolar microvascular indexes
were significantly related to glycemic con-
trol and extrapulmonary microangiopa-
thy in a sex-specific manner.

Lung volume
Hyperglycemia and insulin resistance are
associated with lower FVC and FEV1
(4,12). A restrictive pattern in middle-
aged nondiabetic adults is predictive of
subsequent type 2 diabetes (13). Some
studies do not show differences in ad-
justed rates of longitudinal change in
spirometry between diabetic and nondia-
betic subjects (4), whereas others found
that declining FEV1 and lung volume are
directly related to glycemic control and
mortality (3). In type 1 diabetes, a lower
lung volume is associated with abnormal
elastic recoil (14) and elevated work of
breathing at exercise (2). A stiff chest wall
with limited joint mobility (15) may be
caused by abnormal connective tissue
metabolism as well as collagen cross-
linking in thoracic and lung tissue. Auto-
nomic neuropathy involving respiratory
muscles may impair thoracic mobility. A
similar pathogenesis may cause volume
restriction in type 2 diabetes. In elderly
men, adiposity and metabolic syndrome
are associated with a restrictive spiromet-
ric pattern (16). Mechanical loading of the
thorax due to adiposity could exacerbate
lung volume restriction. Abnormal fat in-

Table 1—Baseline and peak exercise data

Control
subjects

Type 2 diabetic patients

BMI
�30 kg/m2

BMI
�30 kg/m2

n (% female) 45 (47) 32 (41) 37 (49)
Age (years) 45 � 13 49 � 10 45 � 11
Height (cm) 171 � 9 169 � 14 169 � 10
BMI (kg/m2) 28.8 � 5.1 27.4 � 1.6 34.4 � 3.8*†
Hemoglobin (g/dl) 13.7 � 1.4 14.0 � 1.6 13.4 � 1.7
Hematocrit (%) 42 � 4 43.5 � 5 41 � 4
A1C (%) 8.7 � 1.9 8.0 � 1.6
Time from diagnosis (years) 8.5 � 5.4 7.3 � 6.3
Spirometry

FVC (liters) 4.2 � 0.9 3.7 � 1.2 3.6 � 1.0*
% predicted 101 � 15 92 � 14* 89 � 14*

FEV1 (liters) 3.2 � 0.6 3.1 � 0.9 3.0 � 0.8
% predicted 98 � 13 97 � 16 93 � 13

FEV1/FVC (%) 77 � 7 82 � 5* 83 � 5*
Maximum voluntary ventilation (liters/min) 134 � 29 134 � 42 131 � 34

% predicted 98 � 14 100 � 18 99 � 19
Peak exercise

Workload (W) 155 � 53 122 � 51* 116 � 39*
Heart rate (beats/min) 167 � 19 152 � 20* 150 � 18*

% predicted maximum 93 � 9 86 � 10* 83 � 9*
O2 uptake (liters � min1) 2.0 � 0.6 1.5 � 0.6* 1.6 � 0.5*

% predicted maximum 93 � 19 74 � 18* 77 � 13*
Respiratory exchange ratio 1.3 � 0.1 1.2 � 0.2 1.3 � 0.2

Ventilation (liters �min1) 85 � 21 68 � 27* 71 � 22*
Tidal volume (liters) 2.4 � 0.6 1.9 � 0.8* 1.9 � 0.7*

Data are means � SD. *P � 0.05 vs. control by ANOVA. †P � 0.05 vs. type 2 diabetes BMI �30 by ANOVA.

Alveolar function in type 2 diabetes
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filtration and connective tissue deposition
(17) within the lung parenchyma may fur-
ther reduce lung volume and compliance.

Diffusion and alveolar-capillary
recruitment
Normally, lung volume and Q̇ are the ma-
jor determinants of DLCO, DLNO, and VC
(8,11). Upon exercise, DLCO, DLNO, and
VC increase 40–60% in a linear relation-
ship with respect to perfusion (7). In
nonobese patients, the lower lung volume
and lower Q̇ at exercise fully explain the
10 –25% reduction in measured DLCO
DLNO, and VC. Because lung volume was
similarly reduced in obese and nonobese
patients, the persistently lower DLCO
DLNO, and VC in obese patients after ad-
justment for Q̇ suggest additional factors,
e.g., infiltrative fat or connective tissue
deposition within alveolar tissue, that
cause diffusion impairment.

One major effect of type 2 diabetes is
decreased alveolar microvascular perfu-
sion, leading to proportionately lower
DLCO, DLNO, and VC at rest or exercise.
Obesity further impairs DLCO, DLNO, and
VC, but the effect is partially offset by an

obesity-associated increase in cardiac out-
put (18). These results highlight the need
to consider perfusion when interpreting
lung diffusion. The magnitude of diffu-
sion impairment in type 2 diabetes is
milder than that observed in type 1 dia-
betes (1,2); differences could relate to
longer disease duration in our earlier type
1 diabetes study (�15 years) compared
with that for type 2 diabetes (�8 years) in
this study. True disease duration is often
uncertain in type 2 diabetes, and we did
not observe a significant relationship be-
tween type 2 diabetes duration and lung
function. Also, type 1 diabetes is uni-
formly severe, whereas the severity of type
2 diabetes is heterogeneous. Nonetheless,
a consistent inverse relationship between
lung function and glycemia emerged in
type 2 diabetes as in type 1 diabetes (2).

In moderate/localized lung disease,
DLCO, DLNO, and VC are reduced at a
given Q̇, but the ability to recruit the re-
maining alveolar microvasculature is pre-
served; recruitment mitigates the
reduction in DLCO to maintain arterial ox-
ygen saturation (9,19). In contrast, few
lung units are recruitable in diffuse pul-
monary fibrosis: DLCO and its compo-
nents are not only reduced at rest but fail
to rise as Q̇ increases (19); inadequate
recruitment causes the diffusion-to-
perfusion (D/Q̇) ratio to fall with exercise,
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Figure 1— A: EELV and EILV expressed as percentages of the reference values adjusted for sex,
age (years), and height (meters) were significantly lower in type 2 diabetic patients regardless of
obesity (BMI �30 kg/m2). Data are means � SD. *P � 0.05 versus nondiabetic control subjects.
B: After adjustment for sex, age, body surface area, and pulmonary blood flow, DLCO, DLNO, and
VC expressed as percentages of the reference values were not significantly different from normal in
nonobese type 2 diabetic patients (BMI �30 kg/m2) but remained significantly reduced in obese
patients (BMI �30). Data are means � SD. *P � 0.05 versus normal subjects; †P � 0.05 versus
type 2 diabetic patients with BMI �30 kg/m2.

Table 2—Unadjusted rebreathing data

Control
subjects

Type 2 diabetes

BMI
�30 kg/m2

BMI
�30 kg/m2

EELV (liters)
Rest 3.5 � 1.0 2.9 � 1.0* 2.9 � 0.9*
Exercise 3.3 � 1.0 2.9 � 1.0 2.9 � 0.9*

EILV (liters)
Rest 6.0 � 1.4 5.6 � 1.6 5.4 � 1.3
Exercise 6.0 � 1.3 5.5 � 1.5 5.4 � 1.2*

Q̇ (liters � min1)
Rest 6.0 � 1.4 5.5 � 1.1 6.1 � 1.4
Exercise 14.5 � 1.4 11.8 � 3.4* 12.8 � 3.3*

DLCO (mL � �min � mmHg�1)
Rest 25.9 � 6.5 23.1 � 6.2 24.1 � 5.7
Exercise 35.3 � 9.2 30.6 � 8.6* 31.5 � 7.2*

DLNO (mL � �min � mmHg�1)
Rest 120 � 33 99 � 34* 105 � 32
Exercise 141 � 43 114 � 38* 120 � 35*

VC (ml)
Rest 78 � 22 69 � 23 71 � 21
Exercise 127 � 45 98 � 34* 100 � 30*

Slope of relationship with respect to
pulmonary blood flow (liters/min)
DLCO 1.5 � 0.4 1.4 � 0.3 1.3 � 0.2*†
DLNO 2.8 � 1.7 2.4 � 1.5 2.3 � 1.3
VC 6.4 � 3.3 4.7 � 1.7* 4.4 � 1.9*

Data are means � SD. Exercise data were obtained at 90% peak workload. *P � 0.05 vs. control by ANOVA.
†P � 0.05 vs. type 2 diabetes BMI �30 by ANOVA.
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leading to severe arterial hypoxemia (7).
Thus, multivariate analysis of lung diffu-
sion should include simultaneously mea-
sured Q̇ as a dynamic determinant.
Impairment of alveolar-capillary recruit-
ment in type 2 diabetes regardless of obe-
sity suggests parenchymal changes that
impede opening or distention of alveolar
capillaries, possibly caused by connective
tissue deposition within alveolar walls
that has been observed in experimental
diabetes (17); obesity may exaggerate
these changes.

Relation to systemic
microangiopathy
Lung function in type 2 diabetes is worse
in a sex-specific manner in the presence of
extrapulmonary end-organ complica-
tions, suggesting that nonenzymatic pro-
tein glycation, which predicts long-term
progression of retinopathy and nephrop-
athy, also predisposes to lung restriction.
Sex-specific susceptibility to diabetes
complications is well known. For exam-

ple, diabetic foot lesion has a poorer prog-
nosis in men than in women (20). The
DNA polymorphism that promotes an-
giotensinogen gene expression increases
the risk of nephropathy in diabetic men
but not women (21). The risk of cardio-
vascular disease is higher in diabetic
women than in men (22). Diabetes-
related oxidative stress and reduction in
antioxidant activity is greater in women
than in men (23). Lifestyle, genetics, sex
hormones, vascular endothelial function,
advanced glycation end products, and in-
trinsic sex differences in lung structure
may influence sex susceptibility to com-
plications.

Clinical implications
Unlike the smaller microvasculature in
the retina, heart, or peripheral nervous
system, alveolar microvasculature is ex-
tensive. The oxygen transport capacity of
the lung is twice that of the cardiovascular
system or skeletal muscle. In chronic lung
disease, lung volume and DLCO could de-

cline �50% without an individual incur-
ring dyspnea at rest. Because of the large
physiological reserves and because peak
cardiac output is concurrently reduced,
diabetic pulmonary dysfunction remains
“subclinical.” Nonetheless, a modest loss
of alveolar-capillary reserves can be quan-
tified by noninvasive methods indepen-
dent of physical fitness and correlates
with glycemia as well as systemic mi-
croangiopathy. It remains to be deter-
mined whether alveolar microvascular
indexes track longitudinal microangiopa-
thy in a “clean” organ that is not ravaged
by diabetes or its treatment. Loss of alve-
olar reserves could exaggerate aging-
related functional decline (5) and
predispose to overt sequelae in conjunc-
tion with renal and heart failure or pri-
mary lung disease. For example, diabetes
significantly increases mortality in
women with cystic fibrosis (24). Resi-
dence at high altitude where alveolar hyp-
oxia imposes the primary limitation to
oxygen transport is associated with higher
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means � SEM. B: In male and female patients, an elevated urinary microalbumin level (micrograms per milligram of creatinine) was associated with
lower DLCO, DLNO, and EILV at 90% peak exercise. C: In male patients, the presence of neuropathy was associated with lower EILV, DLCO, DLNO,
and VC at 90% peak exercise. D: In male patients, the presence of retinopathy was associated with a lower DLNO at 90% peak exercise. Data are
means � SEM. *P � 0.05 versus nondiabetic control subjects; †P � 0.05 versus patients with A1C �8.0% or patients without complications. T2DM,
type 2 diabetes.
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prevalence of diabetic end-organ compli-
cations (25). These issues regarding phys-
iological reserves are also important for
the chronic use of inhaled insulin, which
causes an early reduction in lung function
(26). Finally, these data suggest that
weight loss in obese type 2 diabetic pa-
tients could improve alveolar microvas-
cular function.
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